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This paper deals with metric observer application for induction motors. Firstly, assuming that stator currents and speed are
measured, a metric observer is designed to estimate the rotor fluxes. Secondly, assuming that only stator currents are measured,
another metric observer is derived to estimate rotor fluxes and speed. The proposed observer validity is checked throughout
simulations on a 4 kW induction motor drive.

1. Introduction

In the two last decades, the most significant developments in
inductionmotors control have been field-oriented control [1]
and nonlinear input-output and state feedback linearization
techniques [2] with real-world industry application. More
advanced control techniques have also been proposed, such
as (1) passivity-based approach, which exploits the system
energy dissipation property to solve the underlying control
problem [3], (2) sliding mode-based control approaches [4–
7] and the higher-order ones [8, 9], and (3) flatness-based
control approaches [10].

Otherwise, in most of the above-mentioned control
approaches, an observer has to be used since a part of the
motor state is not measurable in industrial applications.
Several observers have been proposed in the literature. The
most well-known and popular ones are given in [11, 12], in
which authors have proposed the model reference adaptive
system (MRAS) for the estimation of the induction motor
speed, from measured phase voltages and currents, based on
the adaptive control theory. Some other observer has been
proposed based on the context of more advanced and/or
intelligent control technique such as sliding mode [13], high
gain observer [14], and the mean value theorem [15].

Screening deeply the literature on observers design for
nonlinear systems, specific ones have been proposed in
[16, 17], namely, metric observers. In this particular and
still challenging observer design context, it is proposed to
investigate the effectiveness of metric observers for induction
motors control.This paper’s objective is therefore twofold: (1)
assuming the stator currents and rotor speed to be measured,
a reduced-order metric observer is proposed to estimate
the induction motor rotor fluxes; (2) assuming that only
the stator currents are measured, a nonlinear reduced-order
metric observer is derived to estimate rotor fluxes and speed.

The paper is organized as follows. Section 2 deals with the
induction modeling. In the first part of Section 3, a reduced-
order metric observer is derived to estimate the rotor flux
and, in the second part, a nonlinear reduced-order one for
rotor flux and rotor speed estimation is proposed. Section 4
gives simulation results for validation purposes. Finally some
concluding remarks end the paper.

2. Induction Motor Model

Assuming that we have balanced three-phase AC voltages
and that stator windings are uniformly distributed, and based
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on the well-known two-phase equivalent machine represen-
tation, the induction motor can be described by fifth-order
nonlinear differential equations with four electrical variables
(currents and fluxes), one mechanical variable (rotor speed),
and two control variables (stator voltages). In a fixed (𝑎, 𝑏)
frame, one has

𝑋̇ = 𝑓 (𝑋,𝑈) = 𝐴 (𝜔 (𝑡))𝑋 + 𝐵𝑈,

𝜔̇ (𝑡) = 𝑘 (𝜑
𝑎
𝑖
𝑏
− 𝜑
𝑏
𝑖
𝑎
) −
𝑇
𝐿

𝐽
−
𝑓rot
𝐽
𝜔,

(1)

where

𝑈 = [𝑢
𝑎
𝑢
𝑏
]
𝑇

,

𝑋 = [𝑥
1
𝑥
2
𝑥
3
𝑥
4
]
𝑇

= [𝑖
𝑎
𝑖
𝑏
𝜑
𝑎
𝜑
𝑏
]
𝑇

,

𝐴 (𝜔 (𝑡)) =

(
(
(
(

(

−𝛾 0
𝐾

𝑇
𝑟

𝑝𝐾𝜔 (𝑡)

0 −𝛾 −𝑝𝐾𝜔 (𝑡)
𝐾

𝑇
𝑟

𝑀

𝑇
𝑟

0 −
1

𝑇
𝑟

−𝑝𝜔 (𝑡)

0
𝑀

𝑇
𝑟

𝑝𝜔 (𝑡) −
1

𝑇
𝑟

)
)
)
)

)

,

𝐵 =(

(

1

𝜎𝐿
𝑠

0

0
1

𝜎𝐿
𝑠

0 0

0 0

)

)

(2)

with

𝜎 = 1 −
𝑀
2

𝐿
𝑠
𝐿
𝑟

,

𝐾 =
𝑀

𝜎𝐿
𝑠
𝐿
𝑟

,

𝛾 =
𝑅
𝑠

𝜎𝐿
𝑠

+
𝑅
𝑟
𝑀
2

𝜎𝐿
𝑠
𝐿
2

𝑟

,

𝑘 = 𝑝
𝑀

𝐽𝐿
𝑟

.

(3)

It is worth noticing that the only measured variables are
stator currents so that the output state equation is

𝑌 = 𝐻 (𝑋) = (

1 0 0 0

0 1 0 0

)𝑋. (4)

It can be easily shown that state𝑋 is observable from 𝑌.

3. The Metric Observer

In this section, we propose a reduced-order metric observer
for rotor fluxes estimation. Then, we will introduce a non-
linear reduced-order one for rotor fluxes and rotor speed
estimations.

3.1. Reduced-Order Observer for Fluxes Estimation. Assum-
ing that the stator currents 𝑥

1
and 𝑥

2
and the rotor speed 𝜔

are measured, we consider the induction motor fourth-order
model. Consider

𝑥̇
1
= −𝛾𝑥

1
+
𝐾

𝑇
𝑟

𝑥
3
+ 𝑝𝐾𝜔 (𝑡) 𝑥

4
+
1

𝜎𝐿
𝑠

𝑢
𝑎
,

𝑥̇
2
= −𝛾𝑥

2
+
𝐾

𝑇
𝑟

𝑥
4
− 𝑝𝐾𝜔 (𝑡) 𝑥

3
+
1

𝜎𝐿
𝑠

𝑢
𝑏
,

𝑥̇
3
=
𝑀

𝑇
𝑟

𝑥
1
−
1

𝑇
𝑟

𝑥
3
− 𝑝𝜔 (𝑡) 𝑥

4
,

𝑥̇
4
=
𝑀

𝑇
𝑟

𝑥
2
−
1

𝑇
𝑟

𝑥
4
+ 𝑝𝜔 (𝑡) 𝑥

3
.

(5)

A possible reduced-order observer for 𝑥̂
3
and 𝑥̂

4
is a

simple copy of the two last equations of our dynamic model.
Consider

̇̂𝑥
3
=
𝑀

𝑇
𝑟

𝑥̂
1
−
1

𝑇
𝑟

𝑥̂
3
− 𝑝𝜔 (𝑡) 𝑥̂

4
,

̇̂𝑥
4
=
𝑀

𝑇
𝑟

𝑥̂
2
−
1

𝑇
𝑟

𝑥̂
4
+ 𝑝𝜔 (𝑡) 𝑥̂

3
.

(6)

To ensure this observer’s exponential convergence, we
introduce two intermediate variables [16]:

𝑥
3
= 𝑥̂
3
+ Γ𝑥̂
1
,

𝑥
4
= 𝑥̂
4
+ Γ𝑥̂
2
.

(7)

The new dynamic equations are given by

𝑥̇
3
= (Γ𝐾 − 1) (

𝑥
3

𝑇
𝑟

+ 𝑝𝜔𝑥
4
) + 𝑓
1
,

𝑥̇
4
= (1 − Γ𝐾) (𝑝𝜔𝑥

3
−
1

𝑇
𝑟

𝑥
4
) + 𝑓
2

(8)

with

𝑓
1
= [(
𝑀

𝑇
𝑟

− 𝛾Γ) +
Γ

𝑇
𝑟

(1 − Γ𝐾)] 𝑥̂
1

− (Γ𝐾 − 1) Γ𝑝𝜔𝑥̂
2
+
Γ

𝜎𝐿
𝑠

𝑢
𝑎
,

𝑓
2
= (Γ𝐾 − 1) Γ𝑝𝜔𝑥̂

1

+ [(
𝑀

𝑇
𝑟

− 𝛾Γ) +
Γ

𝑇
𝑟

(1 − Γ𝐾)] 𝑥̂
2
+
Γ

𝜎𝐿
𝑠

𝑢
𝑏
.

(9)

𝑥̂
1
and 𝑥̂

2
are now replaced by measurements 𝑥

1
and 𝑥

2

[16]. This leads to the following observer equation with the
intermediate variables:

𝑥̇
3
= (Γ𝐾 − 1) (

1

𝑇
𝑟

𝑥
3
+ 𝑝𝜔𝑥

4
) + ℎ
1
,

𝑥̇ = (1 − Γ𝐾) (𝑝𝜔𝑥
3
−
1

𝑇
𝑟

𝑥
4
) + ℎ
2

(10)
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with

ℎ
1
= [(
𝑀

𝑇
𝑟

− 𝛾Γ) +
Γ

𝑇
𝑟

(1 − Γ𝐾)] 𝑥
1

− (Γ𝐾 − 1) Γ𝑝𝜔𝑥
2
+
Γ

𝜎𝐿
𝑠

𝑢
𝑎
,

ℎ
2
= (Γ𝐾 − 1) Γ𝑝𝜔𝑥

1

+ [(
𝑀

𝑇
𝑟

− 𝛾Γ) +
Γ

𝑇
𝑟

(1 − Γ𝐾)] 𝑥
2
+
Γ

𝜎𝐿
𝑠

𝑢
𝑏
.

(11)

The result of this computation is thenmapped back to the
original reduced state space with

𝑥̂
3
= 𝑥
3
− Γ𝑥
1
,

𝑥̂
4
= 𝑥
4
− Γ𝑥
2
.

(12)

This leads to the following new observer dynamics in 𝑥̂
3
and

𝑥̂
4
[16]:

̇̂𝑥
3
= (Γ𝐾 − 1) (

1

𝑇
𝑟

𝑥̂
3
+ 𝑝𝜔𝑥̂

4
) + 𝑔
1
,

̇̂𝑥
4
= (1 − Γ𝐾) (𝑝𝜔𝑥̂

3
−
1

𝑇
𝑟

𝑥̂
4
) + 𝑔
2

(13)

with

𝑔
1
=
𝑀

𝑇
𝑟

𝑥
1
−
Γ𝐾

𝑇
𝑟

𝑥̂
3
− 𝑝𝜔Γ𝐾𝑥̂

4
,

𝑔
2
=
𝑀

𝑇
𝑟

𝑥
2
−
Γ𝐾

𝑇
𝑟

𝑥̂
4
+ 𝑝𝜔Γ𝐾𝑥̂

3
.

(14)

The Jacobian or rate of deformation tensor of this system
is

𝐹 = (

(Γ𝐾 − 1)
1

𝑇
𝑟

(Γ𝐾 − 1) 𝑝𝜔

(1 − Γ𝐾) 𝑝𝜔 (Γ𝐾 − 1)
1

𝑇
𝑟

). (15)

The strain tensor rate is

𝐸 = (

2

𝑇
𝑟

(Γ𝐾 − 1) 0

0
2

𝑇
𝑟

(Γ𝐾 − 1)

) . (16)

We follow the same procedure as in [16, 17].The exponen-
tial convergence of the reduced-order observer is guaranteed
for a strain tensor uniformly negative definite rate. The rate
of the strain tensor is uniformly negative definite if and only
if ∃𝛽 > 0 such that the following conditions are satisfied:

2

𝑇
𝑟

(Γ𝐾 − 1) ≤ −𝛽 < 0,

[
2

𝑇
𝑟

(Γ𝐾 − 1)]

2

≥ 𝛽 > 0.

(17)

3.2. Reduced-Order Observer for Rotor Fluxes and Speed
Estimation. Assuming now that just the stator currents are
available, we will design a reduced-order observer to estimate
rotor fluxes and speed. Consider the fifth-order model writ-
ten as

𝑥̇
1
= −𝛾𝑥

1
+
𝐾

𝑇
𝑟

𝑥
3
+ 𝑝𝐾𝜔𝑥

4
+
1

𝜎𝐿
𝑠

𝑢
𝑎
,

𝑥̇
2
= −𝛾𝑥

2
+
𝐾

𝑇
𝑟

𝑥
4
− 𝑝𝐾𝜔𝑥

3
+
1

𝜎𝐿
𝑠

𝑢
𝑏
,

𝑥̇
3
=
𝑀

𝑇
𝑟

𝑥
1
−
1

𝑇
𝑟

𝑥
3
− 𝑝𝑥
4
𝜔,

𝑥̇
4
=
𝑀

𝑇
𝑟

𝑥
2
−
1

𝑇
𝑟

𝑥
4
+ 𝑝𝑥
3
𝜔,

𝜔̇ = 𝑘 (𝑥
2
𝑥
3
− 𝑥
1
𝑥
4
) −
𝑓rot
𝐽
𝜔 −
𝑇
𝐿

𝐽
.

(18)

A possible reduced-order observer for 𝑥
3
, 𝑥
4
, and 𝜔 is

a simple copy of the last three equations of our fifth-order
dynamic model:

̇̂𝑥
3
=
𝑀

𝑇
𝑟

𝑥̂
1
−
1

𝑇
𝑟

𝑥̂
3
− 𝑝𝑥̂
4
𝜔̂,

̇̂𝑥
4
=
𝑀

𝑇
𝑟

𝑥̂
2
−
1

𝑇
𝑟

𝑥̂
4
+ 𝑝𝑥̂
3
𝜔̂,

̇̂𝜔 = cst (𝑥̂
2
𝑥̂
3
− 𝑥̂
1
𝑥̂
4
) −
𝑓rot
𝐽
𝜔̂ −
𝑇
𝐿

𝐽
.

(19)

To ensure the above observer’s exponential convergence,
we introduce three intermediate variables:

𝑥
3
= 𝑥̂
3
+ Φ̂
1
,

𝑥
4
= 𝑥̂
4
+ Φ̂
2
,

𝜔 = 𝜔̂ + Φ̂
3

(20)

with

Φ̂
1
= Γ
1
[

𝑥̂
1

𝑥̂
2

] ,

Φ̂
2
= Γ
2
[

𝑥̂
1

𝑥̂
2

] ,

Φ̂
3
= Γ
3
[

𝑥̂
1

𝑥̂
2

] ,

Γ
𝑖
= [Γ
𝑖1
Γ
𝑖2
] .

(21)
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The coordinates’ intermediate change leads to the follow-
ing new observer equations:

𝑥̇
3
= [−
1

𝑇
𝑟

+ Γ
11

𝐾

𝑇
𝑟

− Γ
12
𝑝𝐾Φ̂
3
] 𝑥
3

+ [Γ
12

𝐾

𝑇
𝑟

− 𝑝 (Γ
11
𝐾 − 1) Φ̂

3
] 𝑥
4

+ [Γ
12
𝑝𝐾𝑥
3
+ 𝑝 (Γ

11
𝐾 − 1) 𝑥

4
+ 𝐽̂
1
] 𝜔 + 𝐺̂

1
,

𝐺̂
1
= 𝐹̂
1
−
1

𝑇
𝑟

(Γ
11
𝐾 − 1) Φ̂

1
− Γ
12

𝐾

𝑇
𝑟

Φ̂
2
− 𝐽̂
1
Φ̂
3
,

𝐹̂
1
= (
𝑀

𝑇
𝑟

− 𝛾Γ
11
) 𝑥̂
1
− 𝛾Γ
12
𝑥̂
2
+
Γ
11

𝜎𝐿
𝑠

𝑢
𝑎
+
Γ
12

𝜎𝐿
𝑠

𝑢
𝑏
,

𝐽̂
1
= Γ
12
𝑝𝐾Φ̂
1
− 𝑝 (Γ

11
𝐾 − 1) Φ̂

2
,

𝑥̇
4
= [Γ
21

𝐾

𝑇
𝑟

+ 𝑝 (Γ
22
𝐾 − 1) Φ̂

3
] 𝑥
3

+ [−
1

𝑇
𝑟

+ Γ
22

𝐾

𝑇
𝑟

− Γ
21
𝑝𝐾Φ̂
3
] 𝑥
4

+ [𝑝 (1 − Γ
22
𝐾)𝑥
3
+ Γ
21
𝑝𝐾𝑥
4
+ 𝐽̂
2
] 𝜔 + 𝐺̂

2
,

𝐺̂
2
= 𝐹̂
2
−
1

𝑇
𝑟

(Γ
22
𝐾 − 1) Φ̂

2
− Γ
21

𝐾

𝑇
𝑟

Φ̂
1
− 𝐽̂
2
Φ̂
3
,

𝐹̂
1
= −𝛾Γ

21
𝑥̂
1
+ (
𝑀

𝑇
𝑟

− 𝛾Γ
22
) 𝑥̂
2
+
Γ
21

𝜎𝐿
𝑠

𝑢
𝑎
+
Γ
22

𝜎𝐿
𝑠

𝑢
𝑏
,

𝐽̂
2
= 𝑝 (Γ

22
𝐾 − 1) Φ̂

1
+ Γ
21
𝑝𝐾Φ̂
2
,

𝜔̇ = [cst 𝑥̂
2
+ Γ
31

𝐾

𝑇
𝑟

+ 𝑝𝐾Γ
32
Φ̂
3
] 𝑥
3

+ [−cst 𝑥̂
1
+ Γ
32

𝐾

𝑇
𝑟

− 𝑝𝐾Γ
31
Φ̂
3
] 𝑥
4

+ [−𝑝𝐾Γ
32
𝑥
3
+ 𝑝𝐾Γ

32
𝑥
4
+ 𝐽̂
3
] 𝜔 + 𝐺̂

3
,

𝐺̂
3
= 𝐹̂
3
− (cst 𝑥̂

2
+ Γ
31

𝐾

𝑇
𝑟

) Φ̂
1

− (−cst 𝑥̂
1
+ Γ
32

𝐾

𝑇
𝑟

) Φ̂
2
− 𝐽̂
3
Φ̂
3
,

𝐹̂
3
= −𝛾Γ

31
𝑥̂
1
− 𝛾Γ
32
𝑥̂
2
+
Γ
31

𝜎𝐿
𝑠

𝑢
𝑎
+
Γ
32

𝜎𝐿
𝑠

𝑢
𝑏
−
𝑇
𝐿

𝐽
,

𝐽̂
3
= 𝑝𝐾Γ

32
Φ̂
1
− 𝑝𝐾Γ

31
Φ̂
2
−
𝑓rot
𝐽
.

(22)

𝑥̂
1
and 𝑥̂

2
are now replaced by measurements 𝑥

1
and

𝑥
2
. This leads to the following observer equation with the

intermediate variables:

𝑥̇
3
= [−
1

𝑇
𝑟

+ Γ
11

𝐾

𝑇
𝑟

+ Γ
12
𝑝𝐾Φ
3
] 𝑥
3

+ [Γ
12

𝐾

𝑇
𝑟

− 𝑝 (Γ
11
𝐾 − 1)Φ

3
] 𝑥
4

+ [−Γ
12
𝑝𝐾𝑥
3
+ 𝑝 (Γ

11
𝐾 − 1) 𝑥

4
+ 𝐽
1
] 𝜔

+ 𝐺
1
,

𝐺
1
= 𝐹
1
−
1

𝑇
𝑟

(Γ
11
𝐾 − 1)Φ

1
− Γ
12

𝐾

𝑇
𝑟

Φ
2
− 𝐽
1
Φ
3
,

𝐹
1
= (
𝑀

𝑇
𝑟

− 𝛾Γ
11
)𝑥
1
− 𝛾Γ
12
𝑥
2
+
Γ
11

𝜎𝐿
𝑠

𝑢
𝑎
+
Γ
12

𝜎𝐿
𝑠

𝑢
𝑏
,

𝐽
1
= Γ
12
𝑝𝐾Φ
1
− 𝑝 (Γ

11
𝐾 − 1)Φ

2
,

𝑥̇
4
= [Γ
21

𝐾

𝑇
𝑟

+ 𝑝 (Γ
22
𝐾 − 1)Φ

3
] 𝑥
3

+ [−
1

𝑇
𝑟

+ Γ
22

𝐾

𝑇
𝑟

− Γ
21
𝑝𝐾Φ
3
] 𝑥
4

+ [𝑝 (1 − Γ
22
𝐾)𝑥
3
+ Γ
21
𝑝𝐾𝑥
4
+ 𝐽
2
] 𝜔 + 𝐺

2
,

𝐺
2
= 𝐹
2
−
1

𝑇
𝑟

(Γ
22
𝐾 − 1)Φ

2
− Γ
21

𝐾

𝑇
𝑟

Φ
1
− 𝐽
2
Φ
3
,

𝐹
1
= −𝛾Γ

21
𝑥
1
+ (
𝑀

𝑇
𝑟

− 𝛾Γ
22
)𝑥
2
+
Γ
21

𝜎𝐿
𝑠

𝑢
𝑎
+
Γ
22

𝜎𝐿
𝑠

𝑢
𝑏
,

𝐽
2
= 𝑝 (Γ

22
𝐾 − 1)Φ

1
+ Γ
21
𝑝𝐾Φ
2
,

𝜔̇ = [cst𝑥
2
+ Γ
31

𝐾

𝑇
𝑟

+ 𝑝𝐾Γ
32
Φ
3
] 𝑥
3

+ [−cst𝑥
1
+ Γ
32

𝐾

𝑇
𝑟

− 𝑝𝐾Γ
31
Φ
3
] 𝑥
4

+ [−𝑝𝐾Γ
32
𝑥
3
+ 𝑝𝐾Γ

32
𝑥
4
+ 𝐽
3
] 𝜔 + 𝐺

3
,

𝐺
3
= 𝐹
3
− (cst𝑥

2
+ Γ
31

𝐾

𝑇
𝑟

)Φ
1

− (−cst𝑥
1
+ Γ
32

𝐾

𝑇
𝑟

)Φ
2
− 𝐽
3
Φ
3
,

𝐹
3
= −𝛾Γ

31
𝑥
1
− 𝛾Γ
32
𝑥
2
+
Γ
31

𝜎𝐿
𝑠

𝑢
𝑎
+
Γ
32

𝜎𝐿
𝑠

𝑢
𝑏
−
𝑇
𝐿

𝐽
,

𝐽
3
= 𝑝𝐾Γ

32
Φ
1
− 𝑝𝐾Γ

31
Φ
2
−
𝑓rot
𝐽

(23)

with

Φ
1
= Γ
1
[

𝑥
1

𝑥
2

] ,

Φ
2
= Γ
2
[

𝑥
1

𝑥
2

] ,

Φ
3
= Γ
3
[

𝑥
1

𝑥
2

] .

(24)
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The result of this computation is thenmapped back to the
original reduced state space with

𝑥̂
3
= 𝑥
3
− Φ
1
,

𝑥̂
4
= 𝑥
4
− Φ
2
,

𝜔̂ = 𝜔 − Φ
3
.

(25)

As discussed in [16, 17], this leads to the following new
observer dynamics in 𝑥̂

3
, 𝑥̂
4
, and 𝜔̂. The estimated flux 𝑥̂

3
=

𝜑̂
𝑎
is given by

̇̂𝑥
3
=
1

𝑇
𝑟

(Γ
11
𝐾 − 1) 𝑥̂

3
+ Γ
12

𝐾

𝑇
𝑟

𝑥̂
4

+ (−Γ
12
𝑝𝐾𝑥̂
3
+ 𝑝 (Γ

11
𝐾 − 1) 𝑥̂

4
) 𝜔̂ + 𝐻

1

(26)

with

𝐻
1
= 𝐴
1
Φ
1
+ 𝐴
2
Φ
2
+ 𝐺
1

− Γ
11
(−𝛾𝑥

1
+
𝐾

𝑇
𝑟

𝑥
3
+ 𝑝𝐾𝜔𝑥

4
+
1

𝜎𝐿
𝑠

𝑢
𝑎
)

− Γ
12
(−𝛾𝑥

2
+
𝐾

𝑇
𝑟

𝑥
4
− 𝑝𝐾𝜔𝑥

3
+
1

𝜎𝐿
𝑠

𝑢
𝑏
) ,

𝐴
1
= −
1

𝑇
𝑟

+ Γ
11

𝐾

𝑇
𝑟

− Γ
12
𝑝𝐾Φ
3
,

𝐴
2
= Γ
12

𝐾

𝑇
𝑟

− 𝑝 (Γ
11
𝐾 − 1)Φ

3
.

(27)

The estimated flux 𝑥̂
4
= 𝜑̂
𝑏
is given by

̇̂𝑥
4
= Γ
21

𝐾

𝑇
𝑟

𝑥̂
3
+ [−
1

𝑇
𝑟

+ Γ
22

𝐾

𝑇
𝑟

] 𝑥̂
4

+ [𝑝 (1 − Γ
22
𝐾) 𝑥̂
3
+ Γ
21
𝑝𝐾𝑥̂
4
] 𝜔̂ + 𝐻

2

(28)

with

𝐻
2
= 𝐵
1
Φ
1
+ 𝐵
2
Φ
2
+ 𝐺
1

− Γ
21
(−𝛾𝑥

1
+
𝐾

𝑇
𝑟

𝑥
3
+ 𝑝𝐾𝜔𝑥

4
+
1

𝜎𝐿
𝑠

𝑢
𝑎
)

− Γ
22
(−𝛾𝑥

2
+
𝐾

𝑇
𝑟

𝑥
4
− 𝑝𝐾𝜔𝑥

3
+
1

𝜎𝐿
𝑠

𝑢
𝑏
) ,

𝐵
1
= Γ
21

𝐾

𝑇
𝑟

+ 𝑝 (Γ
22
𝐾 − 1)Φ

3
,

𝐵
2
= −
1

𝑇
𝑟

+ Γ
22

𝐾

𝑇
𝑟

− Γ
21
𝑝𝐾Φ
3
.

(29)

The estimated speed 𝑥̂
5
= 𝜔̂ is given by

̇̂𝜔 = [cst𝑥
2
+ Γ
31

𝐾

𝑇
𝑟

] 𝑥̂
3
+ [−cst𝑥

1
+ Γ
32

𝐾

𝑇
𝑟

] 𝑥̂
4

+ [−𝑝𝐾Γ
32
𝑥̂
3
+ 𝑝𝐾Γ

32
𝑥̂
4
] 𝜔̂ + 𝐻

3

(30)

with

𝐻
3
= 𝐶
1
Φ
1
+ 𝐶
2
Φ
2
+ 𝐺
3

− Γ
31
(−𝛾𝑥

1
+
𝐾

𝑇
𝑟

𝑥
3
+ 𝑝𝐾𝜔𝑥

4
+
1

𝜎𝐿
𝑠

𝑢
𝑎
)

− Γ
32
(−𝛾𝑥

2
+
𝐾

𝑇
𝑟

𝑥
4
− 𝑝𝐾𝜔𝑥

3
+
1

𝜎𝐿
𝑠

𝑢
𝑏
) ,

𝐶
1
= cst𝑥

2
+ Γ
31

𝐾

𝑇
𝑟

+ 𝑝𝐾Γ
32
Φ
3
,

𝐶
2
= −cst𝑥

1
+ Γ
32

𝐾

𝑇
𝑟

− 𝑝𝐾Γ
31
Φ
3
.

(31)

The Jacobian or rate of deformation tensor of this system
is

𝐹 = (

𝐹
11
𝐹
12
𝐹
13

𝐹
21
𝐹
22
𝐹
23

𝐹
31
𝐹
32
𝐹
33

) (32)

with

𝐹
11
= −
1

𝑇
𝑟

+ Γ
11

𝐾

𝑇
𝑟

− Γ
12
𝑝𝐾𝜔̂,

𝐹
12
= Γ
12

𝐾

𝑇
𝑟

+ 𝑝 (Γ
11
𝐾 − 1) 𝜔̂,

𝐹
13
= −Γ
12
𝑝𝐾𝑥̂
3
+ 𝑝 (Γ

11
𝐾 − 1) 𝑥̂

4
,

𝐹
21
= Γ
21

𝐾

𝑇
𝑟

− 𝑝 (Γ
22
𝐾 − 1) 𝜔̂,

𝐹
22
= −
1

𝑇
𝑟

+ Γ
22

𝐾

𝑇
𝑟

+ Γ
21
𝑝𝐾𝜔̂,

𝐹
23
= 𝑝 (1 − Γ

22
𝐾) 𝑥̂
3
+ Γ
21
𝑝𝐾𝑥̂
4
,

𝐹
31
= cst 𝑥

2
+ Γ
31

𝐾

𝑇
𝑟

− 𝑝𝐾Γ
32
𝜔̂,

𝐹
32
= −cst𝑥

1
+ Γ
32

𝐾

𝑇
𝑟

+ 𝑝𝐾Γ
31
𝜔̂,

𝐹
33
= −𝑝𝐾Γ

32
𝑥̂
3
+ 𝑝𝐾Γ

32
𝑥̂
4
.

(33)

The strain tensor rate is

𝐸 = (

𝐸
11
𝐸
12
𝐸
13

𝐸
21
𝐸
22
𝐸
23

𝐸
31
𝐸
32
𝐸
33

) (34)
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with

𝐸
11
= 2𝐹
11
,

𝐸
12
= 𝐸
21
= 𝐹
12
+ 𝐹
21
,

𝐸
13
= 𝐸
31
= 𝐹
13
+ 𝐹
31
,

𝐸
22
= 2𝐹
22
,

𝐸
23
= 𝐸
32
= 𝐹
23
+ 𝐹
32
,

𝐸
33
= 2𝐹
33
.

(35)

Exponential convergence of the reduced-order observer
is guaranteed for a uniformly negative definite rate of strain
tensor. The strain tensor rate is uniformly negative definite
if and only if ∃𝛽 > 0 such that the following conditions are
satisfied:

𝐸
11
≤ −𝛽 < 0,

det(
𝐸
11
𝐸
12

𝐸
21
𝐸
22

) ≥ 𝛽 > 0,

det (𝐸) ≤ −𝛽 < 0.

(36)

4. Simulations Results

This section deals with simulations highlighting the proposed
reduced-order metric observer’s feasibility. The simulated
induction motor ratings are the following: 4 kW, 4 poles,
1440 rpm, 𝑅

𝑠
= 1.9Ω, 𝑅

𝑟
= 1.73Ω, 𝐿

𝑠
= 0.1157H, 𝐿

𝑟
=

0.1154H, 𝐿
𝑚
= 0.1126H, and 𝐽 = 0.041Kg⋅N/m2.

4.1. Simulation Results for the Reduced-Order Observer for
Fluxes Estimation. Figures 1–3 show the real flux, its estima-
tion, and the estimation error in 𝑎-axis (𝜑

𝑎
−𝜑̂
𝑎
), respectively.

These results were obtained for an unloaded machine (𝑇
𝐿
=

0), with an observer gain of Γ = 0.05.
Figures 4–6 illustrate the real flux, its estimation, and the

estimation error in 𝑏-axis, respectively. These results are also
obtained for the same values of the observer gain Γ and the
load torque.

Figures 7 and 8 show flux errors in the (𝑎, 𝑏) frame,
respectively.These results were obtained for a load torque step
change illustrated by Figure 9. In this case, Figure 10 shows
the rotor speed. These results clearly show that the proposed
reduced-order flux estimator is quite robust to external
disturbances. Its robustness has also been checked versus
parameter variations. Furthermore, it should be mentioned
that the same observer gain Γ could be adopted for any load
torque change.

4.2. Simulation Results of the Reduced-Order Observer for
Rotor Fluxes and Speed Estimation. Figures 11 and 12 show
the estimated rotor fluxes 𝜑̂

𝑎
and 𝜑̂

𝑏
, respectively. Figures 13–

15 illustrate the corresponding real rotor speed, its estimate,
and the speed error, respectively. These results were obtained
for Γ
1
= Γ
2
= Γ
3
= [0.8710

−5

10
−6

]
𝑇 and a load torque

𝑇
𝐿
= 5Nm.
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Figure 1: Real flux 𝜑
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Figure 2: Estimated flux 𝜑̂
𝑎
.

The proposed nonlinear observer obviously gives quite
good estimation results. However, in case of load torque
variations, the observer gains should be adjusted.

5. Conclusion

This paper has investigated the effectiveness of metric
observers for induction motor control purposes. Firstly,
assuming that stator currents and speed are measured, a met-
ric observer was designed to estimate rotor fluxes. Afterward,
assuming that only stator currents are measured, a metric
observer was derived to estimate rotor fluxes and speed. The
achieved simulation results on a 4 kW induction motor drive
have clearly highlighted the effectiveness of the two proposed
observers. Further investigations should be carried out for
comparison purposes.
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Figure 8: Flux estimation error in 𝑏-axis.
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Figure 14: Estimated rotor speed.
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Nomenclature

𝑖
𝑎
, 𝑖
𝑏
: Stator currents

𝑢
𝑎
, 𝑢
𝑏
: Stator voltages

𝜑
𝑎
, 𝜑
𝑏
: Rotor fluxes

𝑇
𝐿
: Load torque
𝜔: Mechanical speed
𝐿
𝑠
, 𝑅
𝑠
: Stator inductance and resistance

𝐿
𝑟
, 𝑅
𝑟
: Rotor inductance and resistance

𝑀: Mutual inductance
𝑇
𝑟
= 𝐿
𝑟
/𝑅
𝑟
: Rotor time constant

𝑝: Pole pairs number
𝐽: Rotor inertia.
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