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It is shown that the exact solution for the capability index (CPI) for Gaussian-distributed process with target bias can be expressed
in terms of an unbiased CPI and a normalized target bias. The principal advantage of this specific formulation is that it facilitates
evaluation of the degradation of the capability of the process due to bias between process mean and the process target. It is
shown how this formalism, initially developed for the short-term process, is readily extended to long-term process for which the
distribution is Gaussian. Readily isolated in the latter case are the two long-term CPI degrading effects, namely, process instability
and target bias. Sufficient conditions to guarantee that long-term processes are distributed as Gaussian are discussed. Within the
context of these assumed conditions, a new paradigm for a long-term locator “k” is proposed. For a three sigma process the results
indicate that the exact CPI model is a less pessimistic predictor than both of the industry CPI models tested.
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1. Introduction

In 1979, Taguchi and Wu [1] introduced a viewpoint on esti-
mating the loss (in monetary units, i.e., cost) associated with
lack of precision and accuracy in a manufacturing process.
The preeminent manufacturing precursor to the viewpoint
introduced by Taguchi is the classical “goal-post model” in
which the only consideration to production cost is whether
the product parameters fall within the process specification
limits. Consistent with the goal-post philosophy, the level of
process control is typically characterized in terms of what
are known as capability indices (CPIs) [2]. Capability indices
provide a numerical assessment of the ability of a process in
attaining the predefined specifications [3, 4].

A manufacturing process would commonly be described
in terms of three parameters: the finite target value (τ), an
upper specification limit (USL), and a lower specification
limit (LSL). All the parts for which the measured value “x”
for a certain specification exceeds the USL or falls below the
LSL are rejected. If the process target value for the product
characteristic is centered between the USL and LSL, then the

tolerances are said to be symmetric. The capability index
is of interest to the manufacturing community because it
consolidates the details in a complicated multifaceted manu-
facturing process down to one quantity which can be used
to predict the fraction of parts rejected. Typical capability
index values can range from 0.7 to 2.0. In the jargon of
the community, three sigma process would correspond to
a capability index of 1.0 while a much improved six sigma
process suggested originally by Motorola would correspond
to a capability index of 2.0 [2]. The standard deviation
of the process is indicative of the level of precision. The
absolute value of the difference between the distribution
mean and the process target (i.e., target bias) is indicative
of the process accuracy. According to the Taguchi guide
for improved manufacturing quality, it is much easier to
adjust the manufacturing process to improve accuracy than
to adjust the process to improve the precision [2]. The
most commonly assumed probabilistic distribution for a
product characteristic with measured value “x” is the normal
distribution which can be defined in terms of mean μ, and a
standard deviation σ .
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The primary situation for the application of asymmetric
tolerances [5] occurs when the product parameter of interest
exhibits a skewed distribution [6]. Historically, capability
indices were first applied under the assumption that the
mean of the process is on the target [2]. Target bias is at
best approximately zero. In some practical cases, it maybe
necessary to consider the impact of the distribution mean
of the product parameter being off target. There have been
a variety of target-bias-dependent capability index models
introduced. A noncomprehensive but high profile list of such
models has been assembled for purposes of this paper.

What follows first is a brief qualitative review of capability
indices that are assuming zero target bias. The short-term
capability index, Cp, is gauged within a relatively narrow
window of time. The long-term capability index [2], Cpk

can be found in the literature to be applied in two ways. It
could be applied to extend the short-term capability concept
(e.g., measured over days or even hours) to long-term (e.g.,
measured over weeks or months). It is assumed, in this
case, that process mean shifts around the target but on the
average is “on target.” The concept is that a time-wise shifting
around in the short-term process is accounted for with a
probability density function (PDF) averaging leading to a
higher standard deviation. The long-term precision in the
manufacturing process is degraded relative to short-term
and, therefore, the long-term capability index is lower than
the short-term capability index.

On the other hand, Cpk has also found utility as a
capability index that can include the impact of target bias [2,
7]. However, as pointed out in [6], this type of usage of Cpk

to account for the target bias is questionable.Lastly, a third-
measured paradigm for a capability index, Cpm paradigm
[2, 7, 8] is also commonly invoked in the community to
account for target bias. BecauseCpm can be related to Taguchi
loss functions [2], it is sometimes referred to as the Taguchi
index. One advantage of the Cpm approach is that it is
nonparametric, that is, makes no a priori assumptions on the
underlying distribution of the specified product parameter
distribution.

It has been shown [5] that a probabilistic description
of the manufacturing process can be used to predict the
exact dependence for the fraction of rejected components
and related to a CPI. This has been done under assumptions
of a normal (Gaussian) distribution for the process product
and symmetric specification limits. The derived CPI with
target bias was shown to be expressed in terms of four
parameters, process mean, process target, upper specification
limit, and lower specification limit. Additionally, it has been
demonstrated that this exact solution is equivalent to a
reparameterized solution expressed in terms of appropriately
defined upper and lower capability indices [5].

A target bias-dependent capability index (CPI) for the
symmetric-specification limit Gaussian-distributed process
is proposed and tested. It is shown that various exact
expressions reported in the literature are equivalent to a
proposed short-term CPI model dependent on only two
parameters, unbiased short-term CPI and a normalized
target bias. One advantage of this particular formulation is
that it facilitates the evaluation of the degradation of the
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Figure 1: PDF showing manufacturing specifications and rejected
fraction of parts.

capability of the process due to an offset between the mean
and target of a process parameter. The second advantage
of this parameterization is that it allows for a convenient
comparison of the exact CPI model with two other com-
monly used industry models which also estimate the CPI
with target offset. A third advantage is that the proposed
formalization facilitates setting up a CPI model for the
Gaussian-distributed long-term process with a methodology
unified in approach with that of the proposed short-term
CPI model. Readily isolated are the two long-term CPI
degrading effects, namely, long-term process instability and
target bias. Sufficient conditions to guarantee that the long-
term processes are distributed as Gaussian are discussed.
Within the context of these assumed conditions, a new
paradigm for a long-term locator “k” is proposed.

Two implementation schemes for the proposed model
are discussed. One method is based on the availability
of numerical built-in mathematical routines for the error
function and its inverse. The second scheme supplants the
built-in functions used in the first scheme with recently
reported analytical approximations [9, 10]. For a three sigma
process, the results indicate that the exact CPI model is a less
pessimistic predictor than both of the industry CPI models
tested.

2. Background

2.1. Background on CPI Model

In general, the measurements for the process parameter to
meet desired specifications are characterized by a distribu-
tion having a mean μ and a standard deviation σ [2]. The
process has an upper specification limit (USL) and a lower
specification limit (LSL). The distance between the USL and
LSL, as represented on Figure 1, is 2Δ. The specifications
are considered to be symmetric if the target satisfies the
condition τ = (USL + LSL)/2 [2]. The defining recipe
for the capability index intended for situations for which
the measured parameter distribution is normal and has
symmetric limits is

Cpo =
USL− LSL

6σ
= Δ

3σ
. (1)

The subscript “o” in (1) indicates that it does not account for
any target bias. Generalizations of (1) to cover asymmetry
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in tolerances and nonnormal distributed parameters can be
found in the literature [6]. The capability index is a direct
measure of the process control and relates Cpo to a fraction
of rejection,

po = 2Φ
(− 3Cpo

)
, (2)

where Φ(z) is the standard normal cumulative density
function (CDF). However, (2) can be applied to a process
with normal distribution, no target bias, and symmetric
limits.

2.2. Distribution Independent Observation

Independent of whether the distribution is normal with sym-
metric limits or not, the fraction rejected, also known as the
“component of nonconformity” [6] can be computationally
predicted by evaluating the CDF of the process distribution
at selected points. As suggested by Figure 1, this prediction
rule is given by [5]

p = F(LSL) +
(
1− F(USL)

)
. (3)

This combines the parts that do not meet the specifications,
that is, the parts that have a measured product characteristic
“x” which is either lower than the LSL or higher than the
USL. In the spirit of (2), the generalized process capability
index should be consistent with the rule

Cp = −1
3
Φ−1

(
p

2

)
, (4)

where for the normal distribution with symmetric limits,
po = p, and (4) reduces to special case described by (2). From
Figure 1, it follows that

USL = τ + Δ,

LSL = τ + Δ.
(5)

Consistent with (3) and (4), it can be shown that [5]

p = Φ
(

LSL− μ
σ

)
+ Φ

(
−
(

USL− μ
σ

))
. (6)

However, (6) conjunction with (4) produces an exact short-
term capability index model which agrees with the Boyles
[5] yield index model. Demonstration details are provided
in Appendix A.

3. Model-A: Standard Normal Version and
Computer Implementation

3.1. Model-A Analysis

The PDF represented in Figure 1 can be transformed to the
standard normal version as shown in Figure 2 [11]. From (5),
it can be stated that

LSL− μ
σ

= (τ − μ)− Δ

σ
= −Δ

σ
+
τ − μ
σ

,

USL− μ
σ

= (τ + Δ)− μ
σ

= Δ

σ
+
τ − μ
σ

.

(7)
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Figure 2: Transformed PDF showing the specification limits
rejected fractions of parts.

After defining a normalized target bias,

δb =
(
τ − μ
σ

)
. (8)

Therefore, for normal process PDFs with symmetric limits
and target bias, it follows that the proposed exact Model-
A [11] has the following rejection fraction after substituting
from (1), (7), and (8) in (6),

pA = Φ
(− 3Cpo + δb

)
+ Φ

(− 3Cpo − δb
)
. (9)

Consistent with the general approach (4),

CpA = −
1
3
Φ−1

(
pA
2

)
. (10)

A check with δb = 0 from (9) yields pA = po, and consistent
with (10), CpA = Cpo .

3.2. Model-A Implementation Using
Built-In Error Function

Noting that the standard normal arguments “z” needed in
(9) are expected to be negative for reasonably limited target
bias, the following conversion rule valid for z ≤ 0 is useful
with MATLAB [12],

Φ(z) = 0.5− 0.5 erf
( |z|√

2

)
, (11)

and for inspection of (11), it follows that

z = √2 erf−1
(

0.5−Φ(z)
0.5

)
. (12)

Appendix B describes the definitions and the approximations
considered for the error function (erf) and the inverse error
function (erf−1) in (11) and (12), respectively. However,
(11) and (12) can make use of built-in error and inverse
error functions of MATLAB. An alternative to using built-
in routines for the error function and its inverse is to employ
approximate analytic expressions described in the following
subsection.
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Figure 3: Model-A comparisons for numerical and analytic ver-
sions.

3.3. Model-A Implementation Using Analytic
Approximation for Error Function

The built-in error function routines, available in MATLAB
[12], can be replaced with analytic approximations in pre-
dicting the bias-dependent capability indices. After defining
a = 0.14, the error function can be approximated as [9, 10]

erf (x) ∼=
√

1− exp
(
− x2

(
(4/π) + ax2

1 + ax2

))
. (13)

Moreover, after taking r = 2/(πa) and t(x) = ln(1− x2), the
inverse of the error function can be approximated as [9, 10]

erf−1 (x) ≈
⎛

⎝−r − t(x)
2

+

√
√
√
(
r +

t(x)
2

)2

− t(x)
a

⎞

⎠

0.5

(14)

A comparison of (13) and (14) with the MATLAB built-in
routines showed a maximum percentage error of 0.58% for
the error function and 0.004% for its inverse. Hence, (13)
and (14) are applicable to (11) and (12), respectively.

To demonstrate this approach, the built-in error
function-based Model-A predictions are compared with the
analytic Model-A predictions forCpo = 1.0, Cpo = 1.4, Cpo =
1.6, and Cpo = 2.0. It can be seen from Figure 3 that
both the numerical and the analytic approaches are serving
as approximately equivalent predictors. The accuracy of the
analytic approximation approach compared to that of the built-
in numerical implementation proved to be very good with the
maximum percentage error of 0.91% at Cpo = 1.

Figure 3 also shows the comparison of Model-A with a
well-established Boyles model [5] from the community. The
predictions at various target bias values have been considered
to establish a concise comparison of the behavioral pattern
of the proposed model with the already existing industry
model.

The comparison of Model A with Boyle’s exact model [5]
requires specification of the USL and the LSL values (e.g.,

USL = 58 and LSL = 26) [5]. For symmetrical specification
limits, this implicitly determines the target value. The
USL and LSL values when taken in combination with the
selected values, for the unbiased short-term CPI (1) and the
normalized target bias (8), lead to the process mean and
standard deviation target values. With the four quantities
{USL, LSL, μ, and σ}, numerically determined application of
(6) and (4) will predict the exact value for the target-bias-
dependent CPI which for comparison purposes has been
included with the datasets plotted on Figure 3.

4. Alternative Popular Methods

4.1. Model-X: The AMT Model

Model-X is based on incorporating the target bias with
capability index by first defining a location index [2, 7, 8],

kb = |μ− τ|
Δ

. (15)

The subscript b indicates that this model includes the target
bias. However, (15) can be combined with the short-term
capability index Cpo to define the Model-X capability index
rule as

CbpX ≡ Cpo

(
1− kb

)
. (16)

From (15), it follows that

CbpX = Cpo

(
1−

(
μ− τ
σ

)
σ

Δ

)
. (17)

This can be simplified via (1) and (8) [11]:

CbpX = Cp − |δb|3
, (18)

and hence the corresponding fraction of rejection is

px = 2Φ
(− 3Cbpx

)
. (19)

4.2. Model-Y: Cpm Model

TheCpm model was modeled to include the impact of the bias
of the mean from the target and the variance of the process
parameter. As in the similarly defined Taguchi loss function,
it is not assumed that the PDF is normal [2, 11]. The
capability index in this model is defined using the variance
of the process as

Cpm ≡ Δ

3σm
. (20)

In (20), the variance is given by σm =
√
σ2 + (μ− τ)2. Hence,

the Model-Y [11] with bias can be defined as [2, 7]

CbpY ≡
Δ

3σm
=
(
Δ

3σ

)
1

√
1 + δ2

b

= Cpo√
1 + δ2

b

, (21)

and the corresponding fraction of rejection predicted by

pY = 2Φ
(− 3CbpY

)
. (22)
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Figure 4: Plot showing fraction rejected for models A, X and Y
(Cp = 1) versus normalized bias.

4.3. Computer Tests for Various
Capability Index Models

The normalized fraction rejected for models A, X, and Y
are defined in terms of the fraction rejected under zero bias
conditions given in (2) as

(
pAN , pXN , pYN

) ≡ pA, pX , pY
po

. (23)

In Figure 4, the fraction rejected obtained from (23) is
plotted versus normalized target bias (8) as derived from
(9), (19), and (22) for models A, X, and Y, respectively.
It should be noted that Model-X and Model-Y are both
more pessimistic (i.e., higher fraction is rejected) than that
predicted from Model-A.

The dependence of bias-inclusive capability indices on
short-term capability index and normalized target bias for
the models A, X, and Y were taken from (10), (18), and (21),
respectively. These were plotted versus the normalized target
bias as shown in Figure 5.

These final results indicate that the Model-X and Model-
Y capability index rules are consistently overpessimistic (i.e.,
lower in value). Of the two industry standard models Model-
Y, using Cpm, should be a better choice than Model-X in that
it is closer in prediction to Model-A.

5. Extension to Long-Term Process

The standard approach [2, 13] for predicting the long-term
capability index is given by

Cpko ≡
Δ

3σk
. (24)

The suffix “o” in (24) indicates that there is no target bias and
is now expressed in terms of a long-term standard deviation
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Figure 5: Plot showing capability indices for models A, X, and Y
(Cpo = 1) versus normalized target bias.

σk. Consistent with the qualitative description in Section 1
for the long-term capability index as required by (24)

σk ≥ σ. (25)

This is consistent with a long-term process being less precise,
that is, higher standard deviation than that associated with
the corresponding short-term processes. By assumption,
the short-term processes have the same standard deviation.
The claim here is that under certain restrictions, to be
described, the long-term process will be Gaussian, with
standard deviation σk, and mean μ, the latter is given by

μ = avg
{
μi
}

, i = 1, 2, . . . ,M, (26)

where avg{} is the average operator and i indexes the M
short-term processes to be averaged. If there is a target bias,
μ /= τ, it can be accounted for with Model-A type analysis by
defining a normalized target bias [11]:

δbk = τ − μ
σk

. (27)

The long-term capability index representation equivalent to
(24) is

Cpko = Cpo(1− k) ≤ Cpo , 0 ≤ k < 1. (28)

Unlike the locator index defined by (15), this representation
for CPI in (28) assumes a location index k which only
accounts for the long-term effective spread. The target bias is
accounted for via (27). A revised form for the locator index
which excludes target bias effect is [11]

krevised ≡ avg
{∣∣μ− μi

∣∣}

Δ
, 1 > k ≥ 0. (29)

It should be noted that in this revised form of locator (29),
the average of the short-term process means μ supplants
τ in (15). If the long-term process is “on target” (i.e., if
μ = τ), then the definition (29) reduces to the commonly
used (15) [2]. As discussed in what follows, the restrictive
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mathematical conditions for reproducing an exact long-
term Gaussian process from the superposition of short-term
Gaussian processes will lead to a different locator model than
commonly seen model in (15) or (29).

The long-term (LT) process distribution PDF can be
viewed as being constructed from the mathematical average
of multiple short-term PDFs as represented in the classic
Harris and Lawson text on six sigma methods [13]. In
Appendix C, it is formally shown that a long-term Gaussian
PDF can be constructed from an average of short-term PDFs,

fLT(y) = 1
M

M∑

i=1

fST
(
y,μi

)
. (30)

In this case, the short-term process PDF is given by

fST
(
y,μi

) = 1√
2πσ

e−(y−μi)2/2σ2
,

−∞ ≤ y ≤ ∞, i = 1, 2, . . . ,M.

(31)

The often-cited mean-finding rule [2], taking discrete-term
expectation operator E{} [2], with respect to long-term PDF
for y on both sides of (30), would lead to

μ = E{y} = 1
M

M∑

i=1

E
{
y fST

(
y,μi

)} = 1
M

M∑

i=1

μi, (32)

which confirms (26). No claim is made that fLT(y) is
guaranteed to be Gaussian. For example, if two short-term
Gaussians with same standard deviation σ but with different
means were averaged via (30), the resultant process would
not be a Gaussian. Nonetheless, the assumption which is
often made and is implicit in the applicability of (24)
is that the overriding long-term distribution in (30) is
approximately normal with mean μ and standard deviation
σk [2, 13]. This assumption is shown to be justified in
Appendix D with the restriction that the random variable
associated with the (short-term) mean, μ, is approximately
distributed Gaussian:

fμ(μ) = 1√
2πσμ

e−(μ−μ)2/2σ2
μ , −∞ ≤ μ ≤ ∞, (33)

with an average mean μ and a standard deviation σμ.
Consider first a special case that the short-term distributions
are identical (i.e., same constant mean μ = μ). Then, the
mean μ ceases to be a random variable in the usual sense.
This is accounted for in (33) by taking a limit σμ → 0 and in
that limit (33) reduces to the Dirac delta function [2]:

lim
σμ→ 0

fμ(μ) −→ δ(μ− μ). (34)

For large-enough sampling of the short-term PDF (see (30))
(i.e., M → ∞), discrete averaging with μi can be switched to
averaging over the continuous random variable, μ, with an
integration rule,

fLT(y) = E
{
fST(y,μ)

} =
∫∞

−∞
fST(y,μ) fμ(μ)dμ. (35)

In the special case where all the short-term Gaussian
distributions are the same (i.e., same mean), the PDF for
random variable μ reduces to a Dirac delta function (34)
and subsequent substitution into (35) yields, as expected,
a long-term PDF that is identical to the time-wise stable
short-term processes. It is demonstrated in Appendix D that
the integrated (35) is distributed Gaussian with mean μ and
standard deviation

σk =
√
σ2 + σ2

μ = σ

√√
√

1 +
(
σμ
σ

)2

. (36)

In Appendix D, it is shown that

σμ =
√
π

2
avg
{∣∣μ− μi

∣∣}. (37)

It follows from (24) and (36) that the capability index is given
by

Cpko =
Cpo√

1 + (σμ/σ)2
= Cpo√

1 + (
√
π/2(avg{|μ-μi|}/σ))

2
,

(38)

and as expected Cpko is reduced with increasing temporal
instability in the short-term process as gauged by σμ.
Consistent with (28), the effective locator, k, would be given
by

keff = 1− 1
√

1 + (σμ/σ)2

= 1− 1
√

1 + (
√
π/2(avg{|μ− μi|}/σ))

2
.

(39)

For relatively small ratios of x = σμ/σ , a two-term expansion
can be approximated as

1√
1 + x2

≈ 1
(1 + x2/2)

≈
(

1− x2

2

)
|x| 
 1. (40)

Hence, it facilitates for setting up an approximation for (39),

keff ≈ 1
2

(
σμ
σ

)2

= 1
2

(√
π

2
avg{|μ− μi|}

σ

)2

,
σμ
σ

 1.

(41)

As expected, keff = 0 for stable short-term processes (i.e.,
when σμ = 0); and the locator keff increases with increasing
instability in the short-term process. If there is no target bias,
then μ = τ and according to (27), δbk = 0.

Under the restriction (33), a unified approach, which
includes impact of target bias, is possible with the identi-
cal mathematical thread-of-logic (Section 3). A long-term
Model-A-type capability index with nonzero target bias is
then given by

pkA = Φ
(− 3Cpko + δbk

)
+ Φ

(− 3Cpko − δbk
)
. (42)

Following (8), (9), and (10) after the substitutions,

Cpo −→ Cpko , δb −→ δbk, CpA −→ CpkA,

pA −→ pkA, σ −→ σk.
(43)
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6. Conclusion

It is has been shown that a short-term CPI model dependent
on only two parameters, unbiased short-term CPI and a
normalized target bias is equivalent to various exact CPI
expressions reported in the literature. The demonstrated
principal advantage of this specific formulation is that it
facilitates the evaluation of the degradation of the capability
of the process due to an offset between the mean and the
target of a process parameter. The unified methodology for
predicting short-term CPI is applicable to the long-term CPI,
pending a condition that the long term process is distributed
Gaussian. Sufficient conditions to guarantee that the long-
term processes are distributed as Gaussian were discussed.
Within the context of these assumed conditions, a new
paradigm for a long-term locator “k” is proposed.

Two implementation schemes for the proposed reformu-
lation for the exact solution were discussed. One method
is dependent on the availability of a built-in error function
and its inverse while the other method uses an analytic
approximation for the error function and its inverse.

The second scheme supplants the built-in functions used
in the first scheme with recently reported analytical approx-
imations. For a three sigma process, the results indicate that
the exact CPI model is a less pessimistic predictor than both
of the industry CPI models tested. Our results indicate that
the Cpm model (Model-Y) and the AMT model (Model-X)
were more pessimistic than the exact model (Model-A) in
estimating manufacturing loss.

In the literature, methods have been reported to account
for nonnormality in process distribution. For future work,
it would be interesting to demonstrate that any distribution
can be converted to an equivalent Gaussian. In such case,
the Model-A approach would again be applicable as long
as a combination of equivalent process specifications and
equivalent Gaussian parameters are appropriately defined.

Appendices

A. Comparison of CpA to Yield Index Spk

In 1994, R. A. Boyles proposed a yield-based capability index
[5] which agrees with the model proposed in this paper.
The current Model-A approach can be compared to that of
Boyles’ by initially considering the yield index Spk [5]:

Spk = S
(
3Cpl, 3Cpu

)
, (A.1)

where Cpl and Cpu are the capability indices with mean μ,
standard deviation σ , lower specification limit (LSL), and an
upper specification limit (USL) and are given by [5]

Cpl = μ− LSL
3σ

, Cpu = USL− μ
3σ

. (A.2)

The operator S in (A.1) for a standard normal cumulative
distribution function is [5]

S(x, y) = 1
3
Φ−1

(
Φ(x) + Φ(y)

2

)
. (A.3)

Hence, the yield index in (A.1) can be represented as,

Spk = 1
3
Φ−1

[
1
2

{
Φ
(
3Cpl

)
+ Φ

(
3Cpu

)}]
. (A.4)

Substituting Cpl and Cpu from (A.2) (into (A.4)) gives the
yield index proposed by Boyles in terms of the mean, the
standard deviation, and the specification limits:

Spk = 1
3
Φ−1

[
1
2

{
Φ
(
μ− LSL

σ

)
+ Φ

(
USL− μ

σ

)}]
. (A.5)

From the basic properties of normalized distribution func-
tions

Φ(x) = 1−Φ(−x), (A.6)

and after noting that

Φ−1(x) = Φ−1[1−Φ
{
Φ−1(1− x)

}]
. (A.7)

The use of (A.6) leads to

Φ−1(x) = −Φ−1(1− x). (A.8)

Applying (A.8) on (A.5) leads to

Spk = −1
3
Φ−1

[
1− 1

2
Φ
(
μ− LSL

σ

)
− 1

2
Φ
(

USL− μ
σ

)]
;

(A.9)

hence,

Spk = −1
3
Φ−1

[
1
2

(
1−Φ

(
μ−LSL
σ

))
+

1
2

(
1−Φ

(
USL−μ

σ

))]
.

(A.10)

Applying (A.6) on (A.10) leads to

Spk = −1
3
Φ−1

[
1
2
Φ
(

LSL− μ
σ

)
+

1
2
Φ
(
− USL− μ

σ

)]
.

(A.11)

Using (6) described in Section 2, it can be shown that (A.11)
is equal to the capability index CpA proposed in this paper:

Spk = −1
3
Φ−1

[
pA
2

]
= CpA. (A.12)

B. Error Function Approximation

The error function is usually encountered while integrating
the normal distribution and is applied as twice the integral
of the Gaussian distribution [14]:

erf = 2√
π

∫ x

0
e−t

2
dt. (B.1)

The error function has the values of 0 and 1 for x = 0 and x =
∞, respectively. Considering the standard normal equation
[2]:

Φ(z) = 1√
2π

∫ z

−∞
e−ξ

2/2dξ, (B.2)
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Figure 6: Comparison of built-in error function [12] and analytic
approximation [9, 10].

and substituting y = ξ/2 and separating the integral for
positive and negative domains, the integral leads to

Φ(z) = 0.5 +

(
1√
π

∫ z/
√

2

0
e−y

2
dy

)

. (B.3)

For negative values of z, (B.3) can be written as

Φ(z) = 0.5− 1
2

(
2√
π

∫ |z|/√2

0
e−t

2
dt

)

, (B.4)

where t = −y. Now, using the definition of the error function
in (B.1) will lead to

Φ(z) = 0.5− 0.5 erf
( |z|√

2

)
. (B.5)

Solving z in (B.5) gives

z = √2 erf−1
(

0.5−Φ(z)
0.5

)
, (B.6)

where erf−1 is the inverse error function. Figure 6 shows the
plot of the error function in (B.1) using a built-in MATLAB
function. The plot also depicts a comparison of the built-in
MATLAB function with the analytic approximation (13) [9,
10] described in Section 4. It can be observed from the plots
that the analytic formula is, at all points, in close proximity
to the built-in error function. This confirms that the analytic
approximation can be substituted for the built-in function as
necessary.

The inverse error function can also be implemented using
the built-in MATLAB routines and can be approximated
by (14). Figure 7 confirms the compatibility of the analytic
formula for the inverse error function in (14) with the
MATLAB built-in routine.

C. Histogram Approach to
Long Term PDF Process

The heuristic gateway to the probabilistic approach for
analysis is to interpret the probability density function (PDF)

0

1

2

3

4

5

6

er
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Figure 7: Comparison of built-in inverse error function [12] and
analytic approximation [9, 10].

as being generated from the limit case of a histogram of
measured process parameter values {y1, y2, . . . , yN}. Specif-
ically, the limit is for large number of measurements, N, and
infinitesimal bin size Δy. The histogram can be converted to
an approximate PDF f (y) at the value of process parameter
yi taken to be the center of the ith bin. The conversion rule
[2] is

f
(
yi
) ≈ ni

(NΔy)
, (C.1)

where ni is the bin count in the ith bin.
To demonstrate the linking of short-term (ST) PDFs

to long-term (LT) PDFs, assume M short-term production
processes are to be combined. Each of the j = 1, 2, 3, . . . ,M-
associated ST histograms of measured values is taken to have
the same number of measurements, N, and bin size Δy. The
associated LT histogram is then obtained by simply summing
the ST bin count numbers (ni j)ST, that is,

(
ni
)

LT =
M∑

j=1

(
ni j
)

ST, (C.2)

with a total requisite LT number of measurements:

N ′ = N ×M. (C.3)

Following the rule (C.1), the long term approximate PDF is
given by

fLT(yi) ≈ (ni)LT

(N ′Δy)
=
∑M

j=1(ni j)ST

(NMΔy)
= 1
M

M∑

j=1

( (ni j)ST

NΔy

)
.

(C.4)

The limits of large N and infinitesimal bin size lead to (30).
This confirms the intuitive proposition that the LT process
parameter PDF can be constructed from the average of the
PDFs for ST processes.
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D. Random Variable Analysis of
Long Term PDF

The steps leading to (36) main text are summarized in (D.1)–
(D.9). Considering (34) and substituting (31) and (33) into
(35), the PDF for the long term process is

fLT(y) =
(

1√
2π

)2 1
σμσ

∫∞

−∞
e−[(μ−μ)/2σ2

μ−(y−μ)2/2σ2]dμ.

(D.1)

The substitution

t = μ− y, (D.2)

g = μ− y (D.3)

will facilitate completing-the-square process for the argu-
ment of the exponential in (D.1). It is found that the variance
associated with the Gaussian t variable is given by

σ2
t =

σ2σ2
μ

σ2 + σ2
μ
. (D.4)

An additional substitution,

g′ ≡ g
(
σ2
t

σ2
μ

)
, (D.5)

will then lead to a more compact form given by

fLT(g) =
(

1√
2π

)
σt
σμσ

e−g
2/2(σ2+σ2

μ )

×
[

1√
2πσt

∫∞

−∞
e−((t−g′)2/2σ2

t )dt
]
.

(D.6)

Additional simplifications are possible after two observa-
tions. First, the term in brackets of (D.6) is unity because it is
the maximum limit of a Gaussian CDF [2]. Second, it follows
from (D.4) that

σt
σμσ

= 1
√
σ2 + σ2

μ

(D.7)

Combining observations and returning to “y” dependence
via (D.3), the long-term PDF can be stated as

fLT(y) =
(

1√
2π

)
1
σk
e−(y−μ)2/2σ2

k , (D.8)

where the variance of the long-term distribution is

σ2
k = σ2 + σ2

μ , (D.9)

and this confirms (36) in the main text. The steps leading to
(36) main text are summarized in (D.10)–(D.14). After using
a transformation

z = μ− μ
σμ

, (D.10)

the Gaussian PDF in random variable μ (33) can be
converted to the standard normal PDF:

fz(z) =
(

1√
2π

)
e−z

2/2, −∞ ≤ z ≤ ∞. (D.11)

Again, making use of (D.10) the expectation of |μ−μ| is given
by

E
{|μ− μ|} =

∫∞

−∞
fμ(μ)|μ− μ|dμ = σμ

∫∞

−∞
fz(z)|z|dz,

(D.12)

because the PDF fz(z) is by inspection (D.12) an even
function. The initial integration limits in the (D.11) (−∞,∞)
can be converted to [0,∞) by including a multiplicative
factor of two. After simplification of (D.12) the integration,
is then given by

E
{|μ− μ|} = 2σμ√

2π

∫∞

0
e−z

2/2z dz (D.13)

because |z| = z on the new domain of integration.
Evaluation of (D.13) produces

E
{|μ− μ|} = avg

{|μ− μ|} =
√

2
π
σμ, (D.14)

which leads to (37).
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