

Research Article

Improved Glowworm Swarm Optimization Algorithm for Multilevel Color Image Thresholding Problem

Lifang He¹ and Songwei Huang²

¹Department of Electronics and Communication Engineering, Kunming University of Science and Technology, Kunming 650093, China ²Department of Mineral Processing, Kunming University of Science and Technology, Kunming 650093, China

Correspondence should be addressed to Lifang He; 843168660@qq.com

Received 12 May 2016; Revised 22 July 2016; Accepted 27 July 2016

Academic Editor: Masoud Hajarian

Copyright © 2016 L. He and S. Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The thresholding process finds the proper threshold values by optimizing a criterion, which can be considered as a constrained optimization problem. The computation time of traditional thresholding techniques will increase dramatically for multilevel thresholding. To greatly overcome this problem, swarm intelligence algorithm is widely used to search optimal thresholds. In this paper, an improved glowworm swarm optimization (IGSO) algorithm has been presented to find the optimal multilevel thresholds of color image based on the between-class variance and minimum cross entropy (MCE). The proposed methods are examined on standard set of color test images by using various numbers of threshold values. The results are then compared with those of basic glowworm swarm optimization, adaptive particle swarm optimization (APSO), and self-adaptive differential evolution (SaDE). The simulation results show that the proposed method can find the optimal thresholds accurately and efficiently and is an effective multilevel thresholding method for color image segmentation.

1. Introduction

Image segmentation is to partition an image into multiple segments or regions and extract the meaningful and interested objects, which is the critical step in image processing and image analysis. The goal of image segmentation is to make an image more meaningful and easier to understand and analyze [1, 2]. Nowadays image segmentation has been widely used in many practical applications such as medical imaging [3], object detection [4], optical character recognition (OCR) [5], and remote sensing [6].

By now, several algorithms and techniques have been proposed for image segmentation in the literature and thresholding is one of the simplest but most effective methods in all the image segmentation algorithms. The fundamental principle of thresholding technique is to divide the whole pixel points of an image into several classes by setting different threshold values, so the key to this method is to find the proper threshold values. According to the number of threshold values, thresholding techniques can be separated into two groups: bilevel and multilevel thresholding. Bilevel thresholding is to divide an image into two parts by using one threshold value. If the threshold value is more than one, it will be extended into multilevel thresholding, which can accurately divide an image into several significant parts. Therefore, multilevel thresholding is an effective and famous technique, and it is extensively applied in many fields.

For years, a great number of thresholding techniques have been described in the literature. In 1979, Otsu's method was presented by Otsu [7], which is one of the best ways of thresholding. However, the computation time is much longer in multilevel threshold problem because it exhaustively searches optimal threshold values by maximizing the between-class variance. In 1985, Tsai [8] proposed a new method to find optimal thresholding values of an input gray-level image by moment-preserving principle, which is called Tsallis entropy method. In 1986, Kittler and Illingworth [9] assumed that the pixel level values of each object in an image are normally distributed. Li and Lee [10] proposed minimum cross entropy thresholding method which selects the optimal thresholding values by minimizing the cross entropy between the original image and its segmented image. The Otsu, Tsallis entropy, and minimum cross entropy methods can be easily extended to multilevel thresholding. For bilevel thresholding, the traditional thresholding algorithms can find optimal threshold quickly and effectively and the image is accurately segmented into two parts. But, for multilevel thresholding, the traditional techniques become very time-consuming because a large number of iterations are needed for computing the optimal threshold values [11–13].

Swarm intelligence algorithms are very popular global optimization schemes, and the techniques imitate the collective behavior of natural or artificial systems that show some intelligence [14]. The algorithms have been widely used in complex optimization problems which show better performances. In order to solve the multilevel thresholding problem, swarm intelligence algorithms have been used to find optimal thresholds over the years, including genetic algorithm (GA) [15, 16], particle swarm optimization (PSO) [17-19], artificial bee colony (ABC) [20-22], differential evolution (DE) [23–25], firefly algorithm (FA) [26, 27], cuckoo search algorithm (CS) [28, 29], wind driven optimization (WDO) [29], and electromagnetism-like optimization (EMO) algorithm [30]. These methods use different basic swarm intelligence algorithms, different improved algorithms, and different objective functions for different types of images, such as between-class variance, Tsallis entropy, Kapur's entropy, and minimum cross entropy. GA was inspired by the process of natural selection which has been used for multilevel thresholding [31, 32]. The PSO and the improved PSO algorithms were also used to solve the multilevel thresholding problem which mimics the social behavior of bird flock or fish school. The researchers Yin [17] and Maitra and Chatterjee [18] applied PSO algorithm to multilevel thresholding. Thereafter, particle swarm optimization (PSO) and artificial bee colony (ABC) have been adopted to search the optimal multilevel thresholds by Akay using Kapur's entropy and between-class variance as objective functions [19]. Horng [20], Zhang and Wu [21], and Cuevas et al. [33] proposed a new image segmentation method using artificial bee colony algorithm for multilevel thresholding. And the algorithm is also used for segmentation of SAR image [34, 35] and satellite image [22]. In 2010, a novel multilevel thresholding segmentation method based on differential evolution (DE) algorithm is presented [23]. Firefly algorithm (FA), inspired by the social behavior of firefly swarm, is also used to find several threshold values on a given image [36]. Also, two new swarm intelligence algorithms, cuckoo search algorithm (CS) and wind driven optimization (WDO), using Kapur's entropy for multilevel thresholding are proposed, and two algorithms can efficiently and accurately search multiple threshold values [29].

Color images include more information than gray images and multilevel color image segmentation is widely used now. Swarm intelligence algorithms are also used for color image multilevel segmentation. Zingaretti et al. [37] proposed the new method which is based on genetic algorithm (GA) for color image segmentation. Raja et al. [38] presented an improved particle swarm optimization (PSO) algorithm for cancer infected breast thermal images by Otsu's method. Sarkar et al. [39] developed a novel multilevel color image

thresholding method based on differential evolution (DE) algorithm and minimum cross entropy, and simulation results show that it is an effective method. Three different quantum inspired metaheuristic techniques, namely, Quantum Inspired Ant Colony Optimization, Quantum Inspired Differential Evolution, and Quantum Inspired Particle Swarm Optimization technique, for multilevel color image thresholding are presented. Simulations and results prove that the Quantum Inspired Ant Colony Optimization method outperforms the other methods [40]. Rajinikanth and Couceiro [41] used the firefly algorithm (FA) for color image segmentation. The evolutionary and swarm-based algorithms of evolution strategy (ES), genetic algorithm (GA), differential evolution (DE) algorithm, adaptive differential evolution algorithm (JADE), particle swarm optimization (PSO) algorithm, artificial bee colony (ABC) algorithm, cuckoo search (CS), and differential search (DS) algorithm are also used for multilevel color image thresholding problem [42].

The glowworm swarm optimization (GSO) is a novel swarm intelligence algorithm for optimization developed by Krishnanand and Ghose in 2005 [43] which mimics the flashing behavior of glowworms. In the algorithm, each glowworm carries a luminescence quantity called luciferin, which is decided by the function value of glowworm's current location. During the course of movement, glowworm identifies its neighbors based on local-decision domain and selects a neighbor which has a luciferin value higher than its own using a probabilistic mechanism and moves toward it [44-49]. GSO algorithm has been applied for numerous complex optimization problems. Qifang et al. [50] and Horng [51] used GSO algorithm based on Otsu's method and minimum cross entropy for multilevel threshold image segmentation and the experimental results show that the method has better performance for gray images. In order to improve the performance of the standard GSO algorithm and search the global optimal value efficiently and accurately, the improved glowworm swarm optimization (IGSO) is presented in this paper. Step size *s* is an important parameter in determining the convergence of GSO algorithm, so a new update method of step size is proposed. Furthermore the sensor range is extended to the whole search space and the random movement of the brightest glowworms of firefly algorithm is also introduced. Subsequently the IGSO algorithm using different objective functions is used for multilevel color image thresholding problem, such as between-class variance and minimum cross entropy (MCE). The performance of IGSO algorithm for multilevel color image thresholding is measured in terms of the optimal threshold values, objective values, the peak signal to noise ratio (PSNR), and structural similarity index (SSIM) and then compared with other swarm intelligence algorithms such as adaptive particle swarm optimization (APSO) [52] and self-adaptive differential evolution (SaDE) algorithm [53].

The remainder of the paper is organized as follows. Section 2 presents the concepts of between-class variance method and minimum cross entropy method. Section 3 gives a detailed description of GSO algorithm and the proposed IGSO algorithm. In Section 4, the numerical experimental results of IGSO, GSO, APSO, and SaDE algorithms for multilevel color image segmentation are shown and discussions are also given. Finally, the conclusion is presented in Section 5.

2. Formulation of the Problem

Swarm intelligence algorithms find the optimal thresholds by maximizing an objective function. In this paper, two commonly used thresholding methods, between-class variance method (Otsu's) and minimum cross entropy are used as objective functions to find the optimal multilevel thresholds.

2.1. Between-Class Variance Method (Otsu's Method). Thresholding based on Otsu's method is a nonparametric segmentation method that divides the whole image into classes by maximizing the between-class variance.

Assume that an image has *N* pixels and *L* gray levels, and the number of pixels at level *i* is represented by f_i ; then $N = f_1 + f_2 + \cdots + f_i$. The occurrence probability of level *i* is defined by

$$p_i = \frac{f_i}{N}, \quad p_i \ge 0,$$

$$\sum_{i=1}^{L} p_i = 1.$$
(1)

In bilevel thresholding, the optimum threshold *t* divides the image into two classes, and the cumulative probabilities of each class can be described as follows:

$$\omega_0 = \sum_{i=1}^t p_i,$$

$$\omega_1 = \sum_{i=t+1}^L p_i.$$
(2)

The mean levels of two classes are described as follows:

$$\mu_0 = \frac{\sum_{i=1}^{t} ip_i}{\omega_0},$$

$$\mu_1 = \frac{\sum_{i=t+1}^{L} ip_i}{\omega_1}.$$
(3)

The between-class variance of two classes is defined by (4):

$$f(t) = \sigma_0 + \sigma_1, \tag{4}$$

$$\sigma_0 = \omega_0 \left(\mu_0 - \mu_T\right)^2,\tag{5}$$

$$\sigma_1 = \omega_1 \left(\mu_1 - \mu_T\right)^2,$$

where μ_T is the mean levels of whole image:

$$\mu_T = \sum_{i=1}^{L} i p_i. \tag{6}$$

The optimum threshold t^* is searched exhaustively by maximizing the between-class variance, and the optimal threshold is

$$t^* = \arg_{1 \le t \le L} \max\left(f\left(t\right)\right). \tag{7}$$

Otsu's method can be extended to multilevel thresholding. Assume that an image is divided into M classes; the extended between-class variance of m classes is calculated by

$$f(t) = \sum_{i=0}^{M-1} \sigma_i.$$
 (8)

The sigma terms are determined using (9) and the mean levels are calculated by (10):

$$\sigma_{0} = \omega_{0} (\mu_{0} - \mu_{T})^{2},$$

$$\sigma_{1} = \omega_{1} (\mu_{1} - \mu_{T})^{2},$$

$$\vdots$$

$$\sigma_{M-1} = \omega_{M-1} (\mu_{M-1} - \mu_{T})^{2},$$

$$\mu_{0} = \frac{\sum_{i=1}^{t_{1}} ip_{i}}{\omega_{0}},$$

$$\mu_{1} = \frac{\sum_{i=t_{1}+1}^{t_{2}} ip_{i}}{\omega_{1}},$$
(10)
$$\vdots$$

$$\mu_{M-1} = \frac{\sum_{i=t_{M-1}+1}^{L} i p_i}{\omega_{M-1}}.$$

The optimum thresholds are searched by maximizing the between-class variance by

$$t^* = \arg_{1 \le t \le L} \max\left(\sum_{i=0}^{M-1} \sigma_i\right). \tag{11}$$

2.2. Minimum Cross Entropy Method. Assume that two probability distributions, $p = \{p_1, p_2, ..., p_N\}$ and $q = \{q_1, q_2, ..., q_N\}$, belong to the same set. The cross entropy between p and q is defined as follows:

$$H(p,q) = \sum_{i=1}^{N} p_i \log \frac{p_i}{q_i}.$$
(12)

The concept of cross entropy is widely used for optimization problem, and the minimum cross entropy thresholding method selects an optimal threshold that minimizes the cross entropy between the original image and the processed image. If an original image I in L gray levels can be divided into two segments by threshold t and f(i), where i = 1, 2, ..., L is the number of gray levels, then the cross entropy can be calculated by

$$H(t) = \sum_{i=1}^{L} if(i) \log(i) - \sum_{i=1}^{t-1} if(i) \log(\mu(1,t)) - \sum_{i=t}^{L} if(i) \log(\mu(t,L+1)),$$
(13)

where

$$\mu(1,t) = \frac{\sum_{i=1}^{t-1} if(i)}{\sum_{i=1}^{t-1} f(i)},$$

$$\mu(t,L+1) = \frac{\sum_{i=t}^{L} if(i)}{\sum_{i=t}^{L} f(i)}.$$
(14)

We can select an optimal threshold t^* by minimizing the cross entropy based on (13):

$$t^* = \arg\min_{1 \le T \le t} \{H(t)\}.$$
 (15)

Since the first item is constant, the expression of the cross entropy can be modified as

$$H(t) = -\sum_{i=1}^{t-1} if(i) \log(\mu(1,t))$$

$$-\sum_{i=t}^{L} if(i) \log(\mu(t,L+1))$$

$$= -m^{1}(1,t) \log\left(\frac{m^{1}(1,t)}{m^{0}(1,t)}\right) - m^{1}(t,L+1)$$

$$\times \log\left(\frac{m^{1}(t,L+1)}{m^{0}(t,L+1)}\right),$$

(16)

where $m^0(a,b) = \sum_{i=a}^{b-1} f(i)$ is the zero-moment and $m^1(a, b) = \sum_{i=a}^{b-1} if(i)$ is the first-moment of the image histogram.

It is quite straightforward to extend minimum cross entropy thresholding method to multilevel thresholding segmentation. If an image is required to find M thresholds $(t_1, t_2, \ldots, t_{M-1})$, the cross entropy is given by

$$H(t_{1}, t_{2}, \dots, t_{M}) = -\sum_{i=1}^{M+1} m^{1}(t_{i-1}, t_{i}) \log\left(\frac{m^{1}(t_{i-1}, t_{i})}{m^{0}(t_{i-1}, t_{i})}\right).$$
(17)

We can obtain the optimal threshold by minimizing (17). As the swarm intelligence algorithms are usually used to solve maximization problems, we modified (17) as shown below:

$$H(t_{1}, t_{2}, \dots, t_{M}) = \sum_{i=1}^{M+1} m^{1}(t_{i-1}, t_{i}) \log\left(\frac{m^{1}(t_{i-1}, t_{i})}{m^{0}(t_{i-1}, t_{i})}\right).$$
(18)

All algorithms used in this paper calculate the minimum cross entropy fitness function by (18) for multilevel thresholding segmentation, which can find the optimal thresholds.

3. Glowworm Swarm Optimization Algorithm

3.1. *The Standard Glowworm Swarm Optimization Algorithm.* The standard GSO algorithm includes the following steps.

Step 1 (parameters' definition). The key parameters impact the performance of GSO algorithm, that is, *s*, ρ , β , R_0 , and R_s .

Step 2 (glowworms' initialization). In the phase, the glowworms are initially distributed randomly in the given fitness function space so that they are well dispersed, which have equal quantity of luciferin and sensor range. Furthermore, the current iteration is set to 1.

Step 3 (luciferin update phase). The luciferin depends on the function value at the current position of the glowworm, so the position of glowworms changes and the luciferin updates accordingly in the each iteration. Each glowworm updates luciferin according to the following equation:

$$\ell_{i}(t+1) = (1-\rho)\ell_{i}(t) + \gamma J_{i}(t+1), \qquad (19)$$

where $\ell_i(t)$ is the luciferin of glowworm *i* at time *t*, ρ is the luciferin decay constant (0 < ρ < 1), γ represents the luciferin enhancement constant, and $J_i(t)$ is the function value.

Step 4 (movement phase). Each glowworm has a variable local-decision domain, which is bounded by a radial sensor range r_s , and is attracted to brighter glowworms. In the movement phase, glowworms search a neighbor by a probabilistic mechanism that has higher luciferin value and move to it. For each glowworm *i*, the probability equation of moving toward a neighbor *j* can be stated as

$$p_{ij}(t) = \frac{\left(\ell_{j}(t) - \ell_{i}(t)\right)}{\sum_{k \in N_{i}(t)} \left(\ell_{k}(t) - \ell_{i}(t)\right)},$$
(20)

where $j \in N_i(t) \neq \Phi$, $N_i(t) = \{j : d_{i,j}(t) < r_d^i(t) \text{ and } \ell_i(t) < \ell_j(t)\}$ is the set of neighbors of glowworm *i*, $r_d^i(t)$ is the variable local-decision domain, and $d_{i,j}(t)$ represents the Euclidean distance between glowworms *i* and *j* at time *t*. Then, the equation of the glowworm movements is given by

$$x_{i}(t+1) = x_{i}(t) + s\left(\frac{x_{j}(t) - x_{i}(t)}{\left\|x_{j}(t) - x_{i}(t)\right\|}\right), \quad (21)$$

where $x_i(t)$ represents the location of glowworms *i* at time *t*, *s* is the step size, and $\|\cdot\|$ is the Euclidean norm operator.

Step 5 (local-decision domain update). In the GSO algorithm, the local-decision domain is a dynamic value that is a function with the number of peaks captured. In order to update adaptively the local-decision domain range of each glowworm, the rule is stated as

$$r_{d}^{i}(t+1) = \min\left\{r_{s}, \max\left\{0, r_{d}^{i}(t) + \beta\left(n_{t} - |N_{i}(t)|\right)\right\}\right\},$$
(22)

where β is a constant parameter and n_t is a threshold parameter used to control the number of neighbors.

```
Set number of dimensions m
Set number of glowworms n
Let x_i(t) be the location of glowworm i at time t
Generate initial population of glowworms x_i (i = 1, 2, ..., n) randomly
for i = 1 to n do \ell_i(0) = \ell_0
   r_d^i(0) = r_0;
set maximum iteration number = iter_max
\operatorname{set} t = 1
While (t < \text{iter\_max}) do
   s(t) = 3 - (3 - 0.001) * (t/\text{iter}_max)^{n1}
   for each glowworm i do
   \ell_i(t+1) = (1-\rho)\ell_i(t) + \gamma J_i(t+1);
     for each glowworm i do
     N_{i}(t) = \{j : d_{i,i}(t) < r_{d}^{i}(t); \ell_{i}(t) < \ell_{i}(t)\};
       for each glowworm j \in N_i(t) do
        p_{ij}(t) = \left(\ell_j(t) - \ell_i(t)\right) / \sum_{k \in N_i(t)} \left(\ell_k(t) - \ell_i(t)\right)
     j = \text{select_glowworm}(\vec{p})
     x_i(t+1) = x_i(t) + s((x_i(t) - x_i(t)) / ||x_i(t) - x_i(t)||)
     r_d^i(t+1) = R_s = 255;
     for k = 1 to m do
        x_{i^{\max},k} \leftarrow x_{i^{\max},k} + \alpha(\text{rand} - 0.5);
     end
  t \leftarrow t + 1;
```

PSEUDOCODE 1: The pseudocode of IGSO algorithm.

3.2. The Proposed Glowworm Swarm Optimization Algorithm. The size step *s* is a key parameter, which affects the convergence of the GSO algorithm. In GSO algorithm, the step size should be smaller than the ϵ -distance in order to find the optimal solutions [54]. However, the lower step size value may lead to a slow convergence speed. So it can be a large value for starting the algorithm and gradually reducing the value of step size with the increase of iteration [54]. Also, the step size is relevant to the size of the search space. For the larger space, step size must be a larger value. In the standard GSO, *s* is a constant. In order to improve the convergence of the GSO algorithm, we present a new step size update method in this section. Considering the search space and dimension of image segmentation, the expression is given by

$$s(t) = 3 - (3 - 0.001) * \left(\frac{t}{\text{iter_max}}\right)^{n1}$$
, (23)

where [0.001, 3] is the range of step size, *t* is iteration, iter_max is the maximum number of iterations, and $n1 = 10^{(-m)}$, where *m* is the dimension of the search space. When the dimension *m* is a large value and *n*1 is a low value, the step size will correspondingly increase and algorithm can search more quickly.

The local-decision domain is an important parameter that affects the ability of capturing multiple peaks. When the sensor range of each glowworm extends to the whole search space, all the glowworms move to the global optimal value and ignore the local optimum [54]. To ensure that the GSO algorithm can find the global optimal threshold of image segmentation, the sensor range covers the entire space of image gray histogram [0, 255] and the value is set to 255 in this paper.

In the GSO algorithm, the glowworms with the maximum luciferin remain stationary during the each iteration. The above feature leads to the movements of glowworms that are confined to the interior region of the convex hull [54]. The firefly algorithm can search multiple global solutions simultaneously, and thus it is a very efficient algorithm. However, in the FA algorithm, the brightest fireflies move randomly. So the random movement of the brightest agents is introduced to GSO in this paper.

The pseudocodes of the IGSO algorithm are shown as Pseudocode 1.

4. Results and Discussion

In this paper, the improved glowworm swarm optimization (IGSO) algorithm is applied to the multilevel color image thresholding problem. The RGB color model is a simple and effective model of color image which has three basic color components of red, green, and blue, so we should search the optimal threshold values and fitness values for the each component of the color images. The optimal fitness values (f_{best}) of color image is equal to the sum of the optimal fitness

FIGURE 1: The wok of IGSO algorithm for multilevel color image thresholding problem.

values of three components. The work of IGSO algorithm for multilevel color image thresholding problem in this paper is briefly illustrated in Figure 1.

In this section, a large number of experiments are carried out on ten well-known color test images in order to test the performance of the IGSO algorithm for multilevel color image thresholding. Two simple segmentation methods, namely, between-class variance (Otsu) method and minimum cross entropy, are utilized as the fitness functions. All algorithms are implemented in MATLAB Release 2010. Ten well-known color test images and their histograms are shown in Figure 2. All the images are 512×512 in size. The population size is set to be 50 and the maximum number of iterations is 100 in all experiments in this paper. The IGSO algorithm is also compared with two efficient optimization algorithms of APSO and SaDE algorithms. Tables 1-3 give the value of important parameters used for IGSO, APSO, and SaDE algorithms, respectively. In order to estimate the quality of segmented image, the two parameters of peak signal to noise ratio (PSNR) and structural similarity (SSIM) index are used. The higher value of PSNR and SSIM shows a better quality of thresholding.

The peak signal to noise ratio (PSNR) is one of the important performance criteria of image segmentation. The expression of PSNR is defined as follows:

$$PSNR (in dB) = 20 \log_{10} \left(\frac{255}{RMSE}\right), \qquad (24)$$

where

RMSE =
$$\sqrt{\frac{\sum_{I=1}^{M} \sum_{J=1}^{N} (I(i, j) - I'(i, j))^2}{MN}}$$
, (25)

TABLE 1: The parameters used in the IGSO algorithm.

Parameters	Explanation	Value	
	Luciferin		
γ	enhancement	0.6	
	constant		
ß	Update rate of	0.08	
Ρ	decision domain	0.00	
0	Luciferin decay	0.4	
P	constant	0.1	
R _s	Sensor range	255	
	Initialization range		
$[x_{\min}, x_{\max}]$	for the position of the	[0, 255]	
	particles		

TABLE 2: The parameters used in the APSO algorithm.

Parameters	Explanation	Value
w _{max}	Maximum of inertia weight	0.9
w_{\min}	Minimum of inertia weight	0.1
<i>c</i> ₁	Acceleration constants	2.0
<i>c</i> ₂	Acceleration constants	2.0
$[x_{\min}, x_{\max}]$	Initialization range for the position of the particles	[0, 255]

where $M \times N$ is the size of image, *I* is the original image, and *I'* is the segmented image.

Mathematical Problems in Engineering

FIGURE 2: Continued.

FIGURE 2: The ten test images: (a) airplane, (b) couple, (c) flower, (d) girl, (e) monarch, (f) pen, (g) pepper, (h) soccer, (i) test, and (j) yacht and corresponding histograms: (a') airplane, (b') couple, (c') flower, (d') girl, (e') monarch, (f') pen, (g') pepper, (h') soccer, (i') test, and (j') yacht.

Mathematical Problems in Engineering

(b)

(e)

(i)

(o) (n) (p) (q) (r) (s) (t)

FIGURE 3: For m = 2, 4, 6, and 8, images (a)–(d) for airplane, (e)–(h) for couple, (i)–(l) for flower, (m)–(p) for girl, and (q)–(t) for monarch, using IGSO algorithm based on Otsu.

(d)

(i)

(m)

(n)

(k)

(p) 650 (q) (r) (s) (t)

FIGURE 4: For m = 2, 4, 6, and 8, images (a)–(d) for pen, (e)–(h) for pepper, (i)–(l) for soccer, (m)–(p) for test, and (q)–(t) for yacht, using IGSO algorithm based on Otsu.

(f)

(h)

(l)

Mathematical Problems in Engineering

(b)

(e

(m)

(q)

(n)

(r)

(l)

FIGURE 5: For m = 2, 4, 6, and 8, images (a)–(d) for airplane, (e)–(h) for couple, (i)–(l) for flower, (m)–(p) for girl, and (q)–(t) for monarch, using IGSO algorithm based on minimum cross entropy.

FIGURE 6: For m = 2, 4, 6, and 8, images (a)–(d) for pen, (e)–(h) for pepper, (i)–(l) for soccer, (m)–(p) for test, and (q)–(t) for yacht, using IGSO algorithm based on minimum cross entropy.

FIGURE 7: Continued.

FIGURE 7: Convergence curves of IGSO, GSO, APSO, and SaDE algorithms for m = 8 using Otsu's method.

TABLE 3: The parameters used in the SaDE algorithm.

Parameters	Explanation	Value
F ₀	Differential weight	0.9
CR	Crossover probability	0.1
$[x_{\min}, x_{\max}]$	Initialization range for the position of the particles	[0, 255]

For a RGB color image, the PSNR value of three basic components is computed independently and the average values of them are considered as the PSNR value of color image.

The structural similarity (SSIM) index [55] is used to measure the similarity between the original image and the

segmented image. The SSIM between two images can be stated as

SSIM
$$(I, I') = \frac{(2\mu_I\mu_{I'} + c_1)(2\sigma_{II'} + c_2)}{(\mu_I^2 + \mu_{I'}^2 + c_1)(\sigma_I^2 + \sigma_{I'}^2 + c_2)},$$
 (26)

where μ_I is the average of I, $\mu_{I'}$ is the average of I', σ_I^2 is the variance of I, $\sigma_{I'}^2$ is the variance of I', $\sigma_{II'}$ is the covariance of I and I', two variables $c_1 = (k_1L)^2$ and $c_2 = (k_2L)^2$ stabilize the division with weak denominator, and L is the dynamic range of the pixel-values, $k_1 = 0.01$ and $k_2 = 0.03$. In addition, the SSIM can be extended for color RGB images as shown below:

$$SSIM = \sum_{c} SSIM \left(I^{c}, I^{\prime c} \right), \qquad (27)$$

where I^c and I^{lc} are the *c*th channel of the original image and segmented color image, respectively, and *c* is channel number.

		4)	0		
ш	R	G	В	$f(\times 10^{3})$	R	G GSO	В	$f(\times 10^{3})$
8 6 4 7	120,177 83,126,169,199 68,99,129,162,187,204 64,92,114,140,163,184,198,209	94,166 66,116,164,201 57,98,132,167,193,209 47,80,107,132,159,183,200,212	124,181 112,150,180,203 102,134,156,176,195,207 56,102,132,152,170,188,201,211	Airplane 5.15456 5.48484 5.58695 5.63154	120,177 83,126,169,199 68,100,130,162,187,204 63,93,116,141,166,186,199,210	94,166 66,116,164,201 55,98,133,167,193,207 47,81,108,134,161,184,202,214	124,181 112,150,180,203 102,136,156,176,196,209 57,104,134,154,173,190,202,211	5.15456 5.48484 5.58690 5.63124
0 4 9 8	35,83 17,42,71,109 13,32,52,73,97,131 12,28,45,62,81,104,135,204	30,81 16,39,74,122 13,31,51,81,123,176 10,23,37,54,781,04,138,200	27.76 17,39,72,117 11,26,46,77,119,177 9,22,38,56,80,108,142,180	Couple 2.64122 2.91159 2.99013 3.02731	35,83 17,42,71,109 15,33,22,75,97,131 12,29,43,61,78,100,131,200	30,81 16,39,74,122 13,32,54,81,123,176 10,24,40,60,73,86,106,135,201	2776 17,39,72,117 13,27,46,77,119,178 920,34,55,44,102,133,176	2.64122 2.91159 2.99009 3.02709
0 4 9 8	101,190 42,92,154,209 41,76,119,106,194,226 35,53,78,109,142,173,201,229	53,129 53,129 44,84,132,188 32,56,84,121,162,206 30,54,77,102,129,157,189,222	73,151 32,68,108,163 26,55,86,114,152,199 20,38,55,76,96,118,154,200	Flower 10.35564 11.25529 11.38993 11.47485	101,190 42,92,154,209 41,76,118,159,193,225 34,53,76,109,142,172,200,228	53,129 53,129 44,84,132,188 32,54,82,121,165,206 31,54,77,101,138,162,193,220	73,151 32,68,108,163 26,55,83,114,152,198 24,40,59,72,91,117,161,209	10.35564 11.25529 11.38990 11.47454
6 4 9 8	69,124 37,69,106,155 35,62,88,112,140,179 27,44,64,83,104,125,151,187	34,88 25,58,92,129 25,57,89,124,194,208 16,34,52,72,92,115,138,169	31,81 24,52,81,117 23,44,679,4124,190 13,29,47,67,88,1101,134,163	Girl 4.34647 4.84594 4.93170 5.02842	69,124 37,69,106,155 34,62,89,114,140,179 26,45,65,87,112,130,160,192	34,88 25,58,92,129 22,57,89,123,194,208 12,31,50,67,88,110,136,172	31,81 24,52,81,117 23,48,67,94,124,190 12,25,40,65,84,103,131,167	4.34647 4.84594 4.93167 5.02814
0 4 9 8	114,176 89,127,162,198 77,105,129,149,174,204 63,85,109,130,148,166,191,212	79,142 63,90,125,175 45,64,83,103,134,180 12,45,63,81,98,119,149,186	62,122 55,86,122,164 40,60,35,113,144,177 38,54,70,86,108,131,156,184	Monarch 5.19253 5.63990 5.77439 5.83061	114,176 89,127,162,198 79,105,129,150,174,206 68,90,103,123,145,160,187,208	79,142 63,90,125,175 48,64,83,104,134,181 21,46,63,81,98,119,149,186	62,122 55,86,122,164 40,60,85,113,141,178 35,49,65,80,101,127,149,182	5.19253 5.63990 5.77434 5.83002
0 4 9 8	76,151 51,84,124,178 44,69,92,120,157,195 39,59,7796,120,149,179,206	60,138 44,82,128,183 36,63,360,114,151,192 29,50,70,89,110,137,169,199	63,152 44,85,125,184 32,61,88,115,153,201 29,53,74,99,116,142,172212	Pen 9.77709 10.58262 10.78635 10.86604	76,151 51,84,124,178 44,69,93,120,156,194 36,55,74,93,114,141,77,202	60,138 44,82,128,183 36,63,85,114,152,192 28,48,67,85,106,145,176,199	63,152 44,85,125,184 32,61,88,117,155,201 27,49,70,90,110,135,169,209	9.77709 10.58262 10.78632 10.86570
6 4 9 8	97,159 97,156,186 81,124,156,186 62,96,121,43,167,191 53,85,107,127,145,164,183,199	78,157 78,157 30,82,140,185 20,46,81,125,163,193 17,42,69,100,132,159,182,201	58,127 58,127 25,60,95,146 23,50,73,96,129,172 11,32,50,69,87,108,140,177	Pepper 8.61756 9.28037 9.45358 9.53018	97,159 81,124,156,186 64,97,122,143,168,191 54,85,108,128,145,165,184,200	78,157 78,157 30,82,140,185 20,49,81,126,163,194 17,40,64,92,1122,135,177,199	58,127 58,05,146 25,60,95,146 20,50,73,96,129,171 11,31,50,608,140,179	8.61756 9.28037 9.45354 9.52962
6 4 5 8	86,149 57,103,144,180 44,75,109,137,160,192 40,63,86,113,155,153,17,198	71,138 41,83,120,166 30,57,86,112,135,175 26,48,73,97,114,133,155,192	55,126 55,126 38,77,113,166 27,56,82,105,133,177 23,46,688,66,105,127,154,192	Soccer 7.27688 7.96150 8.15225 8.22619	86,149 57,103,144,180 44,75,108,136,159,192 36,58,79,110,129,147,168,195	71,138 41,83,120,166 32,58,87,113,136,176 24,43,69,55,111,129,151,186	55,126 55,126 38,77,113,166 27,55,82,105,133,179 22,45,67,86,104,126,155,192	7.27688 7.96150 8.15218 8.22581
0 4 9 8	89,148 89,148 61,92,127,171 52,78,100,127,161,193 45,68,87,104,129,157,184,207	86,144 57,90,126,165 46,72,53,124,157,185 43,67,88,107,130,158,180,198	82,150 55,88,127,172 40,62,88,114,147,181 33,52,69,90,115,145,176,197	Test 7.43581 7.94367 8.10926 8.17834	89,148 61,92,127,171 51,77,100,127,160,194 40,63,78,99,124,147,175,204	86,144 57,90,126,165 45,71,95,124,158,185 36,59,85,102,126,153,172,196	82,150 55,88,127,172 40,62,86,1154,147,182 35,51,67,86,106,138,173,189	7.43581 7.94367 8.10922 8.17792
8 6 4 2	71,141 56,97,136,176 46,78,105,133,160,185 37,62,84,107,132,155,173,190	64,132 50,86,125,166 48,81,111,141,168,189 29,53,74,92,110,133,155,178	74,148 45,85,120,163 28,55,86,115,144,176 25,49,74,97,118,139,162,185	Yacht 9.16339 9.83344 9.98335 10.00658	71,141 56,97,136,176 45,78,105,132,159,185 32,59,75,105,130, 146,162,185	64,132 50,86,125,166 48,80,109,140,168,189 29,51,74,92,110,133,156,179	74,148 74,148 45,85,15,143,176 29,55,86,112,132,154,181 24,48,70,91,112,132,154,181	9.16339 9.83344 9.98330 10.00622

TABLE 4: Optimal thresholds and objective values obtained by IGSO and GSO algorithms using Otsu's method.

		•				2		
ш	R	G APSO	В	$f(\times 10^{3})$	R	SaDE G	В	$f(\times 10^{3})$
6 4 2	120,177 83,126,169,199 71,102,130,164,190,204	94,166 66,116,164,201 59,93,169,194,211	124,181 112,150,180,203 104,136,157,179,196,207	Airplane 5.15456 5.48484 5.58678	120,177 83,126,169,199 69,101,131,163,188,204	94,166 66,116,164,201 57,100,133,167,192,210	124,181 112,150,180,203 102,135,158,177,196,203	5.15456 5.48484 5.58683
8	63,90,110,134,160,180,197,209	45,79,105,129,154,180,199,207	52,97,125,150,168,186,200,210	5.63107	64,91,111,136,161,182,197,209	46,79,105,130,156,181,198,208	53,99,127,150,169,188,201,210	5.63113
7	35,83	30,81	27,76	Couple 2.64122	35,83	30,81	27,76	2.64122
4	17,42,71,109	16,39,74,122	17,39,72,117	2.91159	17,42,71,109	16,39,74,122	17,39,72,117	2.91159
9	16,34,52,76,99,136	15,32,56,84,126,179	13, 32, 48, 78, 122, 178	2.98998	14, 33, 53, 75, 98, 133	14,33,55,82,127,177	14,27,46,79,121,179	2.99003
~	13,30,48,67,87,110,142,205	10,24,40,56,82,113,149,206	10,24,41,64,90,122,146,187	3.02679	13,30,48,66,85,109,139,204	10,23,39,55,83,109,143,202	11,23,40,62,88,119,147,185	3.02687
ç	101 100	001 23	73 151	Flower	001 101	53 120	73 161	10 26664
1 -	12 02 154 200	621,00 091 021 04 h h	161,67	40000.01	101,150	621,00 12 12 180	161,67	11 JEEJO
+ v	42,32,134,203 43 77 133 163 106 334	44,04,122,100 35 50 00 177 165 708	76 57 86 116 156 107	11 30003	41 74 117 150 101 225	44,04,132,100 34 56 86 173 150 703	7755 84 113 150 200	72002.11
c ∞	34,54,79,115,149,176,203,230	32,55,81,110,139,167,192,225	24,44,63,81,100,121,155,202	11.47416	35,54,78,112,146,176,202,230	31,54,78,106,137,158,192,226	22,43,60,81,100,120,153,201	11.47424
,				Girl				
7	69,124	34,88	31,81	4.3464/	69,124	34,88	31,81	4.3464/
4 \	37,69,106,155	25,58,92,129	24,52,81,117	4.84594	37,69,106,155	25,58,92,129	24,52,81,117	4.84594
o x	2/,00,65,108,138,1/8 29 47 67 89 110 131 155 190	28,25,125,125,120,120 1736 58 81 107 173 130 164	27,45,09,90,127,120 CF	4.152 702807	22,05,05,05,115,141,177 27 46 66 87 107 127 156 192	24,59,90,127,196,209 17 35 55 74 95 119 139 175	20,40,09,120,120,192 15 37 50 71 91 114 137165	4.95162
		1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	1000 10010 000 000 000 0000000000000000	Monarch	2/10001011000000101	1000001100110000110	100 00 00 10 10 10 10 00	0.140.0
2	114,176	79,142	62,122	5.19253	114,176	79,142	62,122	5.19253
4	89,127,162,198	63,90,125,175	55,86,122,164	5.63990	89,127,162,198	63,90,125,175	55,86,122,164	5.63990
9	78,109,133,151,176,205	46,66,84,105,137,183	42,61,87,116,146,180	5.77425	79,104,130,153,175,205	46,62,82,101,132,179	40,62,87,114,145,178	5.77428
8	62,82,104,123,144,162,189,217	13, 49, 67, 88, 100, 123, 158, 192	38,55,70,90,116,141,166,186	5.82961	62, 84, 105, 125, 145, 164, 187, 210	17,46,68,84,101,121,153,191	39,56,73,93,105,135,160,184	5.82970
				Pen				
7	76,151	60,138	63,152	9.77709	76,151	60,138	63,152	9.77709
4	51,84,124,178	44,82,128,183	44,85,125,184	10.58262	51,84,124,178	44,82,128,183	44,85,125,184	10.58262
9	46,72,94,121,158,196	38,66,89,116,153,193	35,62,91,117,152,199	10.78625	44,71,91,122,158,197	37,64,87,116,153,192	33,63,88,116,153,199	10.78627
8	42,64,82,104,126,158,185,209	30,53,74,95,120,151,177,202	29,55,79,100,122,151,183,215	10.86558	40,62,81,101,126,154,184,208	30,50,71,92,116,145,174,201	30,55,78,98,122,148,182,214	10.86549
2	97.159	78.157	58.127	Pepper 8.61756	97.159	78.157	58.127	8.61756
4	81.124.156.186	30.82.140.185	25,60,95,146	9.28037	81.124.156.186	30.82.140.185	25.60.95.146	9.28037
9	61.91.120.141.168.191	22,47,84,127,166,194	22,48,69,94,128,171	9.45348	59,93,121,142,167,191	24,48,81,126,164,193	20.49.72.96.130.172	9.45350
~	49,77,102,122,141,162,183,198	19,45,71,107,138,165,185,203	13,32,54,74,89,114,147,184	9.52933	53,79,104,124,143,161,179,198	20,42,71,105,137,162,187,202	12,35,51,71,90,111,145,183	9.52941
				Soccer				
7	86,149	71,138	55,126	7.27688	86,149	71,138	55,126	7.27688
4	57,103,144,180	41,83,120,166	38,77,113,166	7.96150	57,103,144,180	41,83,120,166	38,77,113,166	7.96150
9	44,78,110,139,158,193	32,60,87,112,136,175	30,59,84,106,133,178	8.15211	45,76,111,137,159,192	31,59,88,114,136,176	28,58,84,107,134,178	8.15213
ø	40,00,00,01,001,01,01,00,00	28,102,102,102,102,102,102,102,102	2/,21,/0,91,110,134,102,202	0.00077.8	40,65,92,118,158,158,152,174,200	661,601,061,011,08,00,06,77	62,48,71,89,109,105,105,198	60077.0
ç	01100			Test 7 12 For	01100	77F 20		10101
1 -	84,48 1 02 127 171	80,144 57 00 126 165	0CL/28	19664.1	09,140 21 02 127 171	50,124 5200,126,125	001,28	70402
+ 、	1/1//21/22/00/02/10/12/22/20/22/20/22/20/22/20/22/22/22/22/22	201,021,06//0	2/TY/ZT/00/CC	10646.1	01,92,127,171 71 77 00 17 170 100		2/11//21/00/00	70046./
0 00	48.70.91.110.137.164.185.210	41.72.89.112.132.165.186.203	39.56.77.98.120.154.176.202	8.17762	47.71.89.109.133.161.187.209	43.69.91.109.133.163.184.201	41,00,00,110,149,102 37.57.75.96.121.150.177.197	0.17770 8.17770
		0 = = () = (= = = = = = = = = = = = = =		Yacht			د بدر د دوره میروجسیدره در م درد مرد م	
2	71,141	64,132	74,148	9.16339	71,141	64,132	74,148	9.16339
4	56,97,136,176	50,86,125,166	45,85,120,163	9.83344	56,97,136,176	50,86,125,166	45,85,120,163	9.83344
9	46,76,103,132,160,183	49,84,114,141,169,189	29,57,85,114,142,176	9.98324	45,77,105,132,159,185	47,80,110,139,168,190	27,56,86,116,145,175	9.98326
8	42,65,90,112,134,163.181,198	26,45,66,83,101,126,151,175	25,49,70,95,109,142,165,189	10.00592	41,66,87,111,135,160,178,195	25,49,68,86,103,128,150,177	27,51,758,98,120,141,166,188	10.00601

TABLE 5: Optimal thresholds and objective values obtained by APSO and SaDE algorithms using Otsu's method.

16

Mathematical Problems in Engineering

TABLE 6: Comparison of o	ptimal PSNR (dB) and SSIM values obtained	by IGSO, GSO, APSO, and SaDE al	gorithms using Otsu's method.
--------------------------	---	---------------------------------	-------------------------------

		IG	SO	GS	50	AP	SO	SaI	DE
Image	т	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
	2	10.0144	0.7740	10.0144	0.7740	10.0144	0.7740	10.0144	0.7740
A * 1	4	10.0188	0.8246	10.0188	0.8246	10.0188	0.8246	10.0188	0.8246
Airplane	6	10.0300	0.8575	10.0263	0.8398	10.0211	0.8346	10.0243	0.8369
	8	10.3589	0.9134	10.3524	0.9029	10.3439	0.8958	10.3481	0.9016
	2	27.0382	0.8025	27.0382	0.8025	27.0382	0.8025	27.0382	0.8025
Count	4	27.0470	0.8830	27.0470	0.8830	27.0470	0.8830	27.0470	0.8830
Couple	6	27.0579	0.9143	27.0518	0.9093	27.0492	0.8976	27.0507	0.9036
	8	27.0602	0.9427	27.0559	0.9362	27.0517	0.9294	27.0526	0.9316
	2	19.3175	0.8460	19.3175	0.8460	19.3175	0.8460	19.3175	0.8460
F 1	4	19.3280	0.9040	19.3280	0.9040	19.3280	0.9040	19.3280	0.9040
Flower	6	19.3296	0.9372	19.3278	0.9340	19.3283	0.9207	19.3289	0.9222
	8	20.3152	0.9604	20.2937	0.9549	20.2859	0.9508	20.2924	0.9526
	2	24.0610	0.7112	24.0610	0.7112	24.0610	0.7112	24.0610	0.7112
Ciul	4	24.0734	0.8011	24.0734	0.8011	24.0734	0.8011	24.0734	0.8011
GIN	6	24.0798	0.8584	24.0766	0.8546	24.0739	0.8512	24.0748	0.8527
	8	24.0824	0.9094	24.0802	0.8982	24.0767	0.8927	24.0789	0.8936
	2	19.4727	0.7658	19.4727	0.7658	19.4727	0.7658	19.4727	0.7658
Monanah	4	19.4767	0.8589	19.4767	0.8589	19.4767	0.8589	19.4767	0.8589
Monarch	6	19.4785	0.9155	19.4778	0.9116	19.4771	0.9059	19.4776	0.9081
	8	19.4941	0.9454	19.4879	0.9387	19.4811	0.9255	19.4918	0.9312
	2	19.8912	0.8420	19.8912	0.8420	19.8912	0.8420	19.8912	0.8420
Dam	4	19.8935	0.8791	19.8935	0.8791	19.8935	0.8791	19.8935	0.8791
Pell	6	19.8983	0.9330	19.8961	0.9238	19.8938	0.9170	19.8947	0.9215
	8	19.9014	0.9629	19.9001	0.9581	19.8979	0.9543	19.8990	0.9566
	2	18.1771	0.8046	18.1771	0.8046	18.1771	0.8046	18.1771	0.8046
Donnor	4	18.1789	0.8384	18.1789	0.8384	18.1789	0.8384	18.1789	0.8384
repper	6	18.1856	0.9004	18.1825	0.8976	18.1796	0.8880	18.1811	0.8916
	8	18.1891	0.9476	18.1836	0.9302	18.1801	0.9164	18.1822	0.9251
	2	20.3329	0.8088	20.3329	0.8088	20.3329	0.8088	20.3329	0.8088
Saccor	4	20.3368	0.8570	20.3368	0.8570	20.3368	0.8570	20.3368	0.8570
30000	6	20.3466	0.9023	20.3421	0.8931	20.3389	0.8822	20.3405	0.8886
	8	20.3474	0.9529	20.3437	0.9493	20.3410	0.9330	20.3422	0.9375
	2	18.5023	0.7611	18.5023	0.7611	18.5023	0.7611	18.5023	0.7611
Test	4	18.5081	0.8508	18.5081	0.8508	18.5081	0.8508	18.5081	0.8508
Test	6	18.5106	0.9017	18.5091	0.8959	18.5086	0.8883	18.5089	0.8913
	8	18.5144	0.9446	18.5120	0.9274	18.5095	0.9122	18.5107	0.9208
	2	18.5073	0.8133	18.5073	0.8133	18.5073	0.8133	18.5073	0.8133
Vacht	4	18.5083	0.8503	18.5083	0.8503	18.5083	0.8503	18.5083	0.8503
facilit	6	18.5090	0.9035	18.5086	0.8910	18.5082	0.8865	18.5085	0.8894
	8	18.5164	0.9542	18.5122	0.9389	18.5097	0.9120	18.5106	0.9274

4.1. Experiment 1. In this section, the IGSO algorithm is used for ten color test images using Otsu's method as fitness function and the results are compared with the GSO, APSO, and SaDE algorithms. Tables 4 and 5 present the number of thresholds (m), corresponding optimal thresholds, and objective values for m = 2, 4, 6, and 8 computed by IGSO, APSO, and SaDE algorithms using Otsu's method. In Table 6, comparison of PSNR (dB) and SSIM values is depicted for each method and number of thresholds, which reveals the quality

of segmented images. The segmented images using IGSO algorithm based on Otsu's method at 2, 4, 6, and 8 levels of thresholding are shown in Figures 3 and 4.

4.2. Experiment 2. In the second part of the experiments, we find optimal threshold values by maximizing the modified equation (18). The number of thresholds, the optimal thresholds, and the optimal objective values for IGSO, GSO, APSO, and SaDE algorithms are listed in Tables 7 and 8.

						030		
4	R	G	В	$f(\times 10^{2})$	R	G G	В	$f (\times 10^2)$
01 77 10 00	109,168 73,117,162,197 65,95,124,155,183,204 59,85,105,127,152,176,194,207	72,153 53,100,146,191 28,63,100,136,177,205 24,53,82,108,1137,168,193,210	120,180 109,147,178,203 57,108,144,169,191,207 55,96,171,146,165,181,198,208	Airplane 28.75021 28.7628 28.76704 28.76901	109,168 73,117,162,197 64,95,124,155,183,203 59,85,105,128,153,176,194,208	72,153 53,100,146,J91 29,63,100,136,176,205 24,53,81,108,136,167,192,209	120,180 109,147,178,203 56,107,143,169,190,207 52,95,121,145,163,181,198,209	28.75021 28.7628 28.76703 28.76899
	26.78 26.78 10,29,52,82,209 10,29,52,82,18,178	21,74 21,74 8,22,42,81 9,22,40,81,11,232 4,11,20,35,57,78,120,337	22,71 22,71 8,21,30,72,137,192 7,21,30,72,137,192 6,13,76,41,60100176,218	Couple 3.97893 4.02494 4.02990 4.03718	26,78 26,78 12,30,53,94,134,210 10,30,53,84,134,210 6,15,28,4,54,2170,183	21,74 21,74 22,342,81 7,21,3971,115,235 5,11,21,3572,801,22,233	22,71 22,71 8,21,40,74,145,196 8,21,40,74,145,196 5,112,273,39,67,108,173,317	3.97893 4.02494 4.02989 4.03715
8 6 4 7	41,119 39,79,135,199 26,47,75,118,166,213 20,32,46,59,83,125,171,215	44,111 27,52,93,159 22,40,59,85,129,184 21,38,577,9,105,134,171,210	53,114 53,114 23,56,98,157 6,34,63,99,142,189 7,28,45,66,89,115,150,197	Flower 12.34354 12.39484 12.40942 12.41612	41,119 39,79,135,199 26,48,75,118,167,213 23,35,48,62,84,127,172,216	44,111 27,52,93,159 22,40,60,86,128,184 21,39,53,76,102,133,171,212	53,114 53,114 23,56,98,157 8,33,62,99,141,190 6,27,47,67,90,115,153,203	12.34354 12.3484 12.40941 12.41609
2498	41,90 33,65,102,149 23,43,66,96,131,185 17,34,48,65,85,107,130,169	22,72 11,31,62,109 10,29,56,86,122,181 5,14,27,40,58,98,113,149	26,80 11,28,56,101 12,28,55,96,145,167 16,47,53,132,146,171,207242	Girl 7.65874 7.70152 7.70996 7.7 1557	41,90 33,65,102,149 22,43,66,98,132,186 19,38,50,67,87,110,133,168	22,72 11,31,62,109 10,30,58,87,123,182 7,16,30,42,62,88,114,156	26,80 11,28,56,101 11,27,55,95,145,167 13,45,52,131,147,168,205,239	7.65874 7.70152 7.70995 7.71555
6 4 2 8	108,172 79,115,147,186 62,85,110,137,165,200 59,79,97,115,134,151,175,204	75,135 61,86,119,169 44,63,81,100,130,177 36,49,64,80,96,117,146,185	58,113 58,61,91,141 36,50,66,88,119,162 33,45,5771,88,112,140,173	Monarch 14.98290 15.00562 15.01305 15.01603	108,172 79,115,147,186 62,85,111,137,165,198 62,83,100,117,137,153,178,206	75,135 61,86,119,169 45,63,81,102,130,177 33,47,61,78,95,115,143,182	58,113 58,61,91,141 35,50,67,89,121,163 35,49,60,71,86,111,141,174	14.98290 15.00562 15.01304 15.01600
0 4 9 8	61,133 45,76,112,169 35,56,79,106,143,187 30,46,63,80,100,127,161,199	48.125 34,66,101,157 26,4770,95,133,183 22,38,56,73,92,117,151,191	49,136 29,63,102,166 22,44,69,95,128,182 16,29,48,69,01,113,148,198	Pen 13.20604 13.25261 13.26480 13.27007	61,133 45,76,112,169 34,56,79,106,142,188 30,47,67,85,103,131,162,201	48,125 34,66,101,157 26,47,70,95,134,183 24,41,60,78,93,121,155,204	49,136 29,63,102,166 22,43,69,95,128,183 17,33,52,70,93,115,151,200	13.20604 13.25261 13.26479 13.27003
6 4 2 8	87,153 62,102,137,174 51,84,111,135,162,189 44,69,94,115,1133,153,174,194	22,104 23,5,56 10,39,85,156 8,33,63,102,149,188 6,23,42,65,97,134,167,195	21,74 15,52,83,133 7,29,54,80,116,170 6,26,47,67,89,115,151,189	Pepper 16.40133 16.45113 16.46417 16.46928	87,153 62,102,137,174 52,82,111,135,162,188 44,70,95,116,134,175,195	22,104 22,104 10,39,85,156 8,33,62,102,148,187 6,27,45,68,94,120,170,197	21,74 15,52,83,133 6,28,55,81,117,172 6,23,42,67,93,118,153,192	16.40133 16.45113 16.46416 16.46926
6 4 2 8	64,126 43,79,123,165 37,61,92,126,155,188 32,48,68,93,120,143,163,193	42,97 30,63,105,155 22,41,6796,124,167 21,36,55,77,99,118,138,175	42,113 25,60,99,150 20,45,75,003,140,191 13,24,441,62,84,103,128,171	Soccer 13.11371 13.15363 13.15363 13.16536 13.17071	64,126 43,79,123,165 38,62,92,127,155,188 32,48,68,94,121,144,164,194	42.97 30.63,105,155 22.42.67.96,126,166 21.37,59,80,101,120,139,178	42,113 25,60,99,150 20,46,55,105,142,194 16,30,43,60,79,103,125,174	13.11371 13.15363 13.16535 13.17068
0 4 9 8	80,137 55,88,122,167 43,70,93,121,156,190 36,58,74,92,108,131,162,194	83,140 83,140 40,70,97,143 37,64,90,116,149,182 31,53,70,88,107,129,159,186	67,132 39,65,100,155 29,48,68,91,125,169 27,45,61,79,99,125,154,183	Test 16.22951 16.25759 16.26698 16.27108	80,137 55,88,122,167 43,70,94,120,155,190 37,59,76,93,110,134,163,196	83,140 83,140 40,70,97,143 38,66,91,118,150,182 31,55,72,92,111,134,163,187	67,132 39,65,100,155 31,49,67,92,126,169 27,43,58,74,95,121,152,181	16.22951 16.25759 16.26697 16.27105
2498	60,133 44,80,119,166 30,53,80,108,140,177 25,41,62,84,107,133,159,185	55,125 28,56,92,139 24,48,73,96,127,168 21,36,55,76,95,118,146,174	53,127 25,55,99,154 21,40,65,92,123,162 16,29,48,70,93,118,144,175	Yacht 15.87338 15.91058 15.92188 15.92650	60,133 44,80,119,166 30,52,80,107,140,177 25,45,63,84,108,130,154,187	55,125 28,56,92,139 25,47,73,96,127,167 21,39,58,82,96,119,147,174	53,127 25,55,99,154 20,40,65,91,121,162 16,30,49,73,95,122,144,177	15.87338 15.91058 15.92187 15.92647

TABLE 7: Optimal thresholds and objective values obtained by IGSO and GSO algorithms using MCE.

		-	`			2		
ш	R	G APSO	B	f (×10 ²)	R	SaDE G	B	$f(\times 10^2)$
6 4 9 8	109,168 73,117,162,197 63,95,123,156,185,205 58,82,101,123,147,172,192,206	72,153 53,100,146,191 28,65,102,137,17,208 26,57,87,11,139,171,194,209	120,180 109,147,178,203 54,109,144,169,193,209 48,94,120,144,162,180,197,208	Airplane 28.75021 28.7628 28.76701 28.76895	109,168 73,117,162,197 64,95,123,125,183,203 59,84,103,126,149,174,193,205	72,153 53,100,146,J91 29,64,100,136,176,203 24,53,85,110,139,170,194,210	120,180 109,147,178,203 58,107,143,169,190,206 53,95,119,145,16,180,198,209	28.75021 28.7628 28.76702 28.76897
6 4 2 8	26.78 12,30,5793 10,30,56,85,127,207 7,20,31,46,63,89,120,78	21,74 21,74 8,22,42,81 11,24,427,11,114,235 8,15,24,29,50,81,125,234	22.71 22.71 8.21,40,78 10,22,4276,138,194 8.61,4.29,3941,73,106,175,214	Couple 3.97893 4.02494 4.02987 4.03710	26.78 25.793 12,30,57,93 9,29,54,83,127,211 8,19,28,44,64,87,116,180	21,74 21,74 8,22,42,81 8,21,40,71,110,234 7,12,34,41,55,88,123,228	22,71 22,71 8,21,40,78 8,20,42,75,137,193 8,16,29,44,66,105,174,221	3.97893 4.02494 4.02988 4.03712
8 4 2 8	41,119 39,79,135,199 28,48,78,119,168,214 15,30,45,57,81,123,179,218	44,111 27,52,93,159 25,41,59,87,131,186 25,39,58,82,106,136,173,216 25,39,58,82,106,136,173,216	53,114 23,56,98,157 8,35,64,106,146,191 9,31,44,68,87,108,147,198	<i>Flower</i> 12.34354 12.39484 12.40339 12.41604	41,119 39,79,135,199 27,47,7119,167,213 18,29,44,58,82,124,171,216	44,111 27,52,93,159 22,41,68,72,81,84 22,41,58,77,105,136,166,205	53,114 53,56,98,157 6,34,63,99,146,192 6,27,45,65,99,118,154,199	12.34354 12.39484 12.40940 12.41606
6 4 0 8	41,90 33,65,102,149 22,46,67,100,134,186 21,39,55,67,88,103,135,172	22,72 11,31,62,109 10,33,56,80,124,183 6,19,35,45,68,7110,154	26,80 11,28,56,101 14,26,57,100,146,168 12,44,501,34,141,167,204,237	Girl 7.65874 7.70152 7.70993 7.71551	41,90 33,65,102,149 23,44,68,98,132,185 18,36,52,71,90,110,132,167	22,72 11,31,62,109 10,29,59,89,122,182 8,22,30,42,61,85,117,153	26,80 11,28,56,101 11,26,55,95,144,166 11,45,51,128,152,773,209	7.65874 7.70152 7.70994 7.71553
8 6 4 7	108,172 79,115,147,186 64,86,112,141,166,202 55,73,92,111,186,14,177207	75,135 61,86,119,169 42,65,82,101,133,179 39,54,66,86,99,120,148,190	58,113 58,113 38,61,91,141 34,47,69,92,123,164 36,49,63,75,92,116,146,175	Monarch 14.98290 15.00562 15.01302 15.01597	108,172 79,115,147,186 61,85,112,139,165,199 61,77,95,110,132,148,176,200	75,135 61,86,119,169 44,63,83,102,130,175 33,53,62,83,97,124,143,182	58,113 38,61,91,141 38,50,68,99,119,163 39,47,59,74,00,118,143,170	14.98290 15.00562 15.01303 15.01599
6 4 9 8	61,133 45,76,112,169 38,57,82,109,144,189 33,50,04,88,106,135,168,201	48,125 34,66,101,157 28,48,73,98,136,184 26,41,59,75,102,120,152,196	49,136 29,63,102,166 21,42,66,98,124,180 19,30,56,73,04,119,151,200	<i>Pen</i> 13.20604 13.25261 13.26477 13.27000	61,133 45,76,112,169 35,55,77,104,141,187 31,48,67,85,105,132,165,202	48,125 34,66,101,157 26,50,71,96,134,184 24,42,60,78,97,123,155,192	49,136 29,63,102,166 22,43,72,97,128,183 17,32,54,76,96,115,154,201	13.20604 13.25261 13.26478 13.26478 13.27001
6 4 2 8	87,153 62,102,137,174 49,82,108,133,164,191 48,72,99,118,136,157,178,197	22,104 22,104 10,39,85,156 11,34,62,100,152,185 9,25,44,69,101,126,170,201	21.74 15.52.83,133 6.26.55.84,115,166 10,28,45,648,110,100,180,196	<i>Pepper</i> 16.40133 16.45113 16.46414 16.46921	87,153 62,102,137,174 51,82,113,155,163,190 44,73,98,113,130,156,177,198	22,104 22,104 10,39,85,156 9,35,65,104,149,189 5,22,45,68,04,132,161,194	21,74 15,52,83,133 8,30,56,81,116,172 6,25,42,65,83,120,170,192	16.40133 16.45113 16.46415 16.46423
6 4 2 8	64,126 64,126 43,79,123,165 39,62,94,127,160,191 35,55,71,96,124,145,166,198	42.97 30,63,105,155 22,45,72,97,125,169 19,38,597,9106,121,145,177	42,113 25,60,99,150 21,48,79,104,141,193 16,30,50,65,87,105,133,173	Soccer 13.11371 13.15363 13.16533 13.17064	64,126 43,79,123,165 38,62,91,125,156,187 33,49,72,95,125,146,165,196	42.97 30,63,105,155 23,43,6796,126,168 21,39,60,82,103,123,142,176	42,113 25,60,99,150 22,46,77,104,140,192 15,29,44,6,786,106,123,169	13.11371 13.15363 13.15534 13.15534 13.17066
8 6 4 2	80,137 55,88,122,167 41,70,90,124,158,190 38,64,78,98,110,134,164,198	83,140 83,140 40,70,97,143 37,65,95,119,152,185 37,60,72,90,104,127,155,188	67132 39,65,100,155 33,50,69,29,2126,169 30,46,63,83,106,132,159,184	Test 16.22951 16.25759 16.26695 16.27101	80,137 55,88,122,167 43,70,95,113,127,192 39,62,77,95,113,128,165,199	83,140 83,140 40,70,97,143 38,66,90,116,151,182 35,56,75,91,112,133,162,190	67,132 39,65,100,155 30,51,68,91,127,170 28,48,63,82,104,128,157,185	16.22951 16.25759 16.26696 16.27103
8 6 4 2	60,133 44,80,119,166 31,51,83,112,141,179 30,43,66,95,114,135,162,187	55,125 28,56,92,139 26,51,77,97,128,170 26,51,77,97,128,170 23,42,63,83,102,122,148,178	53,127 25,55,99,154 21,43,68,94,126,164 21,52,78,99,125,150,180	Yacht 15.87338 15.91058 15.92185 15.92641	60,133 44,80,119,166 30,52,82,108,141,178 28,48,70,89,110,137,162,186	55,125 28,56,92,139 25,48,74,55,126,167 22,40,53,80,98,121,145,171	53,127 55,59,99,154 20,41,64,30,122,162 18,34,53,74,92,124,148,179	15.87338 15.91058 15.92186 15.92644

TABLE 8: Optimal thresholds and objective values obtained by APSO and SaDE algorithms using MCE.

	_	-			-				
Image	т	IG	SO	GS	50	AP	SO	SaI	DE
innage	111	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
	2	10.0178	0.7896	10.0178	0.7896	10.0178	0.7896	10.0178	0.7896
Airplane	4	10.0216	0.8394	10.0216	0.8394	10.0216	0.8394	10.0216	0.8394
7 in plune	6	10.0381	0.8794	10.0311	0.8708	10.0232	0.8617	10.0258	0.8659
	8	10.0641	0.9308	10.0592	0.9248	10.0516	0.9101	10.0548	0.9159
	2	27.0372	0.8270	27.0372	0.8270	27.0372	0.8270	27.0372	0.8270
Couple	4	27.0478	0.8860	27.0478	0.8860	27.0478	0.8860	27.0478	0.8860
Coupie	6	27.0568	0.9128	25.0526	0.9032	27.0499	0.8929	27.0512	0.8973
	8	27.0613	0.9460	25.0588	0.9343	27.0523	0.9290	27.0562	0.9311
	2	19.3352	0.8696	19.3352	0.8696	19.3352	0.8696	19.3352	0.8696
Flower	4	19.3369	0.9037	19.3369	0.9037	19.3369	0.9037	19.3369	0.9037
riowei	6	19.3385	0.9385	19.3376	0.9243	19.3370	0.9159	19.3373	0.9213
	8	19.3439	0.9679	19. 3417	0.9538	19.3389	0.9337	19.3402	0.9446
	2	24.0684	0.7274	24.0684	0.7274	24.0684	0.7274	24.0684	0.7274
Girl	4	24.0725	0.8369	24.0725	0.8369	24.0725	0.8369	24.0725	0.8369
UIII	6	24.0761	0.8740	24.0749	0.8649	27.0732	0.8568	24.0740	0.8614
	8	24.0844	0.9192	24.0824	0.9069	24.0771	0.8903	24.0792	0.8971
	2	19.4791	0.7605	19.4791	0.7605	19.4791	0.7605	19.4791	0.7605
Monarch	4	19.4851	0.8648	19.4851	0.8648	19.4851	0.8648	19.4851	0.8648
$\begin{array}{c} 8\\ \\ 8\\ \\ Girl \\ 4\\ 6\\ \\ 8\\ \\ \\ Monarch \\ 4\\ 6\\ \\ 8\\ \\ \\ Pen \\ 4\\ 6\\ \\ \\ 8\\ \\ 2\\ \\ Pepper \\ 4\\ \end{array}$	6	19.4867	0.9208	19.4862	0.9121	19.4850	0.9032	19.4855	0.9085
	8	19.4939	0.9524	19.4902	0.9408	19,4879	0.9264	19.4893	0.9336
	2	19.8970	0.8281	19.8970	0.8281	19.8970	0.8281	19.8970	0.8281
Don	4	19.8992	0.8878	19.8992	0.8878	19.8992	0.8878	19.8992	0.8878
1 CII	6	19.8996	0.9317	19.8993	0.9244	19.8987	0.9117	19.8991	0.9184
	8	19.9052	0.9637	19.9021	0.9546	19.8994	0.9396	19.9010	0.9441
	2	18.1823	0.8189	18.1823	0.8189	18.1823	0.8189	18.1823	0.8189
Denner	4	18.1849	0.8460	18.1849	0.8460	18.1849	0.8460	18.1849	0.8460
repper	6	18.1867	0.9021	18.1860	0.8967	18.1848	0.8815	18.1853	0.8913
	8	18.1897	0.9483	18.1883	0.9377	18.1860	0.9239	18.1875	0.9314
	2	20.3415	0.8016	20.3415	0.8016	20.3415	0.8016	20.3415	0.8016
Soccor	4	20.3378	0.8512	20.3378	0.8512	20.3378	0.8512	20.3378	0.8512
30000	6	20.3471	0.9071	20.3442	0.8992	20.3496	0.8869	20.3411	0.8983
	8	20.3499	0.9560	20.3475	0.9477	20.3420	0.9298	20.3448	0.9329
	2	18.5027	0.7658	18.5027	0.7658	18.5027	0.7658	18.5027	0.7658
Test	4	18.5155	0.8560	18.5155	0.8560	18.5155	0.8560	18.5155	0.8560
Test	6	18.5157	0.9021	18.5154	0.8938	18.5153	0.8802	18.5154	0.8859
	8	18.5168	0.9533	18.5161	0.9486	18.5156	0.9372	18.5158	0.9400
	2	18.5135	0.8195	18.5135	0.8195	18.5135	0.8195	18.5135	0.8195
Vacht	4	18.5172	0.8611	18.5172	0.8611	18.5172	0.8611	18.5172	0.8611
raciit	6	18.5188	0.9150	18.5179	0.9021	18.5174	0.8851	18.5177	0.8960
	8	18.5203	0.9608	18.5186	0.9454	18.5178	0.9287	18.5182	0.9342

The parameter values of PSNR (dB) and SSIM value are shown in Table 9. Figures 5 and 6 give the multilevel thresholding segmented results at 2, 4, 6, and 8 levels of thresholding using IGSO algorithm based on minimum cross entropy for ten test color images, respectively.

4.3. *Comparison of the Segmented Performance*. In this paper, the results of IGSO algorithm based on Otsu and MCE have

been compared with basic GSO algorithm and two other well-known optimization algorithms. For the Otsu fitness function, it can be clearly seen from Tables 4 and 5 that the improved GSO algorithm offers superior optimal thresholds and objective values in comparison with GSO, APSO, and SaDE algorithms when the number of thresholds is more than 4. From Tables 7 and 8, it is easy to deduce that the optimal thresholds and objective values of multilevel color image

		DENID	(Otarr)	DENID	(MCE)	CCIM	(Otaur)	CCIM	(MCE)
Image	т	ICSO	(Otsu)	IGSO	(MCE)	ICSO	(Olsu)	ICSO	(MCE)
	2	10.0144	10.0144	10.0178	10.0178	0.7740	0.7740	0.7896	0.7896
	4	10.0144	10.0144	10.01/8	10.01/6	0.8246	0.8246	0.8394	0.7690
Airplane	4	10.0100	10.0168	10.0210	10.0210	0.8240	0.8398	0.8794	0.0394
	8	10.3589	10.3524	10.3641	10.0592	0.0375	0.0000	0.9308	0.0700
	2	270382	270382	27.0372	27.0372	0.8025	0.8025	0.8270	0.9210
	4	27.0382	27.0302	27.0372	27.0372	0.8830	0.8830	0.8270	0.8860
Couple	- -	27.0470	27.0470	27.0478	25.0526	0.0050	0.0090	0.0000	0.0000
	8	27.0579	27.0510	27.0500	25.0520	0.9427	0.9362	0.9120	0.9343
	2	19 3175	19 3175	19 3352	19 3352	0.8460	0.9362	0.8696	0.9545
	4	19.3280	19.3280	19 3369	19.3369	0.9040	0.9040	0.8090	0.0020
Flower	- -	19.3286	19.3278	19.3385	19.3376	0.9372	0.9340	0.9385	0.9037
	8	20 3152	20 2937	20 3439	19 3417	0.9604	0.9549	0.9505	0.9538
	2	24.0610	24.0610	24.0684	24 0684	0.7112	0.7112	0.7274	0.7274
	4	24.0734	24.0734	24.0725	24.0725	0.8011	0.8011	0.8369	0.8369
Girl	- -	24.0754	24.0754	24.0723	24.0729	0.8584	0.8546	0.8740	0.0507
	8	24.0738	24.0700	24.0701	24.0749	0.9094	0.8982	0.9192	0.0049
	2	19 4727	19 4727	19 4791	19 4791	0.7658	0.7658	0.7605	0.7605
	4	19.4767	19.4767	19.4851	19.4851	0.8589	0.8589	0.8648	0.8648
Monarch	6	19.4785	19.4778	19.4867	19.4862	0.9155	0.9116	0.9208	0.0010
	8	19 4941	19.4879	19.1007	19,4902	0.9454	0.9387	0.9524	0.9121
	2	19 8912	19.8912	19.8970	19.8970	0.8420	0.8420	0.8281	0.9100
	4	19 8935	19 8935	19.8992	19 8992	0.8791	0.8791	0.8878	0.8878
Pen	6	19 8983	19 8961	19.8994	19 8993	0.9330	0.9238	0.9317	0.9244
	8	19.9014	19.9001	19.9052	19.9021	0.9629	0.9581	0.9637	0.9546
	2	18.1771	18,1771	18.1823	18.1823	0.8046	0.8046	0.8189	0.8189
_	4	18,1789	18.1789	18.1849	18.1849	0.8384	0.8384	0.8460	0.8460
Pepper	6	18.1856	18.1825	18.1857	18.1860	0.9004	0.8976	0.9021	0.8967
	8	18.1891	18.1836	18.1897	18.1883	0.9476	0.9302	0.9483	0.9377
	2	20.3329	20.3329	20.3415	20.3415	0.8088	0.8088	0.8016	0.8016
	4	20.3368	20.3368	20.3378	20.3378	0.8570	0.8570	0.8512	0.8512
Soccer	6	20.3466	20.3421	20.3471	20.3442	0.9023	0.8931	0.9071	0.8992
	8	20.3474	20.3437	20.3499	20.3475	0.9529	0.9493	0.9560	0.9477
	2	18.5023	18.5023	18.5027	18.5027	0.7611	0.7611	0.7658	0.7658
	4	18.5081	18.5081	18.5155	18.5155	0.8508	0.8508	0.8560	0.8560
Test	6	18.5106	18.5091	18.5157	18.5154	0.9017	0.8959	0.9021	0.8938
	8	18.5144	18.5120	18.5168	18.5161	0.9446	0.9274	0.9533	0.9486
	2	18.5073	18.5073	18.5135	18.5135	0.8133	0.8133	0.8195	0.8195
37 1.	4	18.5083	18.5083	18.5172	18.5172	0.8503	0.8503	0.8611	0.8611
racht	6	18.5090	18.5086	18.5175	18.5179	0.9035	0.8910	0.9150	0.9021
	8	18.5164	18.5122	18.5203	18.5186	0.9542	0.9389	0.9608	0.9454

thresholding segmentation using minimum cross entropy for all the test images are better than GSO, APSO, and SaDE algorithms.

The parameters of peak signal to noise ratio (PSNR) and structural similarity (SSIM) index are introduced to evaluate the quality of segmented images. Tables 6 and 9 show that PSNR and SSIM values obtained with IGSO algorithm

are higher than those produced by the other algorithms. The PSNR and SSIM values obtained by IGSO and GSO algorithms using Otsu's and MCE methods are presented in Table 10. For the same color test image and number of thresholds (*m*), the IGSO algorithm based on the minimum cross entropy method has higher PSNR and SSIM values than Otsu's method. After the analysis of results, it is found that

IGSO algorithm based on the minimum cross entropy has better quality of segmented image than the other algorithms for each color test image.

Moreover, the convergence curves for IGSO, GSO, APSO, and SaDE algorithms of ten test color images using Otsu's method have been shown in Figure 7 for 8-level thresholding. It can be clearly observed from these figures that the IGSO algorithm needs less iterations to obtain optimal segmentation results and has better convergence property than GSO, APSO, and SaDE algorithms for multilevel color image thresholding segmentation.

5. Conclusions

In this paper, a new multilevel color image thresholding segmentation method based on improved glowworm swarm optimization (IGSO) algorithm is presented. The presented method utilized Otsu's method and minimum cross entropy as the fitness functions criteria and is tested on ten color test images for m = 2, 4, 6, and 8. The results obtained by IGSO algorithm are compared with those obtained by GSO, APSO, and SaDE algorithms and the segmentation performance of these methods was evaluated in terms of the optimal threshold values, optimal objective values, PSNR values, and SSIM values. Finally, the convergence curves using minimum cross entropy are drawn of ten test color images for m = 8. The comparative results show that the improved GSO algorithm is superior to the GSO, APSO, and SaDE algorithms for multilevel color image thresholding problem. Furthermore, the quality of segmented image of the IGSO algorithm using minimum cross entropy outperforms the IGSO algorithm using Otsu's method in terms of PSNR and SSIM. The further work will include introduction of the other fitness criteria for multilevel thresholding segmentation. In addition, the IGSO algorithm is also applied to the other complex problems.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the National Nature Science Foundation of China (no. 51204077) and the Nature Science Foundation of Kunming University of Science and Technology (no. 2014-9-x-8).

References

- G. S. Linda and C. S. George, *Computer Vision*, Prentice Hall, Upper Saddle River, NJ, USA, 1st edition, 2001.
- [2] L. Barghout and L. Lee, "Perceptual information processing system," U.S. Patent Application 10/618,543, 2003.
- [3] D. L. Pham, C. Xu, and J. L. Prince, "Current methods in medical image segmentation," *Annual Review of Biomedical Engineering*, vol. 2, pp. 315–337, 2000.
- [4] J. A. Delmerico, P. David, and J. J. Corso, "Building facade detection, segmentation, and parameter estimation for mobile robot localization and guidance," in *Proceedings of the IEEE/RSJ*

International Conference on Intelligent Robots and Systems (IROS '11), pp. 1632–1639, IEEE, San Francisco, Calif, USA, September 2011.

- [5] F. Yan, H. Zhang, and C. R. Kube, "A multistage adaptive thresholding method," *Pattern Recognition Letters*, vol. 26, no. 8, pp. 1183–1191, 2005.
- [6] J. Fan, M. Han, and J. Wang, "Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation," *Pattern Recognition*, vol. 42, no. 11, pp. 2527– 2540, 2009.
- [7] N. Otsu, "A threshold selection method from gray-level histograms," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 9, no. 1, pp. 962–966, 1979.
- [8] W.-H. Tsai, "Moment-preserving thresholding: a new approach," *Computer Vision, Graphics, & Image Processing*, vol. 29, no. 3, pp. 377–393, 1985.
- [9] J. Kittler and J. Illingworth, "Minimum error thresholding," *Pattern Recognition*, vol. 19, no. 1, pp. 41–47, 1986.
- [10] C. H. Li and C. K. Lee, "Minimum cross entropy thresholding," *Pattern Recognition*, vol. 26, no. 4, pp. 617–625, 1993.
- [11] M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," *Journal of Electronic Imaging*, vol. 13, no. 1, pp. 146–168, 2004.
- [12] S. Wang, F.-L. Chung, and F. Xiong, "A novel image thresholding method based on Parzen window estimate," *Pattern Recognition*, vol. 41, no. 1, pp. 117–129, 2008.
- [13] D.-Y. Huang and C.-H. Wang, "Optimal multi-level thresholding using a two-stage Otsu optimization approach," *Pattern Recognition Letters*, vol. 30, no. 3, pp. 275–284, 2009.
- [14] G. Beni and J. Wang, "Swarm intelligence in cellular robotic systems," in *Robots and Biological Systems: Towards a New Bionics?* P. Dario, G. Sandini, and P. Aebischer, Eds., vol. 102 of *NATO ASI Series*, pp. 703–712, Springer, Berlin, Germany, 1993.
- [15] W.-B. Tao, J.-W. Tian, and J. Liu, "Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm," *Pattern Recognition Letters*, vol. 24, no. 16, pp. 3069–3078, 2003.
- [16] M. Awad, K. Chehdi, and A. Nasri, "Multicomponent image segmentation using a genetic algorithm and artificial neural network," *IEEE Geoscience and Remote Sensing Letters*, vol. 4, no. 4, pp. 571–575, 2007.
- [17] P.-Y. Yin, "Multilevel minimum cross entropy threshold selection based on particle swarm optimization," *Applied Mathematics and Computation*, vol. 184, no. 2, pp. 503–513, 2007.
- [18] M. Maitra and A. Chatterjee, "A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding," *Expert Systems with Applications*, vol. 34, no. 2, pp. 1341–1350, 2008.
- [19] B. Akay, "A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding," *Applied Soft Computing Journal*, vol. 13, no. 6, pp. 3066–3091, 2013.
- [20] M.-H. Horng, "Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation," *Expert Systems with Applications*, vol. 38, no. 11, pp. 13785–13791, 2011.
- [21] Y. Zhang and L. Wu, "Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach," *Entropy*, vol. 13, no. 4, pp. 841–859, 2011.
- [22] A. K. Bhandari, A. Kumar, and G. K. Singh, "Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions," *Expert Systems with Applications*, vol. 42, no. 3, pp. 1573–1601, 2015.

- [23] E. Cuevas, D. Zaldivar, and M. Pérez-Cisneros, "A novel multithreshold segmentation approach based on differential evolution optimization," *Expert Systems with Applications*, vol. 37, no. 7, pp. 5265–5271, 2010.
- [24] S. Sarkar and S. Das, "Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy—a differential evolution approach," *IEEE Transactions on Image Processing*, vol. 22, no. 12, pp. 4788–4797, 2013.
- [25] H. V. H. Ayala, F. M. dos Santos, V. C. Mariani, and L. D. dos Santos Coelho, "Image thresholding segmentation based on a novel beta differential evolution approach," *Expert Systems with Applications*, vol. 42, no. 4, pp. 2136–2142, 2015.
- [26] M. H. Horng and T. W. Jiang, "Multilevel image thresholding selection based on the firefly algorithm," in *Proceedings of* the Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC '10), pp. 58–63, Xian, China, October 2010.
- [27] M.-H. Horng and R.-J. Liou, "Multilevel minimum cross entropy threshold selection based on the firefly algorithm," *Expert Systems with Applications*, vol. 38, no. 12, pp. 14805–14811, 2011.
- [28] S. Agrawal, R. Panda, S. Bhuyan, and B. K. Panigrahi, "Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm," *Swarm and Evolutionary Computation*, vol. 11, pp. 16–30, 2013.
- [29] A. K. Bhandari, V. K. Singh, A. Kumar, and G. K. Singh, "Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy," *Expert Systems with Applications*, vol. 41, no. 7, pp. 3538–3560, 2014.
- [30] D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar, and V. Osuna, "A Multilevel thresholding algorithm using electromagnetism optimization," *Neurocomputing*, vol. 139, pp. 357–381, 2014.
- [31] K. Hammouche, M. Diaf, and P. Siarry, "A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation," *Computer Vision and Image Understanding*, vol. 109, no. 2, pp. 163–175, 2008.
- [32] S. Manikandan, K. Ramar, M. W. Iruthayarajan, and K. G. Srinivasagan, "Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm," *Measurement*, vol. 47, no. 1, pp. 558–568, 2014.
- [33] E. Cuevas, F. Sención, D. Zaldivar, M. Pérez-Cisneros, and H. Sossa, "A multi-threshold segmentation approach based on artificial bee colony optimization," *Applied Intelligence*, vol. 37, no. 3, pp. 321–336, 2012.
- [34] K. Hanbay and M. F. Talu, "Segmentation of SAR images using improved artificial bee colony algorithm and neutrosophic set," *Applied Soft Computing Journal*, vol. 21, pp. 433–443, 2014.
- [35] M. Ma, J. Liang, M. Guo, Y. Fan, and Y. Yin, "SAR image segmentation based on artificial bee colony algorithm," *Applied Soft Computing Journal*, vol. 11, no. 8, pp. 5205–5214, 2011.
- [36] T. Hassanzadeh, H. Vojodi, and A. M. E. Moghadam, "An image segmentation approach based on maximum variance intracluster method and firefly algorithm," in *Proceedings of the 7th International Conference on Natural Computation (ICNC '11)*, pp. 1817–1821, IEEE, Shanghai, China, July 2011.
- [37] P. Zingaretti, G. Tascini, and L. Regini, "Optimising the color image segmentation," in VIII Convegno dell Associazione Italiana per l'Intelligenza Artificiale, pp. 1–8, September 2002.

- [38] N. S. M. Raja, S. A. Sukanya, and Y. Nikita, "Improved PSO based multi-level thresholding for cancer infected breast thermal images using Otsu," *Procedia Computer Science*, vol. 48, pp. 524–529, 2015.
- [39] S. Sarkar, S. Das, and S. S. Chaudhuri, "A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution," *Pattern Recognition Letters*, vol. 54, pp. 27–35, 2015.
- [40] S. Dey, S. Bhattacharyya, and U. Maulik, "New quantum inspired meta-heuristic techniques for multi-level colour image thresholding," *Applied Soft Computing*, vol. 46, pp. 677–702, 2016.
- [41] V. Rajinikanth and M. S. Couceiro, "RGB histogram based color image segmentation using Firefly Algorithm," *Procedia Computer Science*, vol. 46, pp. 1449–1457, 2015.
- [42] T. Kurban, P. Civicioglu, R. Kurban, and E. Besdok, "Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding," *Applied Soft Computing*, vol. 23, pp. 128–143, 2014.
- [43] K. N. Krishnanand and D. Ghose, "Detection of multiple source locations using a glowworm metaphor with applications to collective robotics," in *Proceedings of the IEEE Swarm Intelligence Symposium (SIS '05)*, pp. 87–94, Pasadena, Calif, USA, June 2005.
- [44] K. N. Krishnanand and D. Ghose, "Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications," *Multiagent and Grid Systems*, vol. 2, no. 3, pp. 209–222, 2006.
- [45] K. N. Krishnanand and D. Ghose, "Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions," *Swarm Intelligence*, vol. 3, no. 2, pp. 87– 124, 2009.
- [46] K. N. Krishnanand and D. Ghose, "Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations," *Robotics and Autonomous Systems*, vol. 56, no. 7, pp. 549–569, 2008.
- [47] W.-H. Liao, Y. Kao, and Y.-S. Li, "A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks," *Expert Systems with Applications*, vol. 38, no. 10, pp. 12180–12188, 2011.
- [48] B. Wu, C. Qian, W. Ni, and S. Fan, "The improvement of glowworm swarm optimization for continuous optimization problems," *Expert Systems with Applications*, vol. 39, no. 7, pp. 6335– 6342, 2012.
- [49] D. N. Jayakumar and P. Venkatesh, "Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem," *Applied Soft Computing*, vol. 23, pp. 375–386, 2014.
- [50] L. Qifang, O. Zhe, C. Xin, and Z. Yongquan, "A multilevel threshold image segmentation algorithm based on glowworm swarm optimization," *Journal of Computational Information Systems*, vol. 10, no. 4, pp. 1621–1628, 2014.
- [51] M. H. Horng, "Multilevel image thresholding with glowworm swam optimization algorithm based on the minimum cross entropy," *Advances in Information Sciences and Service Sciences*, vol. 5, no. 10, pp. 1290–1298, 2013.
- [52] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, "Adaptive particle swarm optimization," *IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics*, vol. 39, no. 6, pp. 1362–1381, 2009.
- [53] A. K. Qin and P. N. Suganthan, "Self-adaptive differential evolution algorithm for numerical optimization," in *Proceedings of*

the IEEE Congress on Evolutionary Computation (CEC '05), vol. 2, pp. 1785–1791, IEEE, Edinburgh, Scotland, September 2005.

- [54] K. N. Krishnanand and D. Ghose, "Glowworm swarm optimisation: a new method for optimising multi-modal functions," *International Journal of Computational Intelligence Studies*, vol. 1, no. 1, pp. 93–119, 2009.
- [55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," *IEEE Transactions on Image Processing*, vol. 13, no. 4, pp. 600– 612, 2004.

World Journal

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Journal of Complex Analysis

Journal of Discrete Mathematics

Hindawi

Submit your manuscripts at http://www.hindawi.com

Mathematical Problems in Engineering

Journal of **Function Spaces**

Abstract and **Applied Analysis**

International Journal of Stochastic Analysis

Discrete Dynamics in Nature and Society

