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We propose long-time convergent numerical integration processes for delay differential equations.
We first construct an integration process based on modified Laguerre functions. Then we establish
its global convergence in certain weighted Sobolev space. The proposed numerical integration
processes can also be used for systems of delay differential equations. We also developed a
technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results
demonstrate the spectral accuracy of the proposed method and coincide well with analysis.

1. Introduction

Time delay systems which are described by delay differential equations (DDEs) or more
generally functional differential equations (FDEs) have been studied rather extensively in
the past thirty years since time delays are often the sources of instability and encountered
in various engineering systems such as chemical processes, economic markets, chemical
reactions, and population dynamics [1, 2]. Nakagiri [1] studied the structural properties of
linear autonomous functional differential equations in Banach spaces within the framework
of linear operator theory. The system stability and the compactness of the operators
describing the solution trajectories are investigated in [2]. Depending on whether the
existence of time delays or not, stability criteria for time delay systems can be divided into two
types: delay-dependent ones and delay-independent ones. De la Sen and Luo [3] deal with
the global uniform exponential stability independent of delay of time-delay linear and time-
invariant systems. By exploiting appropriate Lyapunov functional candidate, new delay-
dependent robust stability criteria of uncertain time-delay systems are proposed in [4].
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However, most DDEs do not have analytic solution, so it is generally necessary to
resort to numerical methods [5, 6]. It is well known that a numerical method which is
convergent in a finite interval does not necessarily yield the same asymptotic behavior
as the underlying differential equation. If the numerical solution defines a dynamical
system, then we would study whether this dynamical system inherits the dynamics of the
underlying system. Hence it is crucial to understand the behavior of numerical solution in
order that we may interpret the data and facilitate the design of algorithms which provide
correct qualitative information without being unduly expensive. The classical analysis of
linear multistep methods [7–9] and Runge-Kutta methods [10–12] for delay differential
equations involves assessment of stability and accuracy but has also been supplemented by
considerable practical experience and experimentation.

As a basic tool, the Runge-Kutta method plays an important role in numerical
integrations of delay differential equations. We usually designed this kind of numerical
schemes in two ways. The first way is based on Taylor’s expansion coupled with other
techniques. The next is to construct numerical schemes by using collocation approximation.
For instance, Butcher [13, 14] provided some implicit Runge-Kutta processes based on the
Radau Quadrature formulas; also see [15, 16] and the references therein.

Recently, Guo et al. [17] proposed an integration process for ordinary differential
equations based on modified Laguerre functions, which are very efficient for long-time
numerical simulations of dynamical systems. But so far, to our knowledge, there is no
work concerning the applications of Laguerre approximation to integration process for delay
differential equations.

In this paper, we construct a new integration processes for delay differential equations
based on modified Laguerre functions and establish its global convergence in certain
weighted Sobolev space. Numerical results demonstrate the spectral accuracy of the pro-
posed method and coincide well with analysis.

2. Modified Laguerre-Radau Function for Delay Differential Equations

Let ωβ(t) = e−βt, β > 0, and define the weighted space L2
ωβ
(0,∞) as usual, with the following

inner product and norm:

(u, v)ωβ
=
∫∞

0
u(t)v(t)ωβ(t)dt, ‖v‖ωβ

= (v, v)1/2ωβ
. (2.1)

The modified Laguerre polynomial of degree l is defined by (cf. [18])

L(β)
l (t) =

1
l!
eβt

dl

dtl

(
tle−βt

)
, l ≥ 0. (2.2)
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For example,

L(β)
0 (t) = 1,

L(β)
1 (t) = 1 − βt,

L(β)
2 (t) = −2βt + β2

2
t2.

(2.3)

The modified Laguerre polynomials satisfy the recurrence relation

d

dt
L(β)
l (t) =

d

dt
L(β)
l−1(t) − βL

(β)
l−1(t), l ≥ 1. (2.4)

The set of Laguerre polynomials is a complete L2
ωβ
(0,∞)-orthogonal system, namely,

(
L(β)
l ,L(β)

m

)
ωβ

=
1
β
δl,m, (2.5)

where δl,m is the Kronecker function. Thus, for any v ∈ L2
ωβ
(0,∞),

v(t) =
∞∑
l=0

v̂lL(β)
l (t), v̂l = β

(
v,L(β)

l

)
ωβ

. (2.6)

Let N be any positive integer and PN(0,∞) the set of all algebraic polynomials of degree at
mostN. We denote by tN

β,j
the modified Laguerre-Radau interpolation points. Indeed, tN

β,0 = 0,

and tNβ,j (1 ≤ j ≤ N) are the distinct zeros of (d/dt)L(β)
N+1(t). By using (2.1) and the formula

(2.12) of [19], the corresponding Christoffel numbers are as follows:

ωN
β,0 =

1
β(N + 1)

, ωN
β,j =

1

β(N + 1)L(β)
N

(
tN
β,j

)
L(β)
N+1

(
tN
β,j

) , 1 ≤ j ≤N. (2.7)

For any ρ ∈ P2N(0,∞),

N∑
j=0

ρ
(
tNβ,j

)
ωN
β,j =

∫∞

0
ρ(t)ωβ(t)dt. (2.8)

Next, we define the following discrete inner product and norm:

(u, v)ωβ,N
=

N∑
j=0

u
(
tNβ,j

)
v
(
tNβ,j

)
ωN
β,j , ‖v‖ωβ,N

= (v, v)1/2ωβ,N
. (2.9)
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For any φ, ψ ∈ PN(0,∞),

(
φ, ψ

)
ωβ

=
(
φ, ψ

)
ωβ,N

,
∥∥φ∥∥ωβ

=
∥∥φ∥∥ωβ,N

. (2.10)

For all v ∈ L2
ωβ
(0,∞), the modified Laguerre-Radau interpolant Iβ,Nv ∈ PN(0,∞) is deter-

mined by

Iβ,Nv
(
tNβ,j

)
= v
(
tNβ,j

)
, 0 ≤ j ≤N. (2.11)

By (2.10), for any φ ∈ PN(0,∞),

(
Iβ,Nv, φ

)
ωβ

=
(
Iβ,Nv, φ

)
ωβ,N

=
(
v, φ

)
ωβ,N

. (2.12)

The interpolant Iβ,Nv can be expanded as

Iβ,Nv(t) =
N∑
l=0

ṽNβ,lL
(β)
l (t). (2.13)

By virtue of (2.5) and (2.10),

ṽNβ,l = β
(
Iβ,Nv,L(β)

l

)
ωβ

= β
(
v,L(β)

l

)
ωβ,N

. (2.14)

Define the modified Laguerre functions L̃(β)
l
(t) = e−(1/2)βtL(β)

l
(t) as the base functions.

According to (2.4), the functions L̃(β)
l (t) satisfy the recurrence relation

d

dt
L̃(β)
l (t) =

d

dt
L̃(β)
l−1(t) −

1
2
βL̃(β)

l (t) − 1
2
βL̃(β)

l−1(t), l ≥ 1. (2.15)

Denote by (u, v) and ‖v‖ the inner product and the norm of the space L2(0,∞), respectively.
The set of L̃(β)

l
(t) is a complete L2(0,∞)-orthogonal system, that is,

〈
L̃(β)
l , L̃(β)

m

〉
=

1
β
δl,m. (2.16)

We now introduce the new Laguerre-Radau interpolation. Set

QN(0,∞) = span
{
L̃(β)

0 , L̃(β)
1 , . . . , L̃(β)

N

}
. (2.17)
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Let tNβ,j and ω
N
β,j be the same as in (2.7), and take the nodes and weights of the new Laguerre-

Radau interpolation as

t̃Nβ,j = t
N
β,j , ω̃N

β,j =
1

L̃(β)
N

(
tN
β,j

)
L̃(β)
N+1

(
tN
β,j

) = eβt
N
β,jωN

β,j . (2.18)

The discrete inner product and norm can be defined similarly as

〈u, v〉β,N =
N∑
j=0

u
(
tNβ,j

)
v
(
tNβ,j

)
ω̃N
β,j , ‖v‖β,N = 〈v, v〉1/2β,N. (2.19)

For any φ1, φ2 ∈ QN(0,∞), we have φ1 = e−(1/2)βtψ1, φ2 = e−(1/2)βtψ2, and ψ1, ψ2 ∈ PN(0,∞).
Thus by (2.10),

〈
φ1, φ2

〉
β,N =

〈
ψ1, ψ2

〉
ωβ,N

=
〈
ψ1, ψ2

〉
ωβ

=
〈
φ1, φ2

〉
. (2.20)

The new Laguerre-Radau interpolant Ĩβ,Nv ∈ QN(0,∞) is determined by

Ĩβ,Nv
(
tNβ,j

)
= v
(
tNβ,j

)
, 0 ≤ j ≤N. (2.21)

Due to the equality (2.20), for any φ ∈ QN(0,∞),

〈
Ĩβ,Nv, φ

〉
=
〈
Ĩβ,Nv, φ

〉
β,N

=
〈
v, φ

〉
β,N. (2.22)

Let

Ĩβ,Nv(t) =
N∑
l=0

ṽNβ,lL̃
(β)
l (t). (2.23)

Then, with the aid of (2.16) and (2.22), we derive that

ṽNβ,l = β
〈
Ĩβ,Nv, L̃(β)

l

〉
= β
〈
Ĩβ,Nv, L̃(β)

l

〉
β,N

= β
〈
v, L̃(β)

l

〉
β,N

. (2.24)

There is a close relation between Iβ,N and Ĩβ,N . From the previous two equalities, it follows
that

e(1/2)βtĨβ,Nv(t) =
N∑
l=0

ṽNβ,lL
(β)
l (t) = β

N∑
l=0

(
v, L̃(β)

l

)
β,N

L(β)
l (t) = β

N∑
l=0

(
e(1/2)βtv,L(β)

l

)
ωβ,N

L(β)
l (t).

(2.25)
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This with (2.14) implies

Ĩβ,Nv(t) = e−(1/2)βtIβ,N
(
e(1/2)βtv(t)

)
. (2.26)

Consider the following delay differential equation:

d

dt
W(t) = f(W(t),W(t − τ)), t > 0,

W(t) = Φ(t), −τ ≤ t ≤ 0.

(2.27)

For any fixed positive integerN, we define

U(t) =W

⎛
⎝ tτ

tN
β,N

⎞
⎠, (2.28)

and denote

τ̂ =
τ

tN
β,N

. (2.29)

Then system of (2.27) can be transformed into

d

dt
U(t) = τ̂f

(
U(t), U

(
t − tNβ,N

))
, t > 0,

U(t) = Φ(tτ̂), −tNβ,N ≤ t ≤ 0.

(2.30)

We suppose thatU(t) is sufficiently continuously differentiable for t ≥ 0. Let

GN
β,1(t) =

d

dt
Ĩβ,NU(t) − Ĩβ,N d

dt
U(t). (2.31)

Then we obtain that

d

dt
Ĩβ,NU

(
tNβ,k

)
= τ̂f

(
U
(
tNβ,k

)
, U
(
tNβ,k − tNβ,N

))
+GN

β,1

(
tNβ,k

)
, 1 ≤ k ≤N. (2.32)
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Now we derive an explicit expression for the left side of (2.32). Let ŨN
β,l be the coefficients of

Ĩβ,NU(t) in terms of L̃(β)
l
(t). Due to (2.15), we have

d

dt
Ĩβ,NU(t) =

N∑
l=0

ŨN
β,l

d

dt
L̃(β)
l (t) = −1

2
β
N∑
l=1

ŨN
β,l

(
2
l−1∑
m=0

L̃(β)
m (t) + L̃(β)

l (t)

)

− 1
2
βŨN

β,0L̃
(β)
0 (t).

(2.33)

This equality and (2.24) imply that

d

dt
Ĩβ,NU

(
tNβ,k

)
= − 1

2
β2

N∑
l=1

⎛
⎝ N∑

j=0

U
(
tNβ,j

)
L̃(β)
l

(
tNβ,j

)
ω̃N
β,j

⎞
⎠
(
2
l−1∑
m=0

L̃(β)
m

(
tNβ,k

)
+ L̃(β)

l

(
tNβ,k

))

− 1
2
β2

⎛
⎝ N∑

j=0

U
(
tNβ,j

)
L̃(β)

0

(
tNβ,j

)
ω̃N
β,j

⎞
⎠L̃(β)

0

(
tNβ,k

)
.

(2.34)

Denote for 0 ≤ j ≤N and 1 ≤ k ≤N

aNβ,k,j = −1
2
β2ω̃N

β,j

(
N∑
l=1

L̃(β)
l

(
tNβ,j

)(
2
l−1∑
m=0

L̃(β)
m

(
tNβ,k

)
+ L̃(β)

l

(
tNβ,k

))
+ L̃(β)

0

(
tNβ,j

)
L̃(β)

0

(
tNβ,k

))
.

(2.35)

Then

d

dt
Ĩβ,NU

(
tNβ,k

)
=

N∑
j=0

aNβ,k,jU
(
tNβ,j

)
. (2.36)

Denote

U
N =

(
U(0), U

(
tNβ,1

)
, . . . , U

(
tNβ,N

))T
,

F
N
β

(
U
N
)
=
(
τ̂f
(
U
(
tNβ,0

)
, φ0

)
, τ̂f

(
U
(
tNβ,1

)
, φ1

)
, . . . , τ̂f

(
U
(
tNβ,N

)
, φN

))T
,

φi = Φ
(
τ̂
(
tNβ,i − tNβ,N

))
, i = 0, 1, . . . ,N,
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G
N
β,1 =

(
GN
β,1

(
tNβ,1

)
, GN

β,1

(
tNβ,2

)
, . . . , GN

β,1

(
tNβ,N

))T
,

A
N
β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aN
β,1,0 aNβ,1,1 · · · aNβ,1,N

aNβ,2,0 aNβ,2,1 · · · aNβ,2,N
...

... · · · ...
...

... · · · ...
aN
β,N,0 aN

β,N,1 · · · aN
β,N,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.37)

Then, we obtain

A
N
β U

N = F
N
β

(
U

N

)
+ G

N
β,1,

U(0) = Φ(0).
(2.38)

We now approximateU(t) by uN(t) ∈ QN(0,∞). Clearly, Ĩβ,NuN(t) = uN(t). Furthermore, we
set

uN =
(
uN(0), uN

(
tNβ,1

)
, . . . , uN

(
tNβ,N

))T
,

F
N
β

(
uN
)
=
(
τ̂f
(
uN
(
tNβ,0

)
, φ0

)
, τ̂f

(
uN
(
tNβ,1

)
, φ1

)
, . . . , τ̂f

(
uN
(
tNβ,N

)
, φN

))T
.

(2.39)

By replacing U
N by uN and neglecting G

N
β,1 in (2.38), we derive a new integration process by

using the modified Laguerre functions. It is to seek uN such that

A
N
β uN = F

N
β

(
uN
)
,

uN(0) = Φ(0).
(2.40)

The global numerical solution is

uN(t) =
N∑
l=0

ũNβ,lL̃
(β)
l (t), t ≥ 0, (2.41)

with

ũNβ,l = β
(
uN, L̃(β)

l

)
β,N

= β
N∑
j=0

uN
(
tNβ,j

)
L̃(β)
l

(
tNβ,j

)
ω̃N
β,j . (2.42)
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Let

ûN(t) =

⎧⎪⎨
⎪⎩
uN(t) ∈ QN(0,∞), t ∈ (0,∞),

Φ(tτ̂), t ∈
[
−tNβ,N, 0

]
.

(2.43)

Then (2.40) is equivalent to the system

d

dt
ûN(t) = τ̂f

(
ûN(t), ûN

(
t − tNβ,N

))
, t > 0,

ûN(t) = Φ(tτ̂), −tNβ,N ≤ t ≤ 0.
(2.44)

3. Convergence Analysis

In this section, we estimate the global error of numerical solution. For any rth continuously
differentiable function v(t), we set

R(1)
N,r,β(v) = β

−1
∥∥∥∥t(r−1)/2d

rv

dtr

∥∥∥∥
ωβ

+
(
1 + β−(1/2)

)
(lnN)1/2

∥∥∥∥tr/2d
rv

dtr

∥∥∥∥
ωβ

,

R(2)
N,r,β(v) = β−1

∥∥∥∥∥t(r+1)/2
dr+2v

dtr+2

∥∥∥∥∥
ωβ

+N−1/2
∥∥∥∥∥t(r+1)/2

dr+2v

dtr+2

∥∥∥∥∥
ωβ

+
(
1 + β−1/2

)
(lnN)1/2

∥∥∥∥∥t(r+1)/2
dr+2v

dtr+2

∥∥∥∥∥
ωβ

.

(3.1)

The following lemmas will play a key role in obtaining our main results.

Lemma 3.1 (see [19]). If v ∈ L2
ωβ
(0,∞), then for an integer r ≥ 1,

∥∥Iβ,Nv − v∥∥
ωβ

≤ c(βN)1/2−r/2R(1)
N,r,β(v). (3.2)

Lemma 3.2 (see [19]). If v ∈ L2
ωβ
(0,∞), then for an integer r ≥ 1,

∥∥∥∥ ddt
(
Iβ,Nv − v)

∥∥∥∥
ωβ

≤ c(βN)1/2−r/2R(2)
N,r,β(v). (3.3)

Theorem 3.3. Suppose that there exists a real number γ0 > 0 such that

(
f(u1, v) − f(u2, v)

)
(u1 − u2) ≤ −γ0|u1 − u2|2, ∀u1, u2 ∈ R, (3.4)
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and R(1)
N,r,β(U), R(2)

N,r,β(U), and R(1)
N,r,β(dU/dt) are finite. Then

∥∥∥U − ûN
∥∥∥ ≤ c

γ0τ̂

(
βN

)1/2−r/2

×
((
γ0τ̂ + β

)R(1)
N,r,β

(
e(1/2)βtU

)
+ R(2)

N,r,β

(
e(1/2)βtU

)
+ R(1)

N,r,β

(
e(1/2)βt

dU

dt

))
.

(3.5)

Proof. Let EN(t) = ûN(t) − Ĩβ,NU(t). Subtracting (2.32) from (2.44), we get

d

dt
EN
(
tNβ,k

)
= GN

β,2

(
tNβ,k

)
−GN

β,1

(
tNβ,k

)
, 1 ≤ k ≤N,

EN(0) = 0,

(3.6)

where

GN
β,2

(
tNβ,k

)
= τ̂
[
f
(
uN
(
tNβ,k

)
, uN

(
tNβ,k − tNβ,N

))
− f
(
Iβ,NU

(
tNβ,k

)
, U
(
tNβ,k − tNβ,N

))]
. (3.7)

We now multiply (3.6) by 2EN(tN
β,k

)ω̃N
β,k

and sum the result for 1 ≤ k ≤ N. Due to EN(0) = 0,
we obtain that

2
〈
EN,

d

dt
EN
〉
β,N

= AN
β,1 +A

N
β,2, (3.8)

where

AN
β,1 = −2

〈
GN
β,1, E

N
〉
β,N

, AN
β,2 = 2

〈
GN
β,2, E

N
〉
β,N

. (3.9)

Using (2.20) and the Cauchy inequality, we deduce that

2
〈
EN,

d

dt
EN
〉
β,N

= 2
〈
EN,

d

dt
EN
〉

=
∣∣∣EN(∞)

∣∣∣2,
∣∣∣AN

β,1

∣∣∣ ≤ 2
∥∥∥GN

β,1

∥∥∥
β,N

∥∥∥EN
∥∥∥
β,N

= 2
∥∥∥GN

β,1

∥∥∥
∥∥∥EN

∥∥∥.
(3.10)

Thus (3.8) reads

∣∣∣EN(∞)
∣∣∣2 ≤ AN

β,2 + 2
∥∥∥GN

β,1

∥∥∥
∥∥∥EN

∥∥∥. (3.11)
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Since there exists γ0 > 0 such that

(
f(u1, v) − f(u2, v)

)
(u1 − u2) ≤ −γ0|u1 − u2|2, ∀u1, u2 ∈ R,

AN
β,2 ≤ −2γ0

∥∥∥EN
∥∥∥2,

(3.12)

where γ0 = γ0τ̂ . Therefore

∣∣∣EN(∞)
∣∣∣2 + γ0

∥∥∥EN
∥∥∥2 ≤ 1

γ0

∥∥∥GN
β,1

∥∥∥2. (3.13)

Hence it suffices to estimate ‖GN
β,1‖2. With the aid of (2.26), Lemmas 3.1 and 3.2, we deduce

that, for r ≥ 1,

∥∥∥Ĩβ,Nv − v
∥∥∥ =

∥∥∥Iβ,N
(
e(1/2)βtv

)
− e(1/2)βtv

∥∥∥
ωβ

≤ c(βN)1/2−r/2R(1)
N,r,β

(
e(1/2)βtv

)
. (3.14)

On the other hand,

d

dt

(
Ĩβ,Nv − v

)
= − 1

2
βe−(1/2)βt

(
Iβ,N

(
e(1/2)βtv

)
− e(1/2)βtv

)

+ e−(1/2)βt
d

dt

(
Iβ,N

(
e(1/2)βtv

)
− e(1/2)βtv

)
.

(3.15)

It follows from the above result that for r ≥ 1

∥∥∥∥ ddt
(
Ĩβ,Nv − v

)∥∥∥∥ ≤ c(βN)1/2−r/2(βR(1)
N,r,β

(
e(1/2)βtv

)
+ R(2)

N,r,β

(
e(1/2)βtv

))
. (3.16)

Consequently,

∥∥∥GN
β,1

∥∥∥ ≤
∥∥∥∥ ddt

(
Ĩβ,NU −U

)∥∥∥∥ +
∥∥∥∥ ddtU − Ĩβ,N d

dt
U

∥∥∥∥

≤ c(βN)1/2−r/2
(
βR(1)

N,r,β

(
e(1/2)βtU

)
+ R(2)

N,r,β

(
e(1/2)βtU

)
+ R(1)

N,r,β

(
e(1/2)βt

dU

dt

))
.

(3.17)

Thus, (3.13) implies that

∣∣∣EN(∞)
∣∣∣ + γ1/20

∥∥∥EN
∥∥∥

≤ c

γ
(1/2)
0

(
βN

)(1/2)−(r/2)(
βR(1)

N,r,β

(
e(1/2)βtU

)
+ R(2)

N,r,β

(
e(1/2)βtU

)
+ R(1)

N,r,β

(
e(1/2)βt

dU

dt

))
.

(3.18)
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Furthermore, using (3.14) again, we obtain that, for any β > 0,

∥∥∥U − ûN
∥∥∥ ≤ c

γ0

(
βN

)(1/2)−(r/2)

×
((
γ0 + β

)R(1)
N,r,β

(
e(1/2)βtU

)
+ R(2)

N,r,β

(
e(1/2)βtU

)
+ R(1)

N,r,β

(
e(1/2)βt

dU

dt

))
,

∣∣∣U(∞) − ûN(∞)
∣∣∣ ≤

∣∣∣Ĩβ,NU(∞) −U(∞)
∣∣∣ +
∣∣∣EN(∞)

∣∣∣

≤ 2
∥∥∥Ĩβ,NU −U

∥∥∥1/2
∥∥∥Ĩβ,NU −U

∥∥∥1/2
1

+
∣∣∣EN(∞)

∣∣∣

≤ c
(
βN

)1/2−r/2((
βγ−1/20 + β + 1

)
R(1)
N,r,β

(
e(1/2)βtU

)

+
(
1 + γ−1/20

)
R(2)
N,r,β

(
e(1/2)βtU

)
+ γ−1/20 R(1)

N,r,β

(
e(1/2)βt

dU

dt

))
.

(3.19)

This completes the proof.

Remark 3.4. The norm ‖U‖ is finite as long as that f(u, v) satisfies certain conditions. If f(u, v)
satisfies conditions

〈
f(u1, v) − f(u2, v), u1 − u2

〉 ≤ γ1‖u1 − u2‖2, ∀u1, u2 ∈ R
N,

∥∥f(u, v1) − f(u, v2)∥∥ ≤ γ2‖v1 − v2‖, ∀v1, v2 ∈ R
N,

γ1 < 0, 0 < γ2 < −γ1,
(3.20)

and f(0, 0) = 0, then |U(t)| = O(e−γ∗t), γ∗ > 0, see Tian [5]. Furthermore, if f(u, v) fulfills
some additional conditions, then the norms appearing at the right sides of (3.19) are finite.
Therefore, for certain positive constant c∗ depending only on β,

∥∥∥U − ûN
∥∥∥ +

∣∣∣U(∞) − ûN(∞)
∣∣∣ = c∗

(
1 +

1
γ0

)
(lnN)1/2N1/2−r/2. (3.21)

Consequently, for r > 1, the scheme (2.40) has the global convergence and the spectral
accuracy in L2(0,∞). Moreover, at the infinity, the numerical solution has the same accuracy.
This also indicates that the pointwise numerical error decays rapidly as themodeN increases,
with the convergence rate as c∗(lnN)1/2N1/2−r/2. On the other hand, for any fixed N, the
norm ‖U − ûN‖ is bounded, and so the pointwise numerical error decays automatically as
t → ∞, at least less than cNt

−1/2, cN being a small number. Hence, it is very efficient for
long-time numerical simulations of dynamical systems, especially for stiff problems.
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Remark 3.5. The method proposed is also available for solving systems of delay differential
equations. Let


U(t) =
(
U(1)(t), U(2)(t), . . . , U(m)(t)

)T
,


V (t) =
(
V (1)(t), V (2)(t), . . . , V (m)(t)

)T
,


f
(

U, 
V

)
=
(
f (1)

(

U, 
V

)
, f (2)

(

U, 
V

)
, . . . , f (m)

(

U, 
V

))T
.

(3.22)

We consider the system

d

dt

U(t) = 
f

(

U(t), 
V (t)

)
, t > 0,


U(t) = 
Φ(t), −τ ≤ t ≤ 0.

(3.23)

We approximate 
U(t) by 
uN(t). We can derive a numerical algorithm which is similar to
(2.38). Further, let | 
V |E be the Euclidean norm of 
V . Assume that

(

f
(

Z1, 
V

)
− 
f
(

Z2, 
V

))
·
(

Z1 − 
Z2

)
≤ −γ0

∣∣∣ 
Z1 − 
Z2

∣∣∣2
E
, γ0 > 0. (3.24)

Then we can obtain an error estimate similar to (3.19).

4. Refinement and Numerical Results

In the preceding sections, we introduced an integration process for solving delay differential
equations. Theoretically, their numerical errors with biggerN decrease faster. But in practical
computation, it is not convenient to use themwith very bigN. On the other hand, the distance
between the adjacent interpolation nodes tN

β,j
and tN

β,j−1 increases fast as N and j increase,
especially for the nodes which are located far from the origin point t = 0. This is one of
advantages of the Laguerre interpolation approximation, since we can use moderate mode
N to evaluate the unknown function at large t, but it is also its shortcoming. In fact, if the
exact solution oscillates or changes very rapidly between two large adjacent interpolation
nodes, then we may lose information about the structure of exact solution between those
nodes. To remedy this deficiency, we may refine the numerical results as follows.

Let N be a moderate positive integer, β > 0, and the set of nodes {tN0,β,j}Nj=0 = {tNβ,j}Nj=0.
We use (2.40)with the interpolation nodes {tN0,β,j}Nj=0 to obtain the original numerical solution

u(0,N)(t) = uN(t), 0 ≤ t ≤ tN0,β,N. (4.1)
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Figure 1: Exact solution.

Then we take tN1,β,0 = t
N
0,β,N and consider the following delay differential equation:

d

dt
U(1)(t) = τ̂f

(
U(1)(t), U(1)

(
t − tNβ,N

))
, t > tN1,β,0,

U(1)(t) = u(0,N)(t), tN1,β,0 − τ ≤ t ≤ tN1,β,0.
(4.2)

We get the refined numerical solution u(1,N)(t) for tN1,β,0 ≤ t ≤ tN1,β,N . Repeating the above

procedure, we obtain the refined numerical solution u(m,N)(t) for tN
m,β,0 ≤ t ≤ tNm,β,N .

5. Numerical Results

We consider the following system of four homogeneous delay differential equations:

ẏ1(t) = y3(t),

ẏ2(t) = y4(t),

ẏ3(t) = − 2ny2(t) +
(
1 + n2

)
(−1)ny1(t − π),

ẏ4(t) = − 2ny1(t) +
(
1 + n2

)
(−1)ny2(t − π).

(5.1)
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Figure 2: Exact solution.

N = 15, bt = 10
0.5

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5
0 0.5 1 1.5 2 2.5 3 3.5

t

y
1(
t)

an
d
Y

1(
t)

y1(t)
Y1(t)

Figure 3: Numerical solution and exact solution.

The initial functions and solutions are given by

y1(t) = sin(t) cos(nt),

y2(t) = cos(t) sin(nt),

y3(t) = ẏ1(t),

y4(t) = ẏ2(t), t ∈ [−π,∞).

(5.2)
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Figure 4: Numerical solution and exact solution.
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Figure 5: Numerical solution of refined method and exact solution.

For n = 1, Figures 1 and 2 show plots of the exact solution y1(t) and y3(t) on [0, 2π], which
controls the frequency of oscillation in the initial data and solution. Figures 3 and 4 are
the exact and numerical solution on [0, π]withN = 15, β = 10. The refined numerical results
are given in Figures 5 and 6 on [0, 3π].

The numerical experiments show that our numerical integration processes are efficient
for numerically solving delay differential equations.
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Figure 6: Numerical solution of refined method and exact solution.

6. Conclusions

In this paper, we proposed new integration processes of delay differential equations, which
have fascinating advantages. On the one hand, the suggested integration processes are based
on the modified Laguerre functions on the half line; they provide the global numerical
solution and the global convergence naturally and thus are available for long-time numerical
simulations of dynamical systems. On the other hand, benefiting from the rapid convergence
of the modified Laguerre functions, these processes possess the spectral accuracy. In
particular, the numerical results fit the exact solutions well at the interpolation nodes.
Furthermore, We also developed a technique for refinement of modified Laguerre-Radau
interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed
method and coincide well with analysis.
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