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The main purpose of this paper is to investigate the characteristic functions and Borel exceptional
values of E-valued meromorphic functions from the CR = {z : |z| < R}, 0 < R ≤ +∞ to an infinite-
dimensional complex Banach space E with a Schauder basis. Results obtained extend the relative
results by Xuan, Wu and Yang, Bhoosnurmath, and Pujari.

1. Introduction and Preliminaries

In 1980s, Ziegler [1] succeeded in extending theNevanlinna theory of meromorphic functions
to the vector-valued meromorphic functions in finite dimensional spaces. Later, Hu and
Yang [2] established the Nevanlinna theory of meromorphic mappings with the range in
an infinite-dimensional Hilbert spaces. In 2006, C.-G. Hu and Q. Hu [3] established the
Nevanlinna’s first and second main theorems of meromorphic mappings with the range in
an infinite-dimensional Banach spaces E with a Schauder basis. Recently, Xuan and Wu [4]
established the Nevanlinna’s first and second main theorems for an E-valued meromorphic
mapping from a generic domain D ⊆ C to an infinite-dimensional Banach spaces E with a
Schauder basis.

In [4], Xuan and Wu also proved Chuang’s inequality (see, e.g., [5]) of E-valued
meromorphic mapping f(z) in the whole complex plane, which compares the relationship
between T(r, f) and T(r, f ′), and also obtained that the order and the lower order of E-valued
meromorphic mapping f(z) and those of its derivative f ′(z) are the same. In Section 2, we
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shall prove that Chuang’s inequality is valid for E-valued meromorphic mapping f(z) in the
unit disc and prove that for any infinite-order E-valued meromorphic function f(z) defined
in the unit disc has the same Xiong’s proximate order as its derivative f ′(z).

In [5], Yang obtained much stronger results than those of Gopalakrishna and
Bhoosnurmath [6] for the Borel exceptional values of meromorphic functions dealing with
multiple values. In Section 3, we shall extend Le Yang’s result to E-valued meromorphic
functions of finite and infinite orders in

CR := {z : |z| < R}, 0 < R ≤ +∞. (1.1)

In the following, we introduce the definitions, notations, and results of [3, 4] which
will be used in this paper.

Let (E, ‖ • ‖) be an infinite dimension complex Banach space with Schauder basis {ej}
and the norm ‖ • ‖. Thus, an E-valued meromorphic function f(z) defined in CR, 0 < R ≤ +∞
can be written as

f(z) =
(
f1(z), f2(z), . . . , fk(z), . . .

)
. (1.2)

Let En be an n-dimensional projective space of E with a basis {ej}n1 . The projective operator
Pn : E → En is a realization of En associated with basis.

The elements of E are called vectors and are usually denoted by letters from the
alphabet: a, b, c, . . .. The symbol 0 denotes the zero vector of E. We denote vector infinity,
complex number infinity, and the norm infinity by ∞̂,∞, and +∞, respectively. A vector-
valued mappings is called holomorphic (meromorphic) if all fj(z) are holomorphic (some of
fj(z) are meromorphic). The jth derivative j = 1, 2, . . . of f(z) is defined by

f (j)(z) =
(
f
(j)
1 (z), f (j)

2 (z), . . . , f (j)
k (z), . . .

)
. (1.3)

A point z0 ∈ Cr is called a “pole” (or ∞̂ point) of

f(z) =
(
f1(z), f2(z), . . . , fk(z), . . .

)
(1.4)

if z0 is a pole (or ∞ point) of at least one of the component functions fk(z) (k = 1, 2, . . .). A
point z0 ∈ Cr is called a “zero” of f(z) = (f1(z), f2(z), . . . , fk(z), . . .) if z0 is a zero of all the
component functions fk(z) (k = 1, 2, . . .). A point z0 ∈ Cr is called a pole or an ∞̂-point of
f(z) of multiplicity q ∈ N

+, meaning that in such a point z0 at least one of the meromorphic
component functions fj(z) has a pole of this multiplicity in the ordinary sense of function
theory. A point z0 ∈ Cr is called a zero of f(z) of multiplicity q ∈ N

+, meaning that in such a
point z0 all component functions fj(z) vanish, each with at least this multiplicity.
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Let n(r, f) or n(r, ∞̂) denote the number of poles of f(z) in |z| ≤ r and let n(r, a, f)
denote the number of a-points of f(z) in |z| ≤ r, counting with multiplicities. Define the
volume function associated with E-valued meromorphic function f(z) by

V
(
r, ∞̂, f

)
= V
(
r, f
)
=

1
2π

∫

Cr

log
∣∣
∣
∣
r

ξ

∣∣
∣
∣Δ log

∥
∥f(ξ)

∥
∥dx ∧ dy, ξ = x + iy,

V
(
r, a, f

)
=

1
2π

∫

Cr

log
∣
∣
∣
∣
r

ξ

∣
∣
∣
∣Δ log

∥
∥f(ξ) − a

∥
∥dx ∧ dy, ξ = x + iy,

(1.5)

and the counting function of finite or infinite a-points by

N
(
r, f
)
= n
(
0, f
)
log r +

∫ r

0

n
(
t, f
) − n

(
0, f
)

t
dt, (1.6)

N(r, ∞̂) = n(0, ∞̂) log r +
∫ r

0

n(t, ∞̂) − n(0, ∞̂)
t

dt, (1.7)

N
(
r, a, f

)
= n
(
0, a, f

)
log r +

∫ r

0

n
(
t, a, f

) − n
(
0, a, f

)

t
dt, (1.8)

respectively. Next, we define

m
(
r, f
)
= m
(
r, ∞̂, f

)
=

1
2π

∫2π

0
log+

∥∥∥f
(
reiθ
)∥∥∥dθ,

m(r, a) = m
(
r, a, f

)
=

1
2π

∫2π

0
log+

1
∥∥f
(
reiθ
) − a

∥∥dθ,

T
(
r, f
)
= m
(
r, f
)
+N

(
r, f
)
.

(1.9)

Let n(r, f) or n(r, ∞̂) denote the number of poles of f(z) in |z| ≤ r, and let n(r, a, f) denote
the number of a-points of f(z) in |z| ≤ r, ignoring multiplicities. Similarly, we can define the
counting functions N(r, f), N(r, ∞̂), and N(r, a, f) of n(r, f), n(r, ∞̂), and n(r, a, f).

If f(z) is an E-valued meromorphic function in the whole complex plane, then the
order and the lower order of f(z) are defined by

λ
(
f
)
= lim sup

r→+∞

log+T
(
r, f
)

log r
,

μ
(
f
)
= lim inf

r→+∞
log+T

(
r, f
)

log r
.

(1.10)
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If f(z) is an E-valued meromorphic function in CR, 0 < R < +∞, then the order and
the lower order of f(z) are defined by

λ
(
f
)
= lim sup

r→R−

log T
(
r, f
)

log+(1/(R − r))
,

μ
(
f
)
= lim inf

r→R−
log T

(
r, f
)

log+(1/(R − r))
.

(1.11)

Lemma 1.1. Let B(x) be a positive and continuous function in [0,+∞) which satisfies
lim supx→+∞(logB(x)/ logx) = ∞. Then there exists a continuously differentiable function ρ(x),
which satisfies the following conditions.

(i) ρ(x) is continuous and nondecreasing for x ≥ x0 (x0 > 0) and tends to +∞ as x → +∞.

(ii) The functionU(x) = xρ(x) (x ≥ x0) satisfies the following:

lim
x→+∞

logU(X)
logU(x)

= 1, X = x +
x

logU(x)
. (1.12)

(iii) lim supx→+∞(logB(x)/ logU(x)) = 1.

Lemma 1.1 is due to K. L. Hiong (also Qinglai Xiong) and ρ(x) is called the proximate
order of Hiong. A simple proof of the existence of ρ(r) was given by Chuang [7]. Suppose
that f(z) is an E-valued meromorphic function of infinite order in the unit disk C1. Let x =
1/(1 − r) and X = 1/(1 − R). From (ii) and (iii) in Lemma 1.1, we have

lim
r→ 1−

logU(1/(1 − R))
logU(1/(1 − r))

= 1, R =
r logU(1/(1 − r)) + 1
logU(1/(1 − r)) + 1

,

lim sup
x→ 1−

log T
(
r, f
)

logU(1/(1 − r))
= 1.

(1.13)

Here, the functions ρ(1/(1 − r)) and U(1/(1 − r)) are called the proximate order and type
function of f(z), respectively.

Definition 1.2. An E-valued meromorphic function f(z) in CR, 0 < R ≤ +∞ is of compact
projection, if for any given ε > 0, ‖Pn(f(z)) − f(z)‖ < ε has sufficiently larg n in any fixed
compact subset D ⊂ CR.

Throughout this paper, we say that f(z) is an E-valued meromorphic function
meaning that f(z) is of compact projection. C.-G. Hu and Q. Hu [3] established the following
Nevanlinna’s first and second main theorems of E-valued meromorphic functions.
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Theorem 1.3. Let f(z) be a nonconstant E-valued meromorphic function in CR, 0 < R ≤ +∞. Then
for 0 < r < R, a ∈ E, f(z)/≡a,

T
(
r, f
)
= V (r, a) +N(r, a) +m(r, a) + log+

∥
∥cq(a)

∥
∥ + ε(r, a). (1.14)

Here, ε(r, a) is a function satisfying that

|ε(r, a)| ≤ log+‖a‖ + log 2, ε(r, 0) ≡ 0, (1.15)

and cq(a) ∈ E is the coefficient of the first term in the Laurent series at the point a.

Theorem 1.4. Let f(z) be a nonconstant E-valued meromorphic function in CR, 0 < R ≤ +∞ and
a[k] ∈ E ∪ {∞̂} (k = 1, 2, . . . , q) be q ≥ 3 distinct points. Then for 0 < r < R,

(
q − 2

)
T
(
r, f
) ≤

q∑

k=1

[
V
(
r, a[k]

)
+N

(
r, a[k]

)]
+ S
(
r, f
)
. (1.16)

If R = +∞, then

S
(
r, f
)
= O
(
log T

(
r, f
)
+ log r

)
(1.17)

holds as r → +∞without exception if f(z) has finite order and otherwise as r → +∞ outside
a set J of exceptional intervals of finite measure

∫
J dr < +∞. If the order of f(z) is infinite and

ρ(r) is the proximate order of f(z), then

S
(
r, f
)
= O
(
logU(r)

)
(1.18)

holds as r → +∞without exception.
If 0 < R < +∞, then

S
(
r, f
)
= O

(
log T

(
r, f
)
+ log

1
R − r

)
(1.19)

holds as r → R without exception if f(z) has finite order and otherwise as r → R outside a
set J of exceptional intervals of finite measure

∫
J d((r/(R − r)) < +∞.

In all cases, the exceptional set J is independent of the choice of a[k].
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2. Characteristic Function of E-Valued Meromorphic Functions in
the Unit Disc C1

In [4], Xuan and Wu proved the following.

Theorem A. Let f(z) (z ∈ C) be a nonconstant E-valued meromorphic function and f(0)/= ∞̂.
Then for τ > 1 and 0 < r < R, one has

T
(
r, f
)
< CτT

(
τr, f ′) + log+τr + 4 + log+

∥
∥f(0)

∥
∥, (2.1)

where Cτ is a positive constant.

Theorem B. Let f(z) (z ∈ C) be a nonconstant E-valued meromorphic function. Then we have

T
(
r, f ′) < 2T

(
r, f
)
+O
(
log r + log+T

(
r, f
))
. (2.2)

Theorem C. For a nonconstant E-valued meromorphic function f(z) (z ∈ C) of order λ(f) < +∞,
one has λ(f) = λ(f ′), μ(f) = μ(f ′).

In this section, we shall prove that Theorems A, B, and C are valid for E-valued
meromorphic function in the unit disc C1.

Lemma 2.1. Let f(z) be an E-valued meromorphic function defined in the unit disc, and f(0)/= ∞̂.
If 0 < R < R′ < 1, then there exists a θ0 ∈ [0, 2π), such that for any 0 ≤ r ≤ R, one has

log+
∥∥∥f
(
reiθ0

)∥∥∥ ≤ R′ + R

R′ − R
m
(
R′, f

)
+ n
(
R′, f

)
log 4 +N

(
R′, f

)
. (2.3)

Lemma 2.2. Let f(z) be an E-valued meromorphic function defined in the unit disc, and let 0 < R <
R′ < R′′ < 1. Then there exists a positive number R ≤ ρ ≤ R′, such that for |z| = ρ, one has

log+
∥∥∥f
(
reiθ0

)∥∥∥ ≤ R′′ + R′

R′′ − R′m
(
R′′, f

)
+ n
(
R′′, f

)
log

8eR′′

R′ − R
. (2.4)

Lemmas 2.1 and 2.2 are due to Xuan and Wu [4] for the E-valued meromorphic
function defined in the whole complex plane. From the proof of Xuan and Wu [4], we know
that Lemmas 2.1 and 2.2 are also valid for the E-valued meromorphic function defined in the
unit disc C1.

Lemma 2.3. Let f(z) (z ∈ C1) be a nonconstant E-valued meromorphic function and f(0)/= ∞̂.
Suppose that h(r) ≥ 1, R = (1 + rh(r))/(1 + h(r)), then when r sufficiently tends to 1, one has

n
(
r, f
) ≤ 6h(r)

1 − r
N
(
R, f
)
. (2.5)
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Proof.

N
(
R, f
)
= n
(
0, f
)
log r +

∫R

0

n
(
t, f
) − n

(
0, f
)

t
dt =

∫R

0

n
(
t, f
)

t
dt

≥
∫R

r

n
(
t, f
)

t
dt ≥ n

(
r, f
)
log

R

r

= n
(
r, f
)
log
(
1 +

1 − r

r(1 + h(r))

)
≥ n
(
r, f
)
(

1 − r

r(1 + h(r))
− ((1 − r)/r(+h(r)))2

2

)

≥ n
(
r, f
)
(
(1 − r)/r(1 + h(r))

2

)
≥ n
(
r, f
) 1 − r

6h(r)
.

(2.6)

Lemma 2.4 (see [4]). Let f(z) (z ∈ CR, 0 < R ≤ +∞) be a nonconstant E-valued meromorphic
function and f(0)/= ∞̂, and L a curve from the origin along the segment arg z = θ0 to ρeiθ0 , and along
{|z| = ρ < r} turn a rotation to ρeiθ0 . Then for any {|z| = r ≤ ρ}, one has

log+
∥∥f(z)

∥∥ ≤ log+M +O(1), (2.7)

whereM = max{‖f ′(z)‖, z ∈ L}.

Lemma 2.5 (see [3]). Let f(z) be a nonconstant E-valued meromorphic function in C1. Then for
0 < r < 1,

1
2π

∫2π

0
log+

∥∥f ′(reiθ
)∥∥

∥∥f
(
reiθ
)∥∥ dθ < K

(
log T

(
r, f
)
+ log

1
1 − r

)
, (2.8)

where K is a sufficiently large constant.

We are now in the position to establish the main results of this section.

Theorem 2.6. Let f(z) (z ∈ C1) be a nonconstant E-valued meromorphic function and f(0)/= ∞̂.
Then for ε > 1 and any real function h(x) ≥ 1, when r sufficiently tend to 1, one has

T
(
r, f
)
<

ch1+ε(r)

(1 − r)1+ε
T
(
R, f ′), R =

1 + rh(r)
1 + h(r)

. (2.9)
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Proof. Denote R1 = (R + 2r)/3, R2 = (r + 2R)/3, we can get

r < R1 < R2 < R, R1 − r = R2 − R1 = R − R2 =
R − r

3
,

R =
1 − 3R2h(r)
1 + 3h(r)

, R2 + R1 = r + R < 2, 1 − R2 =
(1 − r)(1 + 3h(r))

3(1 + h(r))
≥ 1 − r

2
;

R − r =
1 − r

1 + h(r)
≥ 1 − r

2h(r)
.

(2.10)

Applying Lemma 2.1 to f ′(z) and combining Lemma 2.3, we can find a real number θ0 ∈
[0, 2π) such that for any 0 ≤ t ≤ R1, one has

log+
∥
∥∥f ′
(
teiθ0
)∥∥∥ ≤ R2 + R1

R2 − R1
m
(
R2, f

′) + n
(
R2, f

′) log 4 +N
(
R2, f

′)

≤
(

6
R − r

+
6h(r)
1 − R2

log 4 + 1
)
T
(
R2, f

′)

≤
(
6 + 6h(r)
1 − r

+
12h(r)
1 − r

log 4 +
1 − r

1 − r

)
T
(
R, f ′)

≤ 6 + 6h(r) + 24h(r) + 1 − r

1 − r
T
(
R, f ′) ≤ 40h(r)

1 − r
T
(
R, f ′).

(2.11)

In view of Lemma 2.2, there is a ρ ∈ [r, R1] such that for any z ∈ {|z| = ρ}, one has

log+
∥∥f ′(z)

∥∥ ≤ R2 + R1

R2 − R1
m
(
R2, f

′) + n
(
R2, f

′) log
8eR2

R1 − R

≤
(

6
R − r

+
6h(r)
1 − R2

log
48eh(r)
1 − r

)
T
(
R2, f

′)

≤
(
6 + 6h(r)
1 − r

+
12h(r)
1 − r

log
144h(r)
1 − r

)
T
(
R, f ′)

≤
(
12h(r)
1 − r

(
9 + log

h(r)
1 − r

))
T
(
R, f ′)

≤
(
12h(r)
1 − r

(
9 +
(
h(r)
1 − r

)ε))
T
(
R, f ′)

≤ 120
(
h(r)
1 − r

)1+ε

T
(
R, f ′).

(2.12)

From the origin along the segment arg z = θ0 to ρeiθ0 and along {|z| = ρ}, turn a rotation to
ρeiθ0 . We denote this curve by L. In virtue of Lemma 2.4, we have

log+
∥∥f(z)

∥∥ ≤ log+M +O(1) (2.13)
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holds for any {|z| = r ≤ ρ}, where M = max{‖f ′(z)‖, z ∈ L}. In virtue of (2.11), (2.12), and
(2.13), we have

m
(
r, f
) ≤ m

(
ρ, f
) ≤ m

(
ρ, f ′) ≤ 1

2π

∫2π

0
log+Mdθ ≤ 121

(
h(r)
1 − r

)1+ε

T
(
R, f ′). (2.14)

Hence,

T
(
r, f
)
= m
(
r, f
)
+N

(
r, f
) ≤ m

(
r, f
)
+ 2N

(
r, f ′) ≤ 123

(
h(r)
1 − r

)1+ε

T
(
R, f ′). (2.15)

Theorem 2.7. Let f(z) (z ∈ C1) be a nonconstant E-valued meromorphic function and f(0)/= 0, ∞̂.
Then for any 0 < r < R < 1, one has

T
(
r, f ′) < 2T

(
r, f
)
+O

(
log+

1
1 − r

+ log+T
(
r, f
)
)
. (2.16)

Proof. By Lemma 2.5, we have

T
(
r, f ′) = m

(
r, f ′) +N

(
r, f ′)

≤ m
(
r, f
)
+m

(
r,
f ′

f

)
+ 2N

(
r, f
)

≤ 2T
(
r, f
)
+m

(
r,
f ′

f

)

≤ 2T
(
r, f
)
+O

(
log+

1
1 − r

+ log+T
(
r, f
)
)
.

(2.17)

Theorem 2.8. For a nonconstant E-valued meromorphic function f(z) (z ∈ C1) of order λ(f) <
+∞, one has λ(f) = λ(f ′), μ(f) = μ(f ′).

Theorem 2.8 only discussed the E-valued meromorphic function of finite order. In fact,
for any E-valued meromorphic function of infinite order, we have the following.

Theorem 2.9. If f(z) (z ∈ C1) is a nonconstant E-valued meromorphic function of order λ(f) =
+∞, then the proximate orders of f(z) and f ′(z) are the same.

Proof. Let h(r) = logU(1/(1 − r)), in view of Theorems 2.6 and 2.7, we can easily derive
Theorem 2.9.
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3. E-Valued Borel Exceptional Values of Meromorphic Functions in CR

Some definitions in this section can be found in [8].

Definition 3.1. Let f(z) (z ∈ CR, 0 < R ≤ +∞) be an E-valued meromorphic function and
a ∈ E ∪ {∞̂}, if k is a positive integer, let nk(r, f) or nk(r, ∞̂) denote the number of distinct
poles of f(z) of order ≤ k in |z| ≤ r, and let nk(r, a) denote the number of distinct a-points of
f(z) of order ≤ k in |z| ≤ r. Similarly, we can define the counting functionsNk(r, f),Nk(r, ∞̂),
and Nk(r, a) of nk(r, f), nk(r, ∞̂), and nk(r, a).

Definition 3.2. Let f(z) (z ∈ CR, 0 < R ≤ +∞) be an E-valued meromorphic function and
a ∈ E ∪ {∞̂}. If R = +∞, we define

ρk
(
a, f
)
= lim sup

r→+∞

log+
[
V
(
a, f
)
+Nk(r, a)

]

log r
,

ρ
(
a, f
)
= lim sup

r→+∞

log+
[
V
(
a, f
)
+N(r, a)

]

log r
,

ρ
(
a, f
)
= lim sup

r→+∞

log+
[
V
(
a, f
)
+N(r, a)

]

log r
.

(3.1)

If R < +∞, we define

ρk
(
a, f
)
= lim sup

r→R−

log+
[
V
(
a, f
)
+Nk(r, a)

]

log(1/(R − r))
,

ρ
(
a, f
)
= lim sup

r→R−

log+
[
V
(
a, f
)
+N(r, a)

]

log(1/(R − r))
,

ρ
(
a, f
)
= lim sup

r→R−

log+
[
V
(
a, f
)
+N(r, a)

]

log(1/(R − r))
.

(3.2)

Definition 3.3. Let f(z) (z ∈ CR, 0 < R ≤ +∞) be an E-valued meromorphic function and
a ∈ E ∪ {∞̂} and k is a positive integer, we say that a is an

(i) E-valued evB (exceptional value in the sense of Borel) for f for distinct zeros of
order ≤ k if ρk(a, f) < λ(f);

(ii) E-valued evB for f for distinct zeros if ρ(a, f) < λ(f);

(iii) E-valued evB for f (for the whole aggregate of zeros) if ρ(a, f) < λ(f).

In [5], Yang proved the following result.
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Theorem D. Let f(z) (z ∈ CR, R = +∞) be a meromorphic function with finite order λ > 0 and
kj (j = 1, 2, . . . , q) be q positive integers. a is called a pseudo-Borel exceptional value of f(z) of order
k if

lim sup
r→+∞

log+nk(r, a)
log r

< λ
(
f
)
. (3.3)

If f(z) has q distinct pseudo-Borel exceptional values aj of order kj (j = 1, 2, . . . , q), then

q∑

j=1

(

1 − 1
kj + 1

)

≤ 2. (3.4)

It is natural to consider whether there exists a similar result, if meromorphic function
f is replaced by E-valued meromorphic function f . In this section, we extend the above
theorem to E-valued meromorphic function in CR, 0 < R ≤ +∞.

Theorem 3.4. Let f(z) (z ∈ CR, 0 < R ≤ +∞) be an E-valued meromorphic function with finite
order λ > 0, a[j](j = 1, 2, . . . , q) any system of distinct elements in E ∪ {∞̂}, and kj (j = 1, 2, . . . , q)
any system such that kj is a positive integer or +∞. If a[j] is an E-valued evB for f for distinct zeros
of order ≤ kj (j = 1, 2, . . . , q), then

q∑

j=1

(

1 − 1
kj + 1

)

≤ 2. (3.5)

Proof. By Theorem 1.4, we have

(
q − 2

)
T
(
r, f
) ≤

q∑

j=1

[
V
(
r, a[j]

)
+N

(
r, a[j]

)]
+ S
(
r, f
)

(3.6)

holds for 0 < r < R. For any j = 1, 2, . . . , q, we have

N
(
r, a[j]

)
≤ 1

kj + 1

{
kjNkj

(
r, a[j]

)
+N

(
r, a[j]

)}
,

N
(
r, a[j]

)
≤ T
(
r, f
) − V

(
r, a[j]

)
+O(1).

(3.7)
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Using (3.7) and (7) in (3.6), we get

(
q − 2

)
T
(
r, f
) ≤

q∑

j=1

(

V
(
r, a[j]

)
+

1
kj + 1

{
kjNkj

(
r, a[j]

)
+N

(
r, a[j]

)})

+ S
(
r, f
)

=
q∑

j=1

(

V
(
r, a[j]

)
+

kj

kj + 1
Nkj

(
r, a[j]

)
+

1
kj + 1

N
(
r, a[j]

))

+ S
(
r, f
)

≤
q∑

j=1

kj

kj + 1

(
V
(
r, a[j]

)
+Nkj

(
r, a[j]

))
+

q∑

j=1

1
kj + 1

T
(
r, f
)
+ S
(
r, f
)
.

(3.8)

Therefore, we have

⎡

⎣
q∑

j=1

(

1 − 1
kj + 1

)

− 2

⎤

⎦T
(
r, f
) ≤

q∑

j=1

kj

kj + 1

(
V
(
r, a[j]

)
+Nkj

(
r, a[j]

))
+ S
(
r, f
)
. (3.9)

By hypothesis, we have

ρkj

(
a[j], f

)
< λ, j = 1, 2, . . . , q. (3.10)

If R = +∞, then there is a positive number ρ < λ, such that for j = 1, 2, . . . , q, we can get

V
(
r, a[j]

)
+Nkj

(
r, a[j] ≤ rρ

)
. (3.11)

Using (3.11) to (3.9), we have

⎡

⎣
q∑

j=1

(

1 − 1
kj + 1

)

− 2

⎤

⎦T
(
r, f
) ≤

q∑

j=1

kj

kj + 1
rρ + S

(
r, f
)
. (3.12)

If
∑q

j=1(1− (1/(kj +1))) > 2, then by Theorem 1.4 and (3.12), we can get a contradiction λ ≤ ρ.
So

q∑

j=1

(

1 − 1
kj + 1

)

≤ 2. (3.13)

If R < +∞, then there is a positive number ρ < λ, such that for j = 1, 2, . . . , q, we can get

V
(
r, a[j]

)
+Nkj

(
r, a[j]

)
≤
(

1
R − r

)ρ

. (3.14)



Abstract and Applied Analysis 13

Using (3.14) to (3.9), we have

⎡

⎣
q∑

j=1

(

1 − 1
kj + 1

)

− 2

⎤

⎦T
(
r, f
) ≤

q∑

j=1

kj

kj + 1

(
1

R − r

)ρ

+ S
(
r, f
)
. (3.15)

If
∑q

j=1(1− (1/(kj +1))) > 2, then by Theorem 1.4 and (3.15), we can get a contradiction λ ≤ ρ.
So

q∑

j=1

(

1 − 1
kj + 1

)

≤ 2. (3.16)

From the proof of Theorem 3.4, we can get the following.

Corollary 3.5. Let f(z) (z ∈ CR, 0 < R ≤ +∞) be a nonconstant E-valued meromorphic function.
Then for any system a[j] (j = 1, 2, . . . t) of distinct elements in E ∪ {∞̂} and any system kj (j =
1, 2, . . . , t) such that kj is a positive integer or +∞, we have the following:

(1) if all of a[j] (j = 1, 2, . . . , q) in E, then

⎛

⎝q −
q∑

j=1

1
kj + 1

− 2

⎞

⎠T
(
r, f
) ≤

q∑

j=1

kj

kj + 1

(
V
(
r, a[j], f

)
+Nkj

(
r, a[j], f

))
+ S
(
r, f
)
, (3.17)

(2) if one of a[j] (j = 1, 2, . . . , q) is ∞̂, say a[q] = ∞̂. Then,

⎛

⎝q −
q∑

j=1

1
kj + 1

− 2

⎞

⎠ T
(
r, f
) ≤

q−1∑

j=1

kj

kj + 1

(
V
(
r, a[j], f

)
+Nkj

(
r, a[j], f

))

+
kq

kq + 1
Nkq

(
r, f
)
+ S
(
r, f
)
.

(3.18)

Remark 3.6. If R = +∞, let q = r + t + s and kj ≡ k (j = 1, 2, . . . , r), kj ≡ l (j = r + 1, . . . , r + t)
and kj ≡ m (j = r + t + 1, . . . , r + t + s) in Theorem 3.4. We can get the following result by
Bhoosnurmath and Pujari [8].

Theorem E. Let f(z) (z ∈ CR, 0 < R ≤ +∞) be an E-valued meromorphic function of order
λ(f), 0 < λ(f) ≤ +∞. If there exist distinct elements

a[1], a[2], . . . , a[r]; b[1], b[2], . . . , b[t]; c[1], c[2], . . . , c[s] (3.19)
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in E ∪ {∞̂} such that a[1], a[2], . . . , a[r] are E-valued evB for f for distinct zeros of order ≤ k,
b[1], b[2], . . . , b[t] are E-valued evB for f for distinct zeros of order ≤ l, c[1], c[2], . . . , c[s] are E-valued
evB for f for distinct zeros of order ≤ m, where k, l, and m are positive integers, then

rk

k + 1
+

tl

l + 1
+

sm

m + 1
≤ 2. (3.20)

Bhoosnurmath and Pujari [8] pointed out that Theorem E is valid for 0 ≤ λ(f) ≤ +∞.
In fact, Definition 3.3 is not well in the case of λ(f) = 0. In the case of λ(f) = +∞, a is an
E-valued evB for f if and only if ρk(a, f) is finite. When ρk(a, f) is infinite, we shall give the
following definitions.

Definition 3.7. Let f(z) (z ∈ C) be an E-valued meromorphic function of infinite order and
ρ(r) is a proximate order of f and a ∈ E ∪ {∞̂}. We say that a is an

(i) E-valued evB (exceptional value in the sense of Borel) for f for distinct zeros of
order ≤ k if

lim sup
r→+∞

log+
[
V
(
a, f
)
+Nk(r, a)

]

logU(r)
< 1; (3.21)

(ii) E-valued evB for f for distinct zeros if

lim sup
r→+∞

log+
[
V
(
a, f
)
+N(r, a)

]

logU(r)
< 1; (3.22)

(iii) E-valued evB for f (for the whole aggregate of zeros) if

lim sup
r→+∞

log+
[
V
(
a, f
)
+N(r, a)

]

logU(r)
< 1. (3.23)

Theorem 3.8. Let f(z) (z ∈ C) be an E-valued meromorphic function of infinite order and ρ(r)
is a proximate order of f , a[j](j = 1, 2, . . . , q) any system of distinct elements in E ∪ {∞̂}, and
kj(j = 1, 2, . . . , q) any system such that kj is a positive integer or +∞. If a[j] is an E-valued evB for f
for distinct zeros of order ≤ kj(j = 1, 2 . . . , q), then

q∑

j=1

(

1 − 1
kj + 1

)

≤ 2. (3.24)

Proof. By Corollary 3.5, we have

⎛

⎝q −
q∑

j=1

1
kj + 1

− 2

⎞

⎠T
(
r, f
) ≤

q∑

j=1

kj

kj + 1

(
V
(
r, a[j]

)
+Nkj

(
r, a[j]

))
+ S
(
r, f
)
. (3.25)
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By hypothesis, there exists a positive number η < 1 such that

V
(
r, a[j]

)
+Nkj

(
r, a[j]

)
< Uη(r), j = 1, 2, . . . , q. (3.26)

Using (3.25) to (3.26), we have

⎡

⎣
q∑

j=1

(

1 − 1
kj + 1

)

− 2

⎤

⎦T
(
r, f
) ≤

q∑

j=1

kj

kj + 1
Uη(r) + S

(
r, f
)
. (3.27)

If
∑q

j=1(1 − (1/(kj + 1))) > 2, then by Theorem 1.4 and (3.27), we can get a contradiction. So

q∑

j=1

(

1 − 1
kj + 1

)

≤ 2. (3.28)
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