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We introduce a double-layer code based on the combination of a low-density parity-check (LDPC) code with the multiple-input
multiple-output (MIMO) system, where the decoding can be done in both inner-iteration and outer-iteration manners. The
present code, called low-density MIMO code (LDMC), has a double-layer structure, that is, one layer defines subcodes that are
embedded in each transmission vector and another glues these subcodes together. It supports inner iterations inside the LDPC
decoder and outeriterations between detectors and decoders, simultaneously. It can also achieve the desired design rates due to the
full rank of the deployed parity-check matrix. Simulations show that the LDMC performs favorably over the MIMO systems.

1. Introduction

Multiple-input multiple-output (MIMO) transmission has
been identified as one of the most practical methods to
combat fading and to increase the capacity of wireless
channels in the recent years [1–3]. In order to ensure a
desired quality of transmission, an outer error correction
code can be employed additionally to decrease the occurring
errors in imperfect channels. In this case, an appropriate low-
density parity-check (LDPC) code [4–7] may be elegantly
used for MIMO channels. Actually, the decoding of LDPC
codes over MIMO channels can be well dealt with an
iterative manner, where probabilistic information should be
exchanged iteratively between MIMO detector and LDPC
decoder. At the receiver, the detector has to calculate the
maximum posteriori probability for each bit. One possible
realization of this calculation is called sphere decoder [8].
Much effort has been taken to reduce the complexity of the
detection process by introducing constraints in space and/or
time. A modified sphere decoder was proposed in [6], which
sacrifices performance to reduce the complexity of detection.

The complexity of the MIMO detector depends on the
number of bits mapped to a transmission vector (sym-
bols) transmitted simultaneously via multiple antennas. In
order to reduce its complexity, the low-density MIMO

code (LDMC) was presented with the constraints for each
transmitting vector [4, 5, 9]. For an LDMC, the parity-
check matrix has to be divided into two layers. One layer
defines subcodes which are embedded in each transmitting
vector, and another glues these subcodes together. The goal
of the double-layer structure is that the first layer reduces
the complexity of the decoder, while the second layer has to
be handed by an outer decoder. Unfortunately, the double-
layer structure of the original LDMC only supports the outer-
iterations and it cannot bolster the inner-iterations inside
the decoder. This limits the performance and the flexibility
of the decoding at the receiver. It seems that a systematic
LDMC design that stands by both outer-iterations and inner-
iterations for double-layer decoder still remains an open
problem.

In this paper, we introduce a novel double-layer decoder
for a benefit of the LDMC design criterion over MIMO
channels. One advantage of this structure is that the yielded
parity-check matrix of an LDMC has full rank and hence can
achieve the desired code rates. Another is that the present
LDMC can be decoded with low complexity since it supports
both inner-iterations and out-iterations at the receiver.

This paper is organized as follows. In Section 2, we
introduce the LDPC coded MIMO channels. Some prop-
erties of the LDMC are presented for the benefits of the
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construction. Section 3 describes the conventional LDPC
code with multiple parity-check (MPC) encoders. After
that an LDMC based on the MPC encoder is designed in
Section 4. Simulation results are given in Section 5. Finally,
Section 6 concludes this paper.

2. System Model

At the output of the LDPC encoder, the encoded MtQ bits,
s = [b1, . . . , bMtQ] ∈ {0, 1}MtQ, are mapped into a group of
Mt constellation symbols x = [x1, . . . , xMt ] ∈ AMt , where
each symbol xj is taken out of constellations A of size
2Q. The sequence of constellation symbols is passed to the
transmit filter, and then sent through Mt transmit antennas.
At the receiver, the detector has to calculate the maximum
posteriori probability for each bit, and this probability will
be passed to the LDPC decoder for iterative decoding. After
a finite number of inneriterations in the LDPC decoder, hard
decisions, which are the estimated codewords, are made at
the decoder. Soft information from the LDPC decoder is then
passed back to the MIMO detector to produce the updated
probabilities. The loop between the LDPC decoder and the
MIMO detector is called outer-iteration.

We consider a MIMO communication system with Mt

transmit antennas and Mr receive antennas. The MIMO
channel model is described as

y = Hx + N, (1)

where y ∈ CMr×1 is the complex received signal vector,
H ∈ CMr×Mt is the channel fading matrix with independent
entries that are complex Gaussian distributed with zero
mean and unit variance, N ∈ CMr×1 is the complex white
Gaussian noise with variance σ2 per dimension, x ∈ CMt×1

is the complex transmitted signal vector that satisfies the
component-wise energy constraint E(|xi|2) = Es/Mt , and
the notation Es represents the total transmitted power. The
channel information H is assumed to be known to the
receiver but not the transmitter.

Let b denote a set of MtQ − 1 transmitted bits, which
exclude the kth bit bk while x(b, bk) is a vector of Mt

components containing the symbols corresponding to b and
bk. For a given received signal vector y, we perform the
bitwise detection [10] to determine the posteriori probability
of bit bk, for all k ∈ {1 ≤ k ≤MtQ}, by calculating

PM→L(bk) =
∑

b

1
(√

2πσ
)Mr

e−‖y−Hx(b,bk)‖2/(2σ2)

×
∏

bj∈b

PL→M

(
bj

) (2)

or its log-likelihood ratio

LM→L(bk) = log
PM→L(bk = 1)
PM→L(bk = 0)

, (3)

where ‖·‖2 denotes the norm square of a vector, the subscript
M → L denotes the message passed from the MIMO de-
tector to the LDPC decoder, and L → M denotes the message
from the LDPC decoder to the MIMO detector.

The remaining problem of this iterative decoding is the
complexity of the MIMO detection. Next, we will show that
the complexity of the MIMO detection can be reduced by
introducing some constraints in the parity-check matrix of
the LDPC codes, which are also called the LDMCs.

The LDMC is a kind of the linear block codes that can be
described with a parity-check matrix Hc of the size m × n,
subject to the constraint Hcx = 0. The LDMC parity-check
matrix can be described by two layers with

Hc =
⎛
⎝

Hg

He

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Hg

H′e · · · 0

0
. . . 0

0 · · · H′e

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The first layer Hg is a sparse parity-check matrix, and the
second layer He defines multiple independent subcodes. Each
subcode corresponding to H′e has a block length no more
than MtQ.

As the aforementioned structure, each transmission
vector carries MTQ bits. For the transmission, it has to
be guaranteed that all bits of a subcode corresponding to
H′e should be transmitted within one transmission vector.
Thus, each transmission vector b carries an embedded
code corresponding to H′e. The action of Hg is to glue all
embedded codes together. Since the matrix Hg is sparse
and the embedded codes corresponding to the parity-
check matrix H′e define code constraints to each MIMO
transmission vector, the overall-coding process is called the
LDMC coding scheme or LDMC.

To enhance the performance of the LDMC coding
scheme, we need to reduce the complexity of the MIMO
detecting and the LDPC decoding in the combined MIMO
transmission system, while keeping the overall data rate
and the capacity approaching communication performance.
As described, a straightforward approach is to embed con-
straints for the involved bits within one transmission vector.
A simple constraint on several bits is a single parity-check
(SPC) constraint. Namely, the matrix H′e would become the
parity-check matrix of an SPC code. Thus if we constraint
the involved information bits in one SPC constraint, the
overall possibility of detection is 2MTQ−1. Furthermore, if we
constraint in q parity-check constraints embedded within
one transmission vector, the overall possibility of detection
will downscale to 2MTQ−q.

In order to encode efficiently, a quasicyclic structure was
proposed for the parity-check matrix of LDMCs [4, 5]. In
the quasicyclic structure, the sparse matrix Hg consists of
cyclic-permutation matrices and zero matrices. Since the
subcodes H′e in transmission vectors are independent and
should not be connected to each other, as shown in (4), the
second layer He consists of only identity matrices and zero
matrices. Therefore, He has no cyclic-permutation structure.
Consequently, the flexibility of He may be reduced, which
results in many short cycles. Therefore, He is only employed
in the detection, not in the decoding. Since Hg alone is too
sparse to be applied in the iterative decoding, there is no
inner iterations in the decoder in [5]. Therefore, how to
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address the design of inner iterations in the LDMC is still
a retained problem. In the next section, we will propose a
simple LDMC to solve this problem.

3. LDPC Code Based on Multiple
Parity-Check Codes

Recently, Baldi et al. have proposed an LDPC coding scheme
on the basis of multiple serially concatenated multiple parity-
check (M-SC-MPC) codes [11]. This code offers flexible
code rate and code length with low encoding complexity.
Let ni, ki, and ri denote code length, information length,
and parity-check length of the ith MPC component code,
respectively. The encoder of the ith MPC component code
can be implemented as ri SPC encoders. The matrix cells of
the ith encoder are filled in column-wise order. The first ri−si
cells, with si = ki mod ri, are unused. The parity bit pj is
calculated by XORing the elements of the row, which is stored
in the last column, at the same row. We obtain a parity-check
matrix Hi for the ith component code, consisting of a row
of �ni/ri	 identity matrices of size ri × ri, and the first ri − si
columns are shortened. The yielded matrix Hi forms a block-
row of the parity-check matrix Hc of the M-SC-MPC code.
The M-SC-MPC code has information length k = k1, parity-
check length m = ∑M

i=1ri and the code length n = k + m can
be viewed as LDPC codes.

If an interleaver is inserted before each MPC encoder,
an LDPC code can be constructed with larger girths [12].
The parity-check matrix Hc can be designed in columnwise
or rowwise to avoid short cycles. In the next section, we
will introduce a modified progress edge-growth algorithm
(PEG) to construct Hc see Algorithm 1. Each component
matrix Hi has row weight 
nj/r j� in ri − si rows, row weight
�nj/r j	 in the remaining si rows. Also, it has column weigh
one in ni columns and column weight zero in the remaining
n − ni columns. The interleaver of the ith MPC encoder is
constructed according to the structure of designed parity-
check matrix Hi.

Theorem 1 (full-rank criteria). The parity-check matrices of
LDPC codes on the basis of the MPC encoders are of full rank,
and hence they can achieve the desired code rates.

Proof. If all the rows of the component parity-check Hi are
summed, respectively, a vector will be obtained with the first
ni elements are ones and the remaining n − ni elements
are zeros. Then it is obvious that any row of Hc cannot be
obtained by a linear combination of the other rows in Hc.
Therefore, we can get the desired code rate R = k/n.

Theorem 2 (low-complexity criteria). The encoding com-
plexity of the LDPC code on the basis of the MPC encoders
is upper bounded by

∑M
i=1(ki − ri) and lower bounded by∑M

i=1�ki/ri	 − 1, respectively.

Proof. We evaluate the computation complexity of the
encoding processing. There are three cases of encoding
processing [13]. If the ith component encoder generates

(1) q = 0.
(2) y = Ø
(3) for l = 0 do
(4) arrange the check node degrees of the

check node group gl in nondecreasing order
xi = [x0

i , x1
i , . . . , xri−1

i ] = [ρ
ni/ri �, ρ
ni/ ri �, . . . , ρ�ni/ri	].
(5) end for
(6) for j = 0 to n− 1 do
(7) if j ≥ n−m then
(8) sc = {cj−(n−m), . . . , cm−1} \ y.
(9) else
(10) sc = {c0, c1, . . . , cm−1} \ y.
(11) end if
(12) for k = 0 to M − 1 do
(13) if k = 0 then
(14) if j ≥ n−m then

e0
vj ← edge (ci, vj), where e0

vj is the first edge
incident to vj . This edge corresponds to the “1” in
the diagonal line of matrix Hp.

(15) else
e0
vj ← edge (ci, vj), where i = ( j + (r1 − s1))

mod r1.
(16) end if
(17) else

expand a subgraph from vj up to depth l under
the current graph setting nl

v j such that nl
v j ∩ sc /=Ø

but nl+1
vj ∩ sc = Ø, or the cardinality of nl

v j stops
increasing, then ekvj ← edge(ci, vj), where ekvj is the
kth edge incident to vj and ci is a check node picked
from the set nl

v j ∩ sc having the lowest check-node
degree.

(18) end if
(19) if the degree of ci equals x

q
k then

Add ci into Y .
xi ← xi \ xqk .
q = q + 1.

(20) end if
find out which check node group gi includes ci.

sc ← sc \ gi.
(21) end for
(22) end for

Algorithm 1: Modified PEG algorithm.

the ri parity bits in parallel, the ith component encoder
determines ri parity bits with ki − ri XOR operations. In this
case,

∑M
i=1(ki − ri) XOR operations are required to obtain

all the parity bits. The encoding processing is accomplished
from the 1st MPC component encoder to the Mth MPC
component encoder inM steps. If the ith component encoder
generates the ri parity bits in serial, the ith component
encoder determines ri parity bits serially with �ki/ri	−1 XOR
operations. In this case,

∑M
i=1(�ki/ri	−1) XOR operations are

required to obtain all the parity bits. Therefore, the encoding
processing is completed from the 1st SPC encoder to the
mth SPC encoder in m steps. If the encoding processing
is a combination of the above-mentioned two cases, the
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complexity and encoding time is lower bounded by the
parallel case and upper bounded by the serial case.

4. LDMCs Based on MPC Codes

To illustrate the double-layer structure of the LDMC, we
propose a simple LDMC as an example in this section.

We consider a parity-check matrix Hc given by

Hc =
[

Hd Hp
]
=

⎡
⎢⎢⎢⎣

H1

H2

H3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100110100000

011001010000

011010111000

100101000100

001010110110

110101001001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where the subscript “T” denotes the transpose of the
matrix. This is a parity-check matrix that corresponds to an
LDPC code [d1,d2, . . . ,d6, p1, p2, . . . , p6] of length 12, where
d1,d2, . . . ,d6 are the information bits and p1, p2, . . . , p6 are
the parity bits. It is by no means a good LDPC code, which
is nothing more than a simple example. The parity-check
matrix Hc in (5) can be divided into three 2× 12 submatrices,
that is, H1, H2, H3. In each column of Hi (i = 1, 2, 3), there
is only one “1” element. Due to the special structure of the
three submatrices H1, H2 and H3, we define Hg = (HT

1 HT
2 )T

and He = H3. Therefore, we first obtain the parity bits
[p5, p6] from H3, then the parity bits [p3, p4] from H2, and
the parity bits [p1, p2] from H1. The encoding processing of
this code includes three steps as follows.

Step 1. Given the information bits [d1,d2, . . . ,d6], compute
the parity bits [p5, p6] based on the last two columns of the
third parity-check matrix H3.

Step 2. Given the information bits [d1,d2, . . . ,d6] along with
the yielded parity bits [p5, p6] in Step 1, compute the parity
bits [p3, p4] based on the ninth column and the tenth column
of the second parity-check matrix H2.

Step 3. Given the information bits [d1,d2, . . . ,d6] along with
the previous parity bits [p3, p4, p5, p6], compute the parity
bits [p1, p2] based on the seventh column and the eighth
column of the first parity-check matrix H1.

Now we transmit this code through a MIMO system with
two transmit antennas and 8PSK modulation scheme. Each
transmission vector carries 6 bits which results in 2MtQ = 64
possibilities reflecting all bit possibilities. However, because
of the parity-check constraints in H3, that is,

d3 ⊕ d5 ⊕ p1 ⊕ p2 ⊕ p4 ⊕ p5 = 0,

d1 ⊕ d2 ⊕ d4 ⊕ d6 ⊕ p3 ⊕ p6 = 0,
(6)

where ⊕ denotes the XOR operation, we can divide
the code word into two transmission vectors, that is,
[d3,d5, p1, p2, p4, p5] and [d1,d2,d4,d6, p3, p6]. Each trans-
mission vector contains one parity-check constraint. This

results in 2MTQ−1 = 32 possibilities. Therefore, the present
LDPC code is an LDMC in essence. In this code, the first layer
that glues the subcodes is Hg and the second layer that defines
the subcode is He = H3. Note that we can transform He into
the diagonal form by column permutations, which results in
the parity-check matrix

Hc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

011000101000

100100010100

111100010010

000010101100

111111000000

000000111111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(

H
T
g H

T
e

)T

=
(

H
T
1 H

T
2 H

T
3

)T
.

(7)

It is obvious that the first transformed layer Hg is a
sparse parity-check matrix and the second layer He can
generate two unconnected subcodes corresponding to H

′
e =

[1, 1, 1, 1, 1, 1].

We note that if we let Hg = (HT
2 HT

3 )
T

and He = H1, in a
similar way we calculate the parity bits [p1, p2] from H1, then
the parity bits [p3, p4] from H2, and the parity bits [p5, p6]
from H3. Therefore, the equivalent constructions of this code
can be described as the following.

Step E1. given the information bits [d1,d2, . . . ,d6], compute
the parity bits [p1, p2] based on H1.

Step E2. given the information bits [d1,d2, . . . ,d6] along
with the yielded parity bits [p1, p2], compute the parity bits
[p3, p4] based on H2.

Step E3. given the information bits [d1,d2, . . . ,d6] along with
the previous parity bits [p1, p2, p3, p4], compute the parity
bits [p5, p6] based on H3.

According to the aforementioned LDMC construction
based on three matrices {Hi : i = 1, 2, 3}, the proposed
design approach can be generalized with M block matrices
{Hi : i = 1, . . . ,M}.

Theorem 3. The LDPC code on the basis of the MPC
component encoder in (4) is an LDMC, where

Hc =
(

HdHp
)
= (HT

g HT
e )

T
(8)

with Hg = (HT
1 HT

2 · · ·HT
M−1)T and He = HM . Gen-

erally, the first layer Hg can be selected as Hg =
(HT

1 · · ·HT
i−1HT

i+1 · · ·HT
M)T and the second layer He can be

selected as He = Hi, for all i ∈ {1, . . . ,M}.

Proof. The present LDMC is a straightforward extending
of the LDMC given in (5). Therefore, the proof of this
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theorem can be derived in a similar way, which is omitted
for simplicity.

For simplicity, we consider the LDMC with Hg =
(HT

1 HT
2 · · ·HT

M−1)T and He = HM . We note that there are
rM SPC constraints in the parity-check matrix He that has
row weight 
nM/rM� in the first rM− sM rows and row weight
�nM/rM	 in the remaining sM rows. Each subcode H′e involves
q SPC constraints. We divide rm SPC constraints into rm/q
separate subgroups. At the transmitter, each transmission
vector involves one of the rm/q subgroups. Then the overall
possibilities for the MIMO detection is downscaled from
2MtQ to 2MtQ−q. The larger q means the smaller complexity
of the MIMO detection. Namely, let rm/q = n/n′e, and then
it is obvious that the larger n′e implies the smaller complexity
of the MIMO detection. Since n′e ≤ MtQ, the optimal block
length of the subcode is

n′e =MtQ. (9)

In addition, the parity-check matrix Hc of the present
LDMCs should satisfy the following two constraints:

(1) the Hp part of Hc contains the lower triangular
pattern;

(2) in each column of Hi, for all i ∈ {1, . . . ,m}, of Hc,
there is only one “1” element.

The first constraint ensures that the present LDMC is
linear encodable [14]. The second constraint guarantees that
the ri parity bits can be generated by the ri parity-check
constraints, simultaneously, in the ith component encoder
corresponding to the matrix Hi [11–13]. Observing two
constraints, the parity-check matrix Hc of the LDMC can be
efficiently designed with the modified progress edge-growth
(PEG) algorithm.

Remark 4. In the present algorithm, lines 1–5 and lines 20-
21 are used to ensure that the parity-check matrix Hi has
row weight 
ni/ri� in ri − si rows and row weight �ni/ri	
in the remaining si rows, which are required for the design
of parity-check matrix of an LDMC with a double-layer
structure. Line 14 and line 17 are used to guarantee that Hp is
a lower triangular matrix, which is for the desired code rate.
Since there is no interleaver in front of the first component
encoder, line 15 is used to ensure that H1 consists of identity
matrices with the first r1 − si columns eliminated, as shown
in (5). Due to this special structure, the LDPC decoding can
be well performed with low complexity.

Remark 5. Since Hc is obtained from the modified PEG algo-
rithm, the girth of Hc and He can be enlarged, simultaneously
[12]. Therefore, the matrix He can be used in both detection
and inner iteration. Consequently, we can perform multiple
out iterations between MIMO detector and LDPC decoder
at the receiver. In each out iteration, the MIMO detection
is performed once followed by a number of inner iterations
of LDPC decoding. The decoding process is halted if the
decoder converges to a valid code or a maximum number of
iterations is reached. It is obvious that the proposed double-
layer LDMC is different from the quasicyclic LDMC [4],
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Figure 1: FER performances of the proposed LDMCs c5 and c6 with
QPSK modulation.

where the PEG algorithm is based on the permuted identity
matrices.

5. Simulations

So far, we have constructed an LDMC with the modified PEG
algorithm in the previous section. In order to simulate the
proposed LDMC denoted cM with simplicity, it is assumed
that the block length of the LDMC is n = 1920 and the code
rate is 0.5. The numbers of the component encoder M are 5
and 6, respectively, that is, M ∈ {5, 6}. Some parameters are
given as follows:

(1) M = 5, r1 = 360, r2 = 360, r3 = 360, r4 = 360,
r5 = 480, and L = �n/r5	 = 4;

(2) M = 6, r1 = 288, r2 = 288, r3 = 288, r4 = 288,
r5 = 288, r6 = 480, and L = �n/r6	 = 4.

The simulation results are in terms of the frame error rate
(FER) with the iterative decoding. We make use of the QPSK
modulation and the 16-QAM modulation transmissions
over a 4 × 4 MIMO channels, as shown in Figures 1 and 2.
Therefore, the block length of transmission vector is 8 with
�n′e/L	 = 2. We simulate the proposed codes in two ways.
For one hand, we perform 3 outer iterations and 50 inner
iterations, shown in Figure 1, for both c5 and c6. For another,
we perform 50 outer iterations and no inner iteration. For a
fair comparison, we have also simulated the original LDMCs
with a minor modification in [5]. The H′e part

⎡
⎢⎢⎢⎢⎢⎢⎣

1111000011110000

0011001100110011

0101010101010101

0000111111110000

⎤
⎥⎥⎥⎥⎥⎥⎦

, (10)
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Figure 2: FER performances of the proposed LDMCs c5 and c6 with
16QAM modulation.

which involves a parity-check matrix [5], is replaced with the
matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

1111000000000000

0000111100000000

0000000011110000

0000000000001111

⎤
⎥⎥⎥⎥⎥⎥⎦

, (11)

which involves 4 parity-check constraints of length 4. Each
transmission vector of length 8 involves 2 SPC constraints.
This modified code is denoted by c0. The performance curve
of c0 is illustrated with 50 outer iterations and no inner
iteration.

It is shown in Figure 2 that three LDMCs, c0, c5, c6,
can downscale overall possibilities of the MIMO detection
from 28 to 26. The proposed two codes c5 and c6 perform
the similar performances as that of the original LDMC c0

when no inner iteration is applied in the LDPC decoder.
However, since the present LDMCs support inner iterations
in the LDPC decoder, we can improve the performance of
these codes by increasing several inner iterations in the LDPC
decoder.

6. Conclusion

A double-layer structure LDMC is introduced with the LDPC
decoder and the MIMO detector. It provides both inner
iterations and outer iterations at the receiver, which gives
more flexibility for detecting and decoding than that of the
original LDMC. The advantage of the double-layer LDMC
is that the parity-check matrix has the full rank to achieve
the desired code rate, which can be efficiently employed in
a modified PEG algorithm. The present LDMC also reduces
the complexity of the MIMO detection due to the low-
density of the parity-check matrix. Simulations show that the
performance of the LDMC is enhanced with the increasing
inner iterations in the LDPC decoder.
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