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Duality theorem is an attractive approach for solving fuzzy optimization problems. However, the duality gap is generally nonzero
for nonconvex problems. So far, most of the studies focus on continuous variables in fuzzy optimization problems. And, in real
problems and models, fuzzy optimization problems also involve discrete and mixed variables. To address the above problems, we
improve the extended duality theory by adding fuzzy objective functions. In this paper, we first define continuous fuzzy nonlinear
programming problems, discrete fuzzy nonlinear programming problems, andmixed fuzzy nonlinear programming problems and
then provide the extended dual problems, respectively. Finally we prove the weak and strong extended duality theorems, and the
results show no duality gap between the original problem and extended dual problem.

1. Introduction

Nonlinear programming problems (NLPs) play an important
role in both manufacturing systems and industrial processes
and have been widely used in the fields of operations
research, planning and scheduling, optimal control, engi-
neering designs, and production management [1–4]. Due to
its significance in both academic and engineering applica-
tions, different kinds of approaches have been proposed to
solve NLPs and obtained some achievements [5–9]. In [10],
we present three algorithms using reverse bridge theorem
(RBTH) for solving discrete nonlinear programming prob-
lems (DNLPs), continuous nonlinear programming prob-
lems (CNLPs), and mixed constrained nonlinear program-
ming problems (MINLPs), respectively, and finally prove the
soundness and completeness of these algorithms.

In fact, many practical problems encountered by design-
ers and decision makers would take place in an environ-
ment in which the statements might be vague or imprecise.
Therefore, in 1970, Bellman and Zadeh first introduced fuzzy
optimization problem, which combined the fuzzy decision
and fuzzy goals [11]. Since then, there are many articles
with regard to the fuzzy optimization problems [12–14]. In
2008, Wu proposed continuous and differentiable fuzzy-
valued objective function with real constraints and presented

the sufficient optimality conditions for obtaining the non-
dominated solution of fuzzy optimization problem [15]. Later,
he adopted the Karush-Kuhn-Tucker optimality conditions
to solve the fuzzy optimization problems [16]. Furthermore,
Pathak and Pirzada presented the necessary and sufficient
Kuhn-Tucker like optimality conditions for nonlinear fuzzy
optimization problems with fuzzy-valued objective func-
tion and fuzzy-valued constraints [17]. Jameel and Sadeghi
showed that the results solution of fuzzy optimization is
a generalization of the solution of the crisp optimization
problem [18]. Moreover, Baykasoğlu and Göçken gave the
review of fuzzy mathematical programming models accord-
ing to fuzzy components [19]. So far, most of the studies
focus on treating continuous variables in fuzzy optimization
problems. However, in real life problems and models, fuzzy
optimization problems also involve discrete and mixed vari-
ables. Therefore, in this paper, we define continuous fuzzy
nonlinear programming problems (CFNPs) with continuous
variables, discrete fuzzy nonlinear programming problems
(DFNPs) with discrete variables, and mixed fuzzy nonlin-
ear programming problems (MFNPs) with continuous and
discrete variables. Compared to previous formula of fuzzy
optimization problems, the above three problems increase
equality constraints of the variables.
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On the other hand, duality theorem has been proved
to be an attractive approach for solving fuzzy optimization
problems recently [20–27]. The most important aspect of
duality is the existence of the duality gap, which is the dif-
ference between the optimal solution by solving the original
problem and the lower bound of the dual problem. However,
for nonconvex problems, the duality gap is generally nonzero
and may be large value for some problems. Thus, the duality
approach cannot be directly used for solving fuzzy optimiza-
tion problems with nonconvex functions [28, 29]. Recently,
Y. Chen and M. Chen proposed an extended duality theory
for nonlinear optimization and proved that there was zero
duality gap for general nonconvex optimization problems
[30]. To deal with nonconvex fuzzy optimization problems
with continuous, discrete, andmixed variable, we improve the
extended duality theory by adding fuzzy objective functions.
In this paper, we define extended duality theory of fuzzy
nonlinear optimization with continuous, discrete, and mixed
spaces and prove the weak and strong extended duality
theorems, and the results show no duality gap between
the original problem and extended dual fuzzy optimization
problems.

The remainder of this paper is organized as follows. After
an introduction, we recall some basic notions and work
related to fuzzy optimization problems in Section 2. Then in
Section 3, we define fuzzy nonlinear programming problems
in continuous, discrete, and mixed spaces and the extended
dual problem, respectively. In Section 4, we prove the weak
and strong extended duality theorems. Last section is the
conclusion of the paper.

2. Related Previous Works

In this section, we recall some basic definitions and work
related to fuzzy optimization problems. Let 𝑈 be a universal
set. A fuzzy subset 𝑐 of𝑈 is amapping𝜇

𝑐

: 𝑈 → [0, 1].The𝛼-
level of 𝑐 denoted by 𝑐

𝛼

is defined by 𝑐
𝛼

= {𝑥 ∈ 𝑈 : 𝜇
𝑐

(𝑥) ≥ 𝛼}

for all 𝛼 ∈ (0, 1]. The 0-level set 𝑐
0

is defined as the closure of
the set {𝑥 ∈ 𝑈 : 𝜇

𝑐

(𝑥) > 0}.

Definition 1. We denote by 𝐹(𝑈) the set of all fuzzy subset 𝑐
of 𝑈 with membership function 𝜇

𝑐

satisfying the following
conditions:

(1) 𝑐 is normal; that is, there exists an 𝑥 ∈ 𝑈 such that
𝜇
𝑐

(𝑥) = 1;

(2) 𝜇
𝑐

is quasi concave; that is, 𝜇
𝑐

(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝜇
𝑐

(𝑥), 𝜇
𝑐

(𝑦)} for all 𝜆 ∈ [0, 1];

(3) 𝜇
𝑐

is upper semicontinuous; that is, {𝑥 : 𝜇
𝑐

(𝑥) ≥ 𝛼} is
a closed subset of 𝑈 for all 𝛼 ∈ [0, 1];

(4) the 0-level set 𝑐
0

is a compact subset of 𝑈.

Throughout this paper, the universal set 𝑈 is the set of
all real number R. The member 𝑐 in 𝐹(R) is called a fuzzy
number. For all 𝛼 ∈ [0, 1], we can denote the 𝛼-level of 𝑐 by
𝑐
𝛼

= [𝑐
𝐿

𝛼

, 𝑐
𝑈

𝛼

].

Let 𝑥 ∈ 𝐹𝑛(R) ≡ 𝐹(R) × ⋅ ⋅ ⋅ × 𝐹(R); that is, 𝑥 = (𝑥
1

, . . . ,

𝑥
𝑛

), where 𝑥
𝑖

∈ 𝐹(R) for 𝑖 = 1, . . . , 𝑛. We also write 𝑥𝐿
𝛼

=

(𝑥
𝐿

1𝛼

, . . . , 𝑥
𝐿

𝑛𝛼

) and 𝑥𝑈
𝛼

= (𝑥
𝑈

1𝛼

, . . . , 𝑥
𝑈

𝑛𝛼

), where 𝑥𝐿
𝑖𝛼

≡ (𝑥
𝑖

)
𝐿

𝛼

and
𝑥
𝑈

𝑖𝛼

≡ (𝑥
𝑖

)
𝑈

𝛼

for all 𝑖 = 1, . . . , 𝑛.

Definition 2. The fuzzy scalar product of the fuzzy vectors 𝑥
and 𝑦 in 𝐹𝑛(R) is defined by

⟨⟨𝑥, 𝑦⟩⟩ = (𝑥
1

⊗ 𝑦
1

) ⊕ ⋅ ⋅ ⋅ ⊕ (𝑥
𝑛

⊗ 𝑦
𝑛

) . (1)

Let 𝑐, 𝑑 ∈ 𝐹(R). We write 𝑑≻ 𝑐 if and only if 𝑑𝐿
𝛼

≥ 𝑐
𝐿

𝛼

and
𝑑
𝑈

𝛼

≥ 𝑐
𝑈

𝛼

for all 𝛼 ∈ [0, 1].The relation “≻” on𝐹(R) is a partial
ordering.

Definition 3. Let 𝐴 and 𝐵 be two subsets of 𝐹(R). We write
𝐴 ≺ 𝑥 if 𝑦 ≺ 𝑥 for all 𝑦 ∈ 𝐴. We write 𝐴 ≺ 𝐵 if 𝐴 ≺ 𝑥 for all
𝑥 ∈ 𝐵.

Let 𝑓 and 𝑔 be two fuzzy-valued functions defined on the
same real vector space 𝑉, and let𝑋 be a subset of 𝑉. Then,

MIN (𝑓,𝑋) = {𝑓 (𝑥󸀠) : there exists no 𝑥 ∈ 𝑋

such that 𝑓 (𝑥󸀠) ≻ 𝑓 (𝑥)} ,

ARG-MIN (𝑓 (𝑥
󸀠

) , 𝑋) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≻ 𝑓 (𝑥
󸀠

)} ,

MAX (𝑔,𝑋) = {𝑔 (𝑥󸀠) : there exists no 𝑥 ∈ 𝑋

such that 𝑔 (𝑥󸀠) ≺ 𝑔 (𝑥)} ,

ARG-MAX (𝑔 (𝑥󸀠) , 𝑋) = {𝑥 ∈ 𝑋 : 𝑔 (𝑥) ≺ 𝑔 (𝑥󸀠)} .

(2)

Definition 4. The primal fuzzy optimization problem (𝑃) is
defined as follows:

(𝑃) minimize 𝑓 (𝑥) ,

subject to 𝑔
𝑖

(𝑥) ≤ 0̃, for 𝑖 = 1, . . . , 𝑚, 𝑥 ∈ 𝑋.
(3)

The fuzzy-valued Lagrangian function for the primal
problem (𝑃) is defined as follows:

𝜙 (𝑥, 𝑢) = 𝑓 (𝑥) ⊕ ⟨⟨𝑢, 𝑔 (𝑥)⟩⟩ (4)

for all 𝑥 ∈ 𝑋 and all 𝑢 = (𝑢
1

, . . . , 𝑢
𝑚

) ∈ R𝑚

+

; that is, 𝑢
𝑖

≥ 0 for
all 𝑖 = 1, . . . , 𝑚. We also write 𝑢 ≥ 0 if 𝑢 ∈ R𝑚

+

.

Definition 5. The dual fuzzy optimization problem (𝐷) is
defined as follows:

(𝐷) maximize 𝐿̃ (𝑢) ,

subject to 𝑢 ≥ 0,

(5)

where the fuzzy-valued Lagrangian dual function is defined
as

𝐿̃ (𝑢) = MIN (𝜙 (⋅, 𝑢) , 𝑋)

= {𝜙 (𝑥, 𝑢) : there exists no 𝑥 ∈ 𝑋

such that 𝜙 (𝑥, 𝑢) ≻ 𝜙 (𝑥, 𝑢)} .

(6)
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3. Extend Duality Problems

In this section, we define continuous fuzzy nonlinear prob-
lem, discrete fuzzy nonlinear problem and mixed fuzzy non-
linear problem, and the extended dual problems, respectively.
Let 𝑓, ℎ̃

𝑖

(𝑖 = 1, . . . , 𝑚) and 𝑔
𝑗

(𝑗 = 1, . . . , 𝑟) be fuzzy-valued
functions defined on the same real vector space 𝑉, and let𝑋,
𝑌 be two subsets of 𝑉.

3.1. Continuous Fuzzy Nonlinear Programming Problems

Definition 6. A continuous fuzzy nonlinear programming
problem (CFNP) is defined as

(𝑃
𝑐

) min
𝑥

𝑓 (𝑥) 𝑥 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

)
𝑇

∈ 𝑋,

Subject to ℎ̃ (𝑥) = (ℎ̃
1

(𝑥) , . . . , ℎ̃
𝑚

(𝑥)) = 0̃,

𝑔 (𝑥) = (𝑔
1

(𝑥) , . . . , 𝑔
𝑟

(𝑥)) ≺ 0̃,

(7)

where 𝑥 is a continuous variable and 𝑓 is a continuous and
differentiable fuzzy-valued function.

Definition 7. Point 𝑥∗ is a solution of 𝑃
𝑐

, if 𝑥∗ is a feasible
solution of 𝑃

𝑐

and there exists no feasible solution 𝑥 ∈ 𝑋 such
that 𝑓(𝑥∗) ≻ 𝑓(𝑥).

Let 𝑋󸀠

= {𝑥 ∈ 𝑋 : ℎ̃(𝑥) = 0̃, 𝑔(𝑥) ≺ 0̃} be the feasible
set of 𝑃

𝑐

and OPM
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋) be the set of all solutions of 𝑃
𝑐

;
then

MIN
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋) = MIN
𝑐

(𝑓,𝑋
󸀠

)

= {𝑓 (𝑥
∗

) : there exists no 𝑥 ∈ 𝑋󸀠

such that 𝑓 (𝑥∗) ≻ 𝑓 (𝑥)} ,

ARG-MIN
𝑐

(𝑓 (𝑥
∗

) , ℎ̃, 𝑔, 𝑋)

= ARG-MIN
𝑐

(𝑓 (𝑥
∗

) , 𝑋
󸀠

)

= {𝑥 ∈ 𝑋
󸀠

: 𝑓 (𝑥) ≻ 𝑓 (𝑥
∗

)} .

(8)

Definition 8. The fuzzy-valued 𝑙𝑚
1

-penalty function for 𝑃
𝑐

in
(7) is defined as follows:

𝜙
𝑐

(𝑥, 𝛼, 𝛽) = 𝑓 (𝑥) ⊕ ⟨⟨𝛼,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽,max (0̃, 𝑔 (𝑥))⟩⟩ ,
(9)

where |ℎ̃(𝑥)| = (|ℎ̃
1

(𝑥)|, . . . , |ℎ̃
𝑚

(𝑥)|) and max(0̃, 𝑔(𝑥)) =
(max(0̃, 𝑔

1

(𝑥)), . . . ,max(0̃, 𝑔
𝑟

(𝑥))), and 𝛼 ∈ R𝑚 and 𝛽 ∈ R𝑟

are penalty multipliers.

According to the fuzzy-valued 𝑙𝑚
1

-penalty function for
𝑃
𝑐

, we define the fuzzy-valued extended dual function as
follows.

Definition 9. The fuzzy-valued extended dual function for 𝑃
𝑐

is defined for 𝛼 ∈ R𝑚 and 𝛽 ∈ R𝑟 as

𝜑
𝑐

(𝛼, 𝛽)

= MIN
𝑐

(𝜙
𝑐

(⋅, 𝛼, 𝛽) , 𝑋)

= {𝜙
𝑐

(𝑥
∗

, 𝛼, 𝛽) : there exists no 𝑥 ∈ 𝑋

such that 𝜙
𝑐

(𝑥
∗

, 𝛼, 𝛽) ≻ 𝜙
𝑐

(𝑥, 𝛼, 𝛽)} ,

(10)

where 𝜑
𝑐

is a point-to-set fuzzy-valued extended dual func-
tion; that is, for any fixed𝛼 and𝛽, 𝜑

𝑐

(𝛼, 𝛽) is a subset of𝐹(R).

Definition 10. The extended dual continuous fuzzy nonlinear
programming problem (EDCFNP) is defined as follows:

(ED
𝑐

) maximize 𝜑
𝑐

(𝛼, 𝛽) ,

Subject to 𝛼 ≥ 0, 𝛽 ≥ 0.

(11)

Definition 11. Point (𝛼∗, 𝛽∗) is a solution of ED
𝑐

, if there exists
a 𝑓(𝑥) ∈ 𝜑

𝑐

(𝛼
∗

, 𝛽
∗

) such that 𝑓(𝑥) ≻ 𝜑
𝑐

(𝛼, 𝛽) for all 𝛼 ̸= 𝛼
∗,

𝛽 ̸= 𝛽
∗, 𝛼 ≥ 0, and 𝛽 ≥ 0.

Let OPMED
𝑐

(𝜑
𝑐

,R𝑚

+

,R𝑟

+

) denote the set of all solutions
of extended dual continuous fuzzy nonlinear programming
problem ED

𝑐

, MAXED
𝑐

(𝜑
𝑐

,R𝑚

+

,R𝑟

+

) = {𝜑
𝑐

(𝛼, 𝛽) : (𝛼, 𝛽)

is a solution of ED
𝑐

}. If 𝛼 and 𝛽 are fixed, then
ARG-MAXED

𝑐

(𝜑
𝑐

(𝑥
∗

, 𝛼, 𝛽), 𝑋) = {𝑥 ∈ 𝑋 : 𝜑
𝑐

(𝑥, 𝛼, 𝛽) ≺

𝜑
𝑐

(𝑥
∗

, 𝛼, 𝛽)}.

3.2. Discrete Fuzzy Nonlinear Programming Problems

Definition 12. Adiscrete fuzzy nonlinear programming prob-
lem (DFNP) is defined as

(𝑃
𝑑

) min
𝑦

𝑓 (𝑦) , 𝑦 = (𝑦
1

, 𝑦
2

, . . . , 𝑦
𝑛

)
𝑇

∈ 𝑌,

Subject to ℎ̃ (𝑦) = (ℎ̃
1

(𝑦) , . . . , ℎ̃
𝑚

(𝑦)) = 0̃,

𝑔 (𝑦) = (𝑔
1

(𝑦) , . . . , 𝑔
𝑟

(𝑦)) ≺ 0̃,

(12)

where 𝑦 is a discrete variable.
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Definition 13. Point 𝑦∗ is a solution of 𝑃
𝑑

, if 𝑦∗ is a feasible
solution of 𝑃

𝑑

and there exists no feasible solution 𝑦 ∈ 𝑌 such
that 𝑓(𝑦∗) ≻ 𝑓(𝑦).

Let 𝑌󸀠

= {𝑦 ∈ 𝑌 : ℎ̃(𝑦) = 0̃, 𝑔(𝑦) ≺ 0̃} be the feasible set
and let OPM

𝑑

(𝑓, ℎ̃, 𝑔, 𝑌) be the set of all solutions of𝑃
𝑑

; then,

MIN
𝑑

(𝑓, ℎ̃, 𝑔, 𝑌) = MIN
𝑑

(𝑓, 𝑌
󸀠

)

= {𝑓 (𝑦
∗

) : there exists no 𝑦 ∈ 𝑌󸀠

such that 𝑓 (𝑦∗) ≻ 𝑓 (𝑦)} ,

ARG-MIN
𝑑

(𝑓 (𝑦
∗

) , ℎ̃, 𝑔, 𝑌) = ARG-MIN
𝑑

(𝑓 (𝑦
∗

) , 𝑌
󸀠

)

= {𝑦 ∈ 𝑌
󸀠

: 𝑓 (𝑦) ≻ 𝑓 (𝑦
∗

)} .

(13)

Definition 14. The fuzzy-valued 𝑙𝑚
1

-penalty function for 𝑃
𝑑

in
(12) is defined as follows:

𝜙
𝑑

(𝑦, 𝛼, 𝛽) = 𝑓 (𝑦) ⊕ ⟨⟨𝛼,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽,max (0̃, 𝑔 (𝑦))⟩⟩ ,
(14)

where |ℎ̃(𝑦)| = (|ℎ̃
1

(𝑦)|, . . . , |ℎ̃
𝑚

(𝑦)|) and max(0̃, 𝑔(𝑦)) =
(max(0̃, 𝑔

1

(𝑦)), . . . ,max(0̃, 𝑔
𝑟

(𝑦))), and 𝛼 ∈ R𝑚 and 𝛽 ∈ R𝑟

are penalty multipliers.

Definition 15. The fuzzy-valued extended dual function for𝑃
𝑑

is defined for 𝛼 ∈ R𝑚 and 𝛽 ∈ R𝑟 as

𝜑
𝑑

(𝛼, 𝛽)

= MIN
𝑑

(𝜙
𝑑

(⋅, 𝛼, 𝛽) , 𝑌)

= {𝜙
𝑑

(𝑦
∗

, 𝛼, 𝛽) : there exists no 𝑦 ∈ 𝑌

such that 𝜙
𝑑

(𝑦
∗

, 𝛼, 𝛽) ≻ 𝜙
𝑑

(𝑦, 𝛼, 𝛽)} .

(15)

Similarly, 𝜑
𝑑

is a point-to-set fuzzy-valued extended dual
function for 𝑃

𝑑

; that is, for any fixed 𝛼 and 𝛽, 𝜑
𝑑

(𝛼, 𝛽) is a
subset of 𝐹(R).

Definition 16. The extended dual discrete fuzzy nonlinear
programming problem (EDDFNP) is defined as follows:

(ED
𝑑

) maximize 𝜑
𝑑

(𝛼, 𝛽)

Subject to 𝛼 ≥ 0, 𝛽 ≥ 0.

(16)

Definition 17. Point (𝛼∗, 𝛽∗) is a solution of ED
𝑑

, if there exists
a 𝑓(𝑦) ∈ 𝜑

𝑑

(𝛼
∗

, 𝛽
∗

) such that 𝑓(𝑦) ≻ 𝜑
𝑑

(𝛼, 𝛽) for all 𝛼 ̸= 𝛼
∗,

𝛽 ̸= 𝛽
∗, 𝛼 ≥ 0, and 𝛽 ≥ 0.

Let OPMED
𝑑

(𝜑
𝑑

,R𝑚

+

,R𝑟

+

) denote the set of all solu-
tions of extended dual discrete fuzzy nonlinear program-
ming problem ED

𝑑

, MAXED
𝑑

(𝜑
𝑑

,R𝑚

+

,R𝑟

+

) = {𝜑
𝑑

(𝛼, 𝛽):
(𝛼, 𝛽) is a solution of ED

𝑑

}. If 𝛼 and 𝛽 are fixed, then

ARG-MAXED
𝑑

(𝜑
𝑑

(𝑦
∗

, 𝛼, 𝛽) , 𝑌)

= {𝑦 ∈ 𝑌 : 𝜑
𝑑

(𝑦, 𝛼, 𝛽) ≺ 𝜑
𝑑

(𝑦
∗

, 𝛼, 𝛽)} .

(17)

Definition 18. A mixed fuzzy nonlinear programming prob-
lem (MFNP) is defined as

(𝑃
𝑚

) min
𝑥,𝑦

𝑓 (𝑥, 𝑦) , 𝑥 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

)
𝑇

∈ 𝑋,

𝑥 is a continuous variable

𝑦 = (𝑦
1

, 𝑦
2

, . . . , 𝑦
𝑛

)
𝑇

∈ 𝑌,

𝑦 is a discrete varible

Subject to ℎ̃ (𝑥, 𝑦) = (ℎ̃
1

(𝑥, 𝑦) , . . . , ℎ̃
𝑚

(𝑥, 𝑦))

= 0̃,

𝑔 (𝑥, 𝑦) = (𝑔
1

(𝑥, 𝑦) , . . . , 𝑔
𝑟

(𝑥, 𝑦))

≺ 0̃.

(18)

Definition 19. Point (𝑥∗, 𝑦∗) is a solution of 𝑃
𝑚

, if (𝑥∗, 𝑦∗) is
a feasible solution of 𝑃

𝑚

and there exists no feasible solution
(𝑥, 𝑦) ∈ (𝑋, 𝑌) such that 𝑓(𝑥∗, 𝑦∗) ≻ 𝑓(𝑥, 𝑦).

Similarly, (𝑋, 𝑌)󸀠 = {(𝑥, 𝑦) ∈ (𝑋, 𝑌): ℎ̃(𝑥, 𝑦) = 0̃,
𝑔(𝑥, 𝑦) ≺ 0̃} denotes the feasible set of mixed fuzzy nonlinear
programming problem 𝑃

𝑚

, OPM
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)) denotes
the set of all solutions of mixed fuzzy nonlinear program-
ming problem 𝑃

𝑚

, MIN
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)) = MIN
𝑚

(𝑓,

(𝑋, 𝑌)
󸀠

) = {𝑓(𝑥∗, 𝑦∗): there exists no (𝑥, 𝑦) ∈ (𝑋, 𝑌)󸀠 such
that 𝑓(𝑥∗, 𝑦∗) ≻ 𝑓(𝑥, 𝑦)}, and ARG-MIN

𝑚

(𝑓(𝑥
∗

, 𝑦
∗

), ℎ̃,

𝑔, (𝑋, 𝑌)) = ARG-MIN
𝑚

(𝑓(𝑥
∗

, 𝑦
∗

), (𝑋, 𝑌)
󸀠

) = {(𝑥, 𝑦) ∈

(𝑋, 𝑌)
󸀠

: 𝑓(𝑥, 𝑦) ≻ 𝑓(𝑥
∗

, 𝑦
∗

)}.

Definition 20. The fuzzy-valued 𝑙𝑚
1

-penalty function for𝑃
𝑚

in
(18) is defined as follows:

𝜙
𝑚

(𝑥, 𝑦, 𝛼, 𝛽) = 𝑓 (𝑥, 𝑦) ⊕ ⟨⟨𝛼,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽,max (0̃, 𝑔 (𝑥, 𝑦))⟩⟩ ,
(19)

where |ℎ̃(𝑥, 𝑦)| = (|ℎ̃
1

(𝑥, 𝑦)|, . . . , |ℎ̃
𝑚

(𝑥, 𝑦)|) and max(0̃, 𝑔(𝑥,
𝑦)) = (max(0̃, 𝑔

1

(𝑥, 𝑦)), . . . ,max(0̃, 𝑔
𝑟

(𝑥, 𝑦))), and 𝛼 ∈ R𝑚

and 𝛽 ∈ R𝑟 are penalty multipliers.
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Definition 21. The fuzzy-valued extended dual function for
𝑃
𝑚

is defined for 𝛼 ∈ R𝑚 and 𝛽 ∈ R𝑟 as

𝜑
𝑚

(𝛼, 𝛽)

= MIN
𝑚

(𝜙
𝑚

(⋅, 𝛼, 𝛽) , (𝑋, 𝑌))

= {𝜙
𝑚

(𝑥
∗

, 𝑦
∗

, 𝛼, 𝛽) : there exists no (𝑥, 𝑦) ∈ (𝑋, 𝑌)

such that 𝜙
𝑚

(𝑥
∗

, 𝑦
∗

, 𝛼, 𝛽)

≻ 𝜙
𝑚

(𝑥, 𝑦, 𝛼, 𝛽)} .

(20)

𝜑
𝑚

is a point-to-set fuzzy-valued extended dual function for
𝑃
𝑚

; that is, for any fixed 𝛼 and 𝛽, 𝜑
𝑚

(𝛼, 𝛽) is a subset of
𝐹(R).

Definition 22. The extended dual mixed fuzzy nonlinear
programming problem (EDMFNP) is defined as follows:

(ED
𝑚

) maximize 𝜑
𝑚

(𝛼, 𝛽)

Subject to 𝛼 ≥ 0, 𝛽 ≥ 0.
(21)

Definition 23. Point (𝛼∗, 𝛽∗) is a solution of ED
𝑚

, if there
exists a 𝑓(𝑧̃) ∈ 𝜑

𝑚

(𝛼
∗

, 𝛽
∗

) such that 𝑓(𝑧̃) ≻ 𝜑
𝑚

(𝛼, 𝛽) for all
𝛼 ̸= 𝛼

∗, 𝛽 ̸= 𝛽
∗, 𝛼 ≥ 0, and 𝛽 ≥ 0.

Let OPMED
𝑚

(𝜑
𝑚

,R𝑚

+

,R𝑟

+

) denote the set of all solu-
tions of extended dual mixed fuzzy nonlinear program-
ming problem ED

𝑚

, MAXED
𝑚

(𝜑
𝑚

,R𝑚

+

,R𝑟

+

) = {𝜑
𝑚

(𝛼, 𝛽) :

(𝛼, 𝛽) is a solution of ED
𝑚

}. If 𝛼 and 𝛽 are fixed, then

ARG-MAXED
𝑚

(𝜑
𝑚

(𝑥
∗

, 𝑦
∗

, 𝛼, 𝛽) , (𝑋, 𝑌))

= {(𝑥, 𝑦) ∈ (𝑋, 𝑌) : 𝜑
𝑚

(𝑥, 𝑦, 𝛼, 𝛽) ≺ 𝜑
𝑚

(𝑥
∗

, 𝑦
∗

, 𝛼, 𝛽)} .

(22)

4. Extended Duality Theorems

Duality theorem is an important approach for fuzzy opti-
mization problems. However, the duality gap is generally

nonzero for nonconvex fuzzy optimization problems. In this
section, we prove the weak and strong extended duality
theorems and show there is no duality gap between original
problem and extended dual problem for fuzzy nonlinear
problem with continuous or discrete, or mixed variables.

4.1. Extended Duality Theorem for CFNPs

Theorem 24. Suppose 𝑥 and (𝛼, 𝛽) are feasible solution of
problem 𝑃

𝑐

and 𝐸𝐷
𝑐

, respectively; moreover

𝑥 ∈ ⋂

{𝑥

󸀠
∈𝑋:

̃

𝜙

𝑐
(𝑥

󸀠
,𝛼,𝛽)∈𝜑

𝑐
(𝛼,𝛽)}

ARG-MIN
𝑐

(𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽) , 𝑋) .

(23)

Then we have 𝜑
𝑐

(𝛼, 𝛽) ≺ 𝑓(𝑥).
Proof. Let 𝜙

𝑐

(𝑥
󸀠

, 𝛼, 𝛽) ∈ 𝜑
𝑐

(𝛼, 𝛽). For any 𝑥 ∈

ARG-MIN
𝑐

(𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽), 𝑋), we have

𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽) ≺ 𝜙
𝑐

(𝑥, 𝛼, 𝛽)

= 𝑓 (𝑥) ⊕ ⟨⟨𝛼,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽,max (0̃, 𝑔 (𝑥))⟩⟩ .

(24)

Since 𝑥 is a feasible solution of problem 𝑃
𝑐

, we obtain |ℎ̃(𝑥)| =
0̃, max(0̃, 𝑔(𝑥)) = 0̃. Thus,

𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽) ≺ 𝑓 (𝑥) . (25)

This inequality is satisfied for all 𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽) ∈ 𝜑
𝑐

(𝛼, 𝛽).
According to Definition 3, therefore we have

𝜑
𝑐

(𝛼, 𝛽) ≺ 𝑓 (𝑥) . (26)

Theorem 25 (weak extended duality theorem for CFNPs).
Suppose that

𝑂𝑃𝑀
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋) ⊆ ⋂

{𝛼∈R𝑚 ,𝛽∈R𝑟:(𝛼,𝛽)∈𝑂𝑃𝑀
𝐸𝐷𝑐

(𝜑

𝑐
,R𝑚
+
,R𝑟
+
)}

⋂

{𝑥

󸀠
∈𝑋:

̃

𝜙

𝑐
(𝑥

󸀠
,𝛼,𝛽)∈𝜑

𝑐
(𝛼,𝛽)}

ARG-MIN
𝑐

(𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽) , 𝑋) . (27)

Then MAX
𝐸𝐷

𝑐

(𝜑
𝑐

,R𝑚

+

,R𝑟

+

) ≺ MIN
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋).

Proof. If 𝑥 ∈ OPM
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋), then 𝑓(𝑥) ∈ MIN
𝑐

(𝑓, ℎ̃,

𝑔, 𝑋). According toTheorem 24, we have 𝜑
𝑐

(𝛼, 𝛽) ≺ 𝑓(𝑥) if 𝑥
satisfies formula (23). Therefore, from Definition 3, if

OPM
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋)

⊆ ⋂

{𝑥

󸀠
∈𝑋:

̃

𝜙

𝑐
(𝑥

󸀠
,𝛼,𝛽)∈𝜑

𝑐
(𝛼,𝛽)}

ARG-MIN
𝑐

(𝜙
𝑐

(𝑥
󸀠

, 𝛼, 𝛽) , 𝑋) ,

(28)

then

𝜑
𝑐

(𝛼, 𝛽) ≺ MIN
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋) . (29)

Moreover, if (𝛼, 𝛽) ∈ OPMED
𝑐

(𝜑
𝑐

,R𝑚

+

,R𝑟

+

), then

𝜑
𝑐

(𝛼, 𝛽) ∈ MAXED
𝑐

(𝜑
𝑐

,R
𝑚

+

,R
𝑟

+

) . (30)

Therefore, according to Definition 3, we have

MAXED
𝑐

(𝜑
𝑐

,R
𝑚

+

,R
𝑟

+

) ≺ MIN
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋) . (31)
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Definition 26. Let 𝑃
𝑐

be a continuous fuzzy nonlinear pro-
gramming problem and let ED

𝑐

be an extended dual con-
tinuous fuzzy nonlinear programming problem. There is no
duality gap between 𝑃

𝑐

and ED
𝑐

if there exist 𝑓(𝑥∗) ∈

MIN
𝑐

(𝑓, ℎ̃, 𝑔, 𝑋) and 𝜑
𝑐

(𝛼
∗

, 𝛽
∗

) ∈ MAXED
𝑐

(𝜑
𝑐

,R𝑚

+

,R𝑟

+

),
such that 𝑓(𝑥∗) ∈ 𝜑

𝑐

(𝛼
∗

, 𝛽
∗

).

Theorem27. Suppose𝑥∗ ∈ 𝑋 is a solution of continuous fuzzy
nonlinear programming problem𝑃

𝑐

; then there exist finite 𝛼∗ ≥
0 and 𝛽∗ ≥ 0 such that

𝑓 (𝑥
∗

) ∈ MIN
𝑐

(𝜙
𝑐

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , 𝑋) ,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝛼
∗∗

> 𝛼
∗

, 𝛽
∗∗

> 𝛽
∗

.

(32)

Proof. Since𝑥∗ is a solution of problem𝑃
𝑐

, we have ℎ̃(𝑥∗) = 0̃,
𝑔(𝑥

∗

) ≺ 0̃, and there exists no 𝑥 ∈ 𝑋 such that 𝑓(𝑥∗) ≻ 𝑓(𝑥).
We set the following 𝛼∗ and 𝛽∗:

𝛼
∗

𝑖

= max
𝑥∈𝑋,

󵄨

󵄨

󵄨

󵄨

󵄨

̃

ℎ

𝑖
(𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

≻

̃

0

{
𝑓
𝐿

𝛼

(𝑥
∗

) − 𝑓
𝐿

𝛼

(𝑥)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

,
𝑓
𝑈

𝛼

(𝑥
∗

) − 𝑓
𝑈

𝛼

(𝑥)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

} ,

𝑖 = 1, . . . , 𝑚.

𝛽
∗

𝑗

= max
𝑥∈𝑋,𝑔

𝑗
(𝑥)≻

̃

0

{
𝑓
𝐿

𝛼

(𝑥
∗

) − 𝑓
𝐿

𝛼

(𝑥)

𝑔
𝐿

𝑗𝛼

(𝑥)
,
𝑓
𝑈

𝛼

(𝑥
∗

) − 𝑓
𝑈

𝛼

(𝑥)

𝑔
𝑈

𝑗𝛼

(𝑥)
} ,

𝑗 = 1, . . . , 𝑟.

(33)

Suppose𝑋󸀠 be the set of feasible solutions of 𝑃
𝑐

.

(1) For any 𝑥 ∈ 𝑋
󸀠, that is to say that 𝑥 is a feasible

solution of 𝑃
𝑐

, then ℎ̃(𝑥) = 0̃, 𝑔(𝑥) ≺ 0̃. Thus we have

𝜙
𝑐

(𝑥, 𝛼
∗∗

, 𝛽
∗∗

)

= 𝑓 (𝑥) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥)

󵄨󵄨󵄨󵄨󵄨
⟩⟩ ⊕ ⟨⟨𝛽

∗∗

,max (0̃, 𝑔 (𝑥))⟩⟩

= 𝑓 (𝑥) .

(34)

Therefore there exists no 𝑥 ∈ 𝑋󸀠 such that 𝑓(𝑥∗) ≻
𝑓(𝑥) = 𝜙

𝑐

(𝑥, 𝛼
∗∗

, 𝛽
∗∗

).

(2) For any 𝑥 ∈ 𝑋 but 𝑥 ∉ 𝑋
󸀠, that is to say that 𝑥

is an infeasible solution of 𝑃
𝑐

. Assume 𝑥 violates an
equality constraint ℎ̃

𝑖

(⋅) (the case with an inequality

constraint function is similar), so |ℎ̃
𝑖

(𝑥)| ̸= 0̃. We also
have |ℎ̃𝐿

𝑖𝛼

(𝑥)| ̸= 0 and |ℎ̃𝑈
𝑖𝛼

(𝑥)| ̸= 0, for all 𝛼 ∈ [0, 1]

(𝜙
𝑐

(𝑥, 𝛼
∗∗

, 𝛽
∗∗

))
𝐿

𝛼

= (𝑓 (𝑥) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥))⟩⟩)
𝐿

𝛼

= 𝑓
𝐿

𝛼

(𝑥) +

𝑚

∑

𝑖=1

𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

+

𝑟

∑

𝑗=1

𝛽
∗∗

𝑗

×max (0, 𝑔𝐿
𝑖𝛼

(𝑥))

≥ 𝑓
𝐿

𝛼

(𝑥) + 𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

> 𝑓
𝐿

𝛼

(𝑥) + (
𝑓
𝐿

𝛼

(𝑥
∗

) − 𝑓
𝐿

𝛼

(𝑥)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

) ×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨
= 𝑓

𝐿

𝛼

(𝑥
∗

) ,

(𝜙
𝑐

(𝑥, 𝛼
∗∗

, 𝛽
∗∗

))
𝑈

𝛼

= (𝑓 (𝑥) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥))⟩⟩)
𝑈

𝛼

= 𝑓
𝑈

𝛼

(𝑥) +

𝑚

∑

𝑖=1

𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

+

𝑟

∑

𝑗=1

𝛽
∗∗

𝑗

×max (0, 𝑔𝑈
𝑖𝛼

(𝑥))

≥ 𝑓
𝑈

𝛼

(𝑥) + 𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

> 𝑓
𝑈

𝛼

(𝑥) + (
𝑓
𝑈

𝛼

(𝑥
∗

) − 𝑓
𝑈

𝛼

(𝑥)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨

)×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥)
󵄨󵄨󵄨󵄨󵄨
= 𝑓

𝑈

𝛼

(𝑥
∗

) .

(35)

Thus,

𝜙
𝑐

(𝑥, 𝛼
∗∗

, 𝛽
∗∗

) = 𝑓 (𝑥) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥))⟩⟩ ≻ 𝑓 (𝑥∗) .
(36)

Therefore,

𝑓 (𝑥
∗

) ∈ MIN
𝑐

(𝜙
𝑐

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , 𝑋) . (37)

Theorem 28 (strong extended duality theorem for CFNPs).
Under the assumptions and results in Theorem 27, we further
assume

𝑥
∗

∈ ⋂

{𝛼∈R𝑚 ,𝛽∈R𝑟:𝛼 ̸=𝛼

∗∗
,𝛽 ̸=𝛽

∗∗
}

⋂

{𝑥∈𝑋:

̃

𝜙

𝑐
(𝑥,𝛼,𝛽)∈𝜑

𝑐
(𝛼,𝛽)}

ARG-MIN
𝑐

(𝜙
𝑐

(𝑥, 𝛼, 𝛽) , 𝑋) . (38)

Then there is no duality gap between the problem 𝑃
𝑐

and 𝐸𝐷
𝑐

.
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Proof. According toTheorem 27, there exist finite 𝛼∗ ≥ 0 and
𝛽
∗

≥ 0 such that

𝑓 (𝑥
∗

) ∈ MIN
𝑐

(𝜙
𝑐

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , 𝑋) ,

for any 𝛼∗∗ > 𝛼∗, 𝛽
∗∗

> 𝛽
∗

.

(39)

Then we have 𝑓(𝑥∗) ∈ 𝜑
𝑐

(𝛼
∗∗

, 𝛽
∗∗

). From Theorem 24, we
have 𝑓(𝑥∗) ≻ 𝜑

𝑐

(𝛼, 𝛽) if

𝑥
∗

∈ ⋂

{𝑥∈𝑋:

̃

𝜙

𝑐
(𝑥,𝛼,𝛽)∈𝜑

𝑐
(𝛼,𝛽)}

ARG-MIN
𝑐

(𝜙
𝑐

(𝑥, 𝛼, 𝛽) , 𝑋) . (40)

Thus, according to the known condition, we have 𝑓(𝑥∗) ≻
𝜑
𝑐

(𝛼, 𝛽) for all 𝛼 ̸= 𝛼
∗∗, 𝛽 ̸= 𝛽

∗∗, 𝛼 ≥ 0, and 𝛽 ≥ 0.
Therefore, (𝛼∗∗, 𝛽∗∗) is a solution of extended dual

continuous fuzzy nonlinear programming problem ED
𝑐

; that
is, 𝜑

𝑐

(𝛼
∗∗

, 𝛽
∗∗

) ∈ MAXED
𝑐

(𝜑
𝑐

,R𝑚

+

,R𝑟

+

). This shows that
there is no duality gap between the problem 𝑃

𝑐

and ED
𝑐

.

4.2. Extended Duality Theorem for DFNPs

Theorem 29. Suppose 𝑦 and (𝛼, 𝛽) are feasible solution of
problem 𝑃

𝑑

and 𝐸𝐷
𝑑

, respectively; moreover

𝑦 ∈ ⋂

{𝑦

󸀠
∈𝑌:

̃

𝜙

𝑑
(𝑦

󸀠
,𝛼,𝛽)∈𝜑

𝑑
(𝛼,𝛽)}

ARG-MIN
𝑑

(𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽) , 𝑌) .

(41)

Then we have 𝜑
𝑑

(𝛼, 𝛽) ≺ 𝑓(𝑦).

Proof. Let 𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽) ∈ 𝜑
𝑑

(𝛼, 𝛽). For any 𝑦 ∈

ARG-MIN
𝑑

(𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽), 𝑌), we have

𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽) ≺ 𝜙
𝑑

(𝑦, 𝛼, 𝛽)

= 𝑓 (𝑦) ⊕ ⟨⟨𝛼,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩ ⊕ ⟨⟨𝛽,max (0̃, 𝑔 (𝑦))⟩⟩ .

(42)

Since𝑦 is a feasible solution of problem𝑃
𝑑

, we obtain |ℎ̃(𝑦)| =
0̃, max(0̃, 𝑔(𝑦)) = 0̃. Thus,

𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽) ≺ 𝑓 (𝑦) . (43)

This inequality is satisfied for all 𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽) ∈ 𝜑
𝑑

(𝛼, 𝛽).
According to Definition 3, therefore we have

𝜑
𝑑

(𝛼, 𝛽) ≺ 𝑓 (𝑦) . (44)

Theorem 30 (weak extended duality theorem for DFNPs).
Suppose that

OPM
𝑑

(𝑓, ℎ̃, 𝑔, 𝑌) ⊆ ⋂

{𝛼∈R𝑚 ,𝛽∈R𝑟:(𝛼,𝛽)∈OPMED
𝑑

(𝜑

𝑑
,R𝑚
+
,R𝑟
+
)}

⋂

{𝑦

󸀠
∈𝑌:

̃

𝜙

𝑑
(𝑦

󸀠
,𝛼,𝛽)∈𝜑

𝑑
(𝛼,𝛽)}

ARG-MIN
𝑑

(𝜙
𝑑

(𝑦
󸀠

, 𝛼, 𝛽) , 𝑌) . (45)

Then,MAX
𝐸𝐷

𝑑

(𝜑
𝑑

,R𝑚

+

,R𝑟

+

) ≺ MIN
𝑑

(𝑓, ℎ̃, 𝑔, 𝑌).

Proof. The proof is similar to the proof of Theorem 25.

Definition 31. Let 𝑃
𝑑

be a discrete fuzzy nonlinear program-
ming problem and let ED

𝑑

be an extended dual discrete fuzzy
nonlinear programming problem. There is no duality gap
between 𝑃

𝑑

and ED
𝑑

if there exist 𝑓(𝑦∗) ∈ MIN
𝑑

(𝑓, ℎ̃, 𝑔, 𝑌)

and 𝜑
𝑑

(𝛼
∗

, 𝛽
∗

) ∈ MAXED
𝑑

(𝜑
𝑑

,R𝑚

+

,R𝑟

+

), such that 𝑓(𝑦∗) ∈
𝜑
𝑑

(𝛼
∗

, 𝛽
∗

).

Theorem 32. Suppose 𝑦∗ ∈ 𝑌 is a solution of discrete fuzzy
nonlinear programming problem𝑃

𝑑

; then there exist finite𝛼∗ ≥
0 and 𝛽∗ ≥ 0 such that

𝑓 (𝑦
∗

) ∈ MIN
𝑑

(𝜙
𝑑

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , 𝑌) ,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝛼
∗∗

> 𝛼
∗

, 𝛽
∗∗

> 𝛽
∗

.

(46)

The proof of Theorem 32 is similar toTheorem 27, so we do not
repeat it again.
Theorem 33 (strong extended duality theorem for DNLPs).
Under the assumptions and results in Theorem 32, assume

𝑦
∗

∈ ⋂

{𝛼∈R𝑚,𝛽∈R𝑟 :𝛼 ̸=𝛼

∗∗
,𝛽 ̸=𝛽

∗∗
}

⋂

{𝑦∈𝑌:

̃

𝜙

𝑑
(𝑦,𝛼,𝛽)∈𝜑

𝑑
(𝛼,𝛽)}

ARG-MIN
𝑑

(𝜙
𝑑

(𝑦, 𝛼, 𝛽) , 𝑌) . (47)

Then there is no duality gap between the problem 𝑃
𝑑

and 𝐸𝐷
𝑑

. Proof. The proof is similar to the proof of Theorem 28.
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4.3. Extended Duality Theorem for MFNPs

Theorem 34. Suppose (𝑥, 𝑦) and (𝛼, 𝛽) are feasible solution of
problem 𝑃

𝑚

and 𝐸𝐷
𝑚

, respectively; moreover

(𝑥, 𝑦) ∈ ⋂

{(𝑥

󸀠
,𝑦

󸀠
)∈(𝑋,𝑌):

̃

𝜙

𝑚
(𝑥

󸀠
,𝑦

󸀠
,𝛼,𝛽)∈𝜑

𝑚
(𝛼,𝛽)}

ARG-MIN
𝑚

(𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) , (𝑋, 𝑌)) . (48)

Then we have 𝜑
𝑚

(𝛼, 𝛽)≺ 𝑓(𝑥, 𝑦).

Proof. Let 𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) ∈ 𝜑
𝑚

(𝛼, 𝛽). For any (𝑥, 𝑦) ∈

ARG-MIN
𝑚

(𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽), (𝑋, 𝑌)), we have

𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) ≺ 𝜙
𝑚

(𝑥, 𝑦, 𝛼, 𝛽)

= 𝑓 (𝑥, 𝑦) ⊕ ⟨⟨𝛼,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽,max (0̃, 𝑔 (𝑥, 𝑦))⟩⟩ .

(49)

Since (𝑥, 𝑦) is a feasible solution of problem 𝑃
𝑚

, we obtain
|ℎ̃(𝑥, 𝑦)| = 0̃, max(0̃, 𝑔(𝑥, 𝑦)) = 0̃. Thus,

𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) ≺ 𝑓 (𝑥, 𝑦) . (50)

This inequality is satisfied for all 𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) ∈ 𝜑
𝑚

(𝛼, 𝛽).
According to Definition 3, therefore we obtain

𝜑
𝑚

(𝛼, 𝛽) ≺ 𝑓 (𝑥, 𝑦) . (51)

Theorem 35 (weak extended duality theorem for MFNPs).
Suppose that

𝑂𝑃𝑀
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌))

⊆ ⋂

{𝛼∈R𝑚 ,𝛽∈R𝑟:(𝛼,𝛽)∈𝑂𝑃𝑀
𝐸𝐷𝑚

(𝜑

𝑚
,R𝑚
+
,R𝑟
+
)}

⋂

{(𝑥

󸀠
,𝑦

󸀠
)∈(𝑋,𝑌):

̃

𝜙

𝑚
(𝑥

󸀠
,𝑦

󸀠
,𝛼,𝛽)∈𝜑

𝑚
(𝛼,𝛽)}

ARG-MIN
𝑚

(𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) , (𝑋, 𝑌)) .
(52)

ThenMAX
𝐸𝐷

𝑚

(𝜑
𝑚

,R𝑚

+

,R𝑟

+

) ≺ MIN
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)).

Proof. If (𝑥, 𝑦) ∈ OPM
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)), then 𝑓(𝑥, 𝑦) ∈
MIN

𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)). According to Theorem 34, we have

𝜑
𝑚

(𝛼, 𝛽) ≺ 𝑓(𝑥, 𝑦) if 𝑥 satisfies formula (48).Therefore, from
Definition 3, if

OPM
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)) ⊆ ⋂

{(𝑥

󸀠
,𝑦

󸀠
)∈(𝑋,𝑌):

̃

𝜙

𝑚
(𝑥

󸀠
,𝑦

󸀠
,𝛼,𝛽)∈𝜑

𝑚
(𝛼,𝛽)}

ARG-MIN
𝑚

(𝜙
𝑚

(𝑥
󸀠

, 𝑦
󸀠

, 𝛼, 𝛽) , (𝑋, 𝑌)) , (53)

then

𝜑
𝑚

(𝛼, 𝛽) ≺ MIN
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)) . (54)

Moreover, if (𝛼, 𝛽) ∈ OPMED
𝑚

(𝜑
𝑚

,R𝑚

+

,R𝑟

+

), then

𝜑
𝑚

(𝛼, 𝛽) ∈ MAXED
𝑚

(𝜑
𝑚

,R
𝑚

+

,R
𝑟

+

) . (55)

Therefore, according to Definition 3, we have

MAXED
𝑚

(𝜑
𝑚

,R
𝑚

+

,R
𝑟

+

) ≺ MIN
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)) . (56)

Definition 36. Let 𝑃
𝑚

be a mixed fuzzy nonlinear
programming problem and let ED

𝑚

be an extended

dual mixed fuzzy nonlinear programming problem.
There is no duality gap between 𝑃

𝑚

and ED
𝑚

if
there exist 𝑓(𝑥

∗

, 𝑦
∗

) ∈ MIN
𝑚

(𝑓, ℎ̃, 𝑔, (𝑋, 𝑌)) and
𝜑
𝑚

(𝛼
∗

, 𝛽
∗

) ∈ MAXED
𝑚

(𝜑
𝑚

,R𝑚

+

,R𝑟

+

), such that 𝑓(𝑥∗, 𝑦∗) ∈
𝜑
𝑚

(𝛼
∗

, 𝛽
∗

).

Theorem 37. Suppose (𝑥∗, 𝑦∗) ∈ (𝑋, 𝑌) is a solution of
continuous fuzzy nonlinear programming problem 𝑃

𝑚

; then
there exist finite 𝛼∗ ≥ 0 and 𝛽∗ ≥ 0 such that

𝑓 (𝑥
∗

, 𝑦
∗

) ∈ MIN
𝑚

(𝜙
𝑚

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , (𝑋, 𝑌)) ,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝛼
∗∗

> 𝛼
∗

, 𝛽
∗∗

> 𝛽
∗

.

(57)
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Proof. Since (𝑥∗, 𝑦∗) is a solution of problem 𝑃
𝑚

, we have
ℎ̃(𝑥

∗

, 𝑦
∗

) = 0̃, 𝑔(𝑥∗, 𝑦∗) ≺ 0̃, and there exist no (𝑥, 𝑦) ∈
(𝑋, 𝑌) such that 𝑓(𝑥∗, 𝑦∗) ≻ 𝑓(𝑥, 𝑦). We set the following
𝛼
∗ and 𝛽∗:

𝛼
∗

𝑖

= max
(𝑥,𝑦)∈(𝑋,𝑌),|

̃

ℎ

𝑖
(𝑥,𝑦)|≻

̃

0

{
𝑓
𝐿

𝛼

(𝑥
∗

, 𝑦
∗

) − 𝑓
𝐿

𝛼

(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

,

𝑓
𝑈

𝛼

(𝑥
∗

, 𝑦
∗

) − 𝑓
𝑈

𝛼

(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

} ,

𝑖 = 1, . . . , 𝑚.

𝛽
∗

𝑗

= max
(𝑥,𝑦)∈(𝑋,𝑌),𝑔

𝑗
(𝑥,𝑦)≻

̃

0

{
𝑓
𝐿

𝛼

(𝑥
∗

, 𝑦
∗

) − 𝑓
𝐿

𝛼

(𝑥, 𝑦)

𝑔
𝐿

𝑗𝛼

(𝑥, 𝑦)
,

𝑓
𝑈

𝛼

(𝑥
∗

, 𝑦
∗

) − 𝑓
𝑈

𝛼

(𝑥, 𝑦)

𝑔
𝑈

𝑗𝛼

(𝑥, 𝑦)
} ,

𝑗 = 1, . . . , 𝑟.

(58)

Suppose (𝑋󸀠

, 𝑌
󸀠

) be the set of feasible solutions of 𝑃
𝑚

.

(1) For any (𝑥, 𝑦) ∈ (𝑋󸀠

, 𝑌
󸀠

), that is to say that (𝑥, 𝑦) is a
feasible solution of 𝑃

𝑚

, then ℎ̃(𝑥, 𝑦) = 0̃, 𝑔(𝑥, 𝑦) ≺ 0̃.
Thus we have

𝜙
𝑚

(𝑥, 𝑦, 𝛼
∗∗

, 𝛽
∗∗

)

= 𝑓 (𝑥, 𝑦) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥, 𝑦))⟩⟩ = 𝑓 (𝑥, 𝑦) .

(59)

Therefore there exists no (𝑥, 𝑦) ∈ (𝑋󸀠

, 𝑌
󸀠

) such that
𝑓(𝑥

∗

, 𝑦
∗

) ≻ 𝑓(𝑥, 𝑦) = 𝜙
𝑚

(𝑥, 𝑦, 𝛼
∗∗

, 𝛽
∗∗

).

(2) For any (𝑥, 𝑦) ∈ (𝑋, 𝑌) but (𝑥, 𝑦) ∉ (𝑋󸀠

, 𝑌
󸀠

), that
is to say that (𝑥, 𝑦) is an infeasible solution of 𝑃

𝑚

.
Assume (𝑥, 𝑦) violates an equality constraint ℎ̃

𝑖

(⋅) (the
case with an inequality constraint function is similar),
so |ℎ̃

𝑖

(𝑥, 𝑦)| ̸= 0̃. We also have |ℎ̃𝐿
𝑖𝛼

(𝑥, 𝑦)| ̸= 0 and
|ℎ̃

𝑈

𝑖𝛼

(𝑥, 𝑦)| ̸= 0, for all 𝛼 ∈ [0, 1]

(𝜙
𝑚

(𝑥, 𝑦, 𝛼
∗∗

, 𝛽
∗∗

))
𝐿

𝛼

= (𝑓 (𝑥, 𝑦) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥, 𝑦))⟩⟩)
𝐿

𝛼

= 𝑓
𝐿

𝛼

(𝑥, 𝑦) +

𝑚

∑

𝑖=1

𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

+

𝑟

∑

𝑗=1

𝛽
∗∗

𝑗

×max (0, 𝑔𝐿
𝑖𝛼

(𝑥, 𝑦))

≥ 𝑓
𝐿

𝛼

(𝑥, 𝑦) + 𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

> 𝑓
𝐿

𝛼

(𝑥, 𝑦) + (
𝑓
𝐿

𝛼

(𝑥
∗

, 𝑦
∗

) − 𝑓
𝐿

𝛼

(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

)

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝐿

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
= 𝑓

𝐿

𝛼

(𝑥
∗

, 𝑦
∗

) ,

(𝜙
𝑚

(𝑥, 𝑦, 𝛼
∗∗

, 𝛽
∗∗

))
𝑈

𝛼

= (𝑓 (𝑥, 𝑦) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥, 𝑦))⟩⟩)
𝑈

𝛼

= 𝑓
𝑈

𝛼

(𝑥, 𝑦) +

𝑚

∑

𝑖=1

𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

+

𝑟

∑

𝑗=1

𝛽
∗∗

𝑗

×max (0, 𝑔𝑈
𝑖𝛼

(𝑥, 𝑦))

≥ 𝑓
𝑈

𝛼

(𝑥, 𝑦) + 𝛼
∗∗

𝑖

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

> 𝑓
𝑈

𝛼

(𝑥, 𝑦) + (
𝑓
𝑈

𝛼

(𝑥
∗

, 𝑦
∗

) − 𝑓
𝑈

𝛼

(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

)

×
󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝑈

𝑖𝛼

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
= 𝑓

𝑈

𝛼

(𝑥
∗

, 𝑦
∗

) .

(60)

Thus,

𝜙
𝑚

(𝑥, 𝑦, 𝛼
∗∗

, 𝛽
∗∗

)

= 𝑓 (𝑥, 𝑦) ⊕ ⟨⟨𝛼
∗∗

,
󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
⟩⟩

⊕ ⟨⟨𝛽
∗∗

,max (0̃, 𝑔 (𝑥, 𝑦))⟩⟩ ≻ 𝑓 (𝑥∗, 𝑦∗) .

(61)

Therefore,

𝑓 (𝑥
∗

, 𝑦
∗

) ∈ MIN
𝑚

(𝜙
𝑚

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , (𝑋, 𝑌)) . (62)

Theorem 38 (strong extended duality theorem for MFNPs).
Under the assumptions and results in Theorem 37, assume
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(𝑥
∗

, 𝑦
∗

) ∈ ⋂

{𝛼∈R𝑚 ,𝛽∈R𝑟:𝛼 ̸=𝛼

∗∗
,𝛽 ̸=𝛽

∗∗
}

⋂

{(𝑥,𝑦)∈(𝑋,𝑌):

̃

𝜙

𝑚
(𝑥,𝑦,𝛼,𝛽)∈𝜑

𝑚
(𝛼,𝛽)}

ARG-MIN
𝑚

(𝜙
𝑚

(𝑥, 𝑦, 𝛼, 𝛽) , (𝑋, 𝑌)) . (63)

Then there is no duality gap between the problem𝑃
𝑚

and 𝐸𝐷
𝑚

.

Proof. According toTheorem 37, there exist finite 𝛼∗ ≥ 0 and
𝛽
∗

≥ 0 such that

𝑓 (𝑥
∗

, 𝑦
∗

) ∈ MIN
𝑚

(𝜙
𝑚

(⋅, 𝛼
∗∗

, 𝛽
∗∗

) , (𝑋, 𝑌)) ,

for any 𝛼∗∗ > 𝛼∗, 𝛽
∗∗

> 𝛽
∗

.

(64)

Then we have 𝑓(𝑥∗, 𝑦∗) ∈ 𝜑
𝑚

(𝛼
∗∗

, 𝛽
∗∗

). From Theorem 34,
we have 𝑓(𝑥∗, 𝑦∗) ≻ 𝜑

𝑚

(𝛼, 𝛽) if

(𝑥
∗

, 𝑦
∗

) ∈ ⋂

{(𝑥,𝑦)∈(𝑋,𝑌):

̃

𝜙

𝑚
(𝑥,𝑦,𝛼,𝛽)∈𝜑

𝑚
(𝛼,𝛽)}

ARG-MIN
𝑚

(𝜙
𝑚

(𝑥, 𝑦, 𝛼, 𝛽) , (𝑋, 𝑌)) . (65)

Thus, according to the known condition, we have
𝑓(𝑥

∗

, 𝑦
∗

) ≻ 𝜑
𝑚

(𝛼, 𝛽) for all 𝛼 ̸= 𝛼
∗∗, 𝛽 ̸= 𝛽

∗∗, 𝛼 ≥ 0,
and 𝛽 ≥ 0.

Therefore, (𝛼∗∗, 𝛽∗∗) is a solution of extended dual
mixed fuzzy nonlinear programming problem ED

𝑚

; that is,
𝜑
𝑚

(𝛼
∗∗

, 𝛽
∗∗

) ∈ MAXED
𝑚

(𝜑
𝑚

,R𝑚

+

,R𝑟

+

).This shows that there
is no duality gap between the problem 𝑃

𝑚

and ED
𝑚

.

5. Conclusions

In this paper, we proposed the fuzzy optimization problems
in continuous, discrete, and mixed spaces and defined the
extended duality problems, respectively. Moreover, we pre-
sented the theory of extended duality for fuzzy nonlinear pro-
gramming problems.This approach overcomes the limitation
of conventional duality theory by providing a duality condi-
tion that leads to no duality gap for general nonconvex fuzzy
optimization problems in continuous, discrete, and mixed
spaces. Based on the definition of new penalty function, our
theory first transforms the fuzzy nonlinear programming to
an equivalent extended dual problem and then solves the
dual problem and finally shows no duality gap between the
original problem and the extended dual problem.
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