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We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First,
we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of
model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher
information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw
some concluding remarks.

1. Introduction

Finite mixture models have continued to receive increasing
attention over the years from both practical and theoretical
points of view. As stated by Al-Hussaini and Sultan [1],
direct applications of the finite mixture models are in many
fields of science and engineering. Indirect applications of the
mixturemodels include outliers, cluster analysis, latent struc-
ture models, modeling of prior densities, empirical Bayes
method, and nonparametric (kernel) density estimation. For
detailed discussions on properties, estimation methods, and
applications of finite mixture distributions, one may refer
to Everitt and Hand [2], Titterington et al. [3], McLachlan
and Basford [4], Lindsay [5], McLachlan and Krishnan [6],
and McLachlan and Peel [7]. Al-Hussaini and Sultan [1] have
reviewed the properties and estimation techniques for finite
mixtures of some lifetime models. In this paper, we study the
two-component mixture of inverse Weibull and lognormal
distributions as a lifetime model and discuss its reliability
properties as well as the MLE estimation method.

The MIWLND has its pdf as
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where the pdf of the first component (inverse Weibull) is
given by
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and the pdf of the second component (lognormal) is given by
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, 𝛼, 𝛽, 𝜇, 𝜎), Θ

1
= (𝛼, 𝛽), and Θ

2
= (𝜇, 𝜎). For an

excellent discussion on the properties of these two mixing
distributions and related inferential procedures, one may
refer to Johnson et al. [8].

Evidently, the cdf of the MIWLND is given by
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(5)
with Φ(⋅) being the cdf of the standard normal distribution.
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As pointed out by Crow and Shimizu [9] and Johnson et
al. [8], the lognormal distribution has found important appli-
cations in a wide variety of fields. Some recent articles dealing
with lognormal distribution include the works of Kim and
Yum [10] and Lin et al. [11]. Mixturemodels of two lognormal
distributions have been discussed by Al-Hussaini et al. [12].
The inverse Weibull distribution has been fitted for some
pieces of data from reliability engineering and biomedical
studies; see Drapella [13]. Recently, Sultan et al. [14, 15] have
discussed some properties of amixture of two inverseWeibull
distributions and the hypotheses testing problem regarding
the number of components.

It may be noted that, while the lognormal and inverse
Weibull distributions are always unimodal, mixing an inverse
Weibull distribution with a lognormal distribution produces
a model with a flexible hazard function which covers both
unimodal and bimodal shapes and therefore has a great
potential while fitting practical data.

The rest of this paper is organized as follows. In Section 2,
we discuss some basic properties of the MIWLND. In
Section 3, we discuss the problem of estimating all five
unknown parameters of the MIWLND in (1) through the
method of maximum likelihood. In Section 4, we illustrate
the usefulness of the proposed model by fitting it to a real
dataset. We derive expressions for the elements of the Fisher
information matrix, and these are presented in the appendix.
Finally, we draw some concluding remarks in Section 5.

2. Some Properties

Keller et al. [16] and Jiang et al. [17] have discussed some
properties of the inverse Weibull distribution in (2), while
properties of the lognormal distribution in (3) are rather well-
known; see, for example, Crow and Shimizu [9] and Johnson
et al. [8]. In this section, we discuss some properties of the
MIWLND by combining the corresponding results of the
inverse Weibull and lognormal distributions.

2.1. Mean and Variance. The mean of the MIWLND in (1) is
simply given by
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while the variance is given by
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where Γ(⋅) denotes the complete gamma function.

Table 1: The mode(s) and median of the MIWLND.

Θ = (𝑝
1
, 𝛼, 𝛽, 𝜇, 𝜎) Mode(s) Median

0.2, 2, 1, 2, 1 0.2561 5.6778
0.3, 2, 1, 2, 1 0.2535 4.7407
0.5, 2, 1, 2, 1 0.2514 2.7830
0.6, 2, 1, 2, 1 0.2511 1.9410
0.8, 2, 1, 2, 1 0.2503 1.0415
0.2, 1.5, 1, 1, 0.12 0.3333, 2.6785 25.1648
0.3, 1.5, 1, 1, 0.12 0.3333, 2.6778 9.3579
0.5, 1.5, 1, 1, 0.12 0.3333, 2.6755 0.6827
0.6, 1.5, 1, 1, 0.12 0.3333, 2.6735 0.5563
0.8, 1.5, 1, 1, 0.12 0.3333, 2.6633 0.4735

2.2. Mode and Median. Themode (modes) of the MIWLND
is (are) obtained by solving the following nonlinear equation
with respect to 𝑡:
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From (4), the median of theMIWLND is obtained by solving
the following nonlinear equation with respect to 𝑡:
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Table 1 presents the modes and median of the MIWLND for
some selected choices of the parameters.

The values of the parameters 𝑝
1
, 𝛼, 𝛽, 𝜇, and 𝜎 in Table 1

were chosen suitably so as to demonstrate the unimodal and
bimodal cases of the density function of the proposedmixture
model. From Table 1, we see that the modes are only slightly
affected by changes in the value of the mixing proportion 𝑝

1
,

while the median changes significantly with 𝑝
1
. Figures 1(a)

and 2(a) display some typical shapes of the pdf of the
MIWLND.

2.3. Reliability and Failure Rate Functions. The reliability
function (survival function) of the MIWLND is evidently

𝑅 (𝑡) = 𝑝
1
[1 − 𝑒−(𝛼𝑡)

−𝛽

] + 𝑝
2
[1 − Φ(

log 𝑡 − 𝜇

𝜎
)] , 𝑡 ≥ 0.

(10)

By using (3) and (4), the failure rate function (hazard rate
function HRF) of the MIWLND is given by
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Figure 1: (a) Density functions components and theirmixturewith parameters (0.5, 2, 1, 2, 1)—unimodal case. (b)HR functions: components
and their mixture with parameters (0.5, 2, 1, 2, 1)—unimodal case.
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Figure 2: (a) Density functions: components and their mixture with parameters (0.5, 1.5, 1, 1, 0.12)—bimodal case. (b) HR functions:
components and their mixture with parameters (0.5, 1.5, 1, 1, 0.12)—bimodal case.

which can be expressed, in view of the result by Al-Hussaini
and Sultan [1], as
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The derivative of the hazard rate function is then given by
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The failure rate function of theMIWLND in (11) possesses the
following limits.

Lemma 1. One has

lim
𝑡→0

𝑟 (𝑡) = 0, (15)

lim
𝑡→∞

𝑟 (𝑡) = 0. (16)
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in the same interval. So 𝑟(𝑡) increases in (0, 𝑡
1
). Moreover, as

𝑡 → ∞, 𝑟(𝑡) → 0. For this reason, in the interval (𝑡
1
,∞),

two cases arise.

(a) Unimodal Case. Suppose 𝑡∗ is the maximum point of the
failure rate of the mixture. When the difference Δ between
𝑟
1
(𝑡) and 𝑟

2
(𝑡) in the interval (𝑡

1
, 𝑡∗) is small so that the first

two terms of 𝑟(𝑡) in (14) dominate the third term, then 𝑟(𝑡) >
0 in (𝑡

1
, 𝑡∗). When the difference Δ increases to the point that

the third term in 𝑟(𝑡) dominates the first two terms, then
𝑟(𝑡) < 0 in (𝑡∗,∞). Summarizing, we have the failure rate of
the MIWLND increasing in (0, 𝑡∗) and decreasing in (𝑡∗,∞),
reaching zero as 𝑡 → ∞; see Figure 1(b), for example.

(b) Bimodal Case. Suppose 𝑡∗ and 𝑡∗∗ denote, respectively, the
smallest and the largest maximum points of the failure rate of
the mixture. When the difference Δ between 𝑟

1
(𝑡) and 𝑟

2
(𝑡)

in the interval (𝑡
1
, 𝑡∗) is small, where 𝑡

1
< 𝑡∗ < 𝑡

2
< 𝑡∗∗, the

third term in (14) is dominated by the first two terms and so
𝑟(𝑡) > 0 in (0, 𝑡∗). The difference Δ in the interval (𝑡∗, 𝑡∗∗∗),
where 𝑡∗∗∗ is the local minimumpoint of 𝑟(𝑡), becomes larger
to the point that the third term in 𝑟(𝑡) dominates the first
two terms resulting in 𝑟(𝑡) < 0 in (𝑡∗, 𝑡∗∗∗). In the interval
(𝑡∗∗∗, 𝑡∗∗), the difference becomes small so that the third term
in 𝑟(𝑡) is dominated by the first two terms and so 𝑟(𝑡) > 0.
Summarizing, we have the failure rate of the mixed model
increasing in (0, 𝑡∗), decreasing in (𝑡∗, 𝑡∗∗∗), increasing in
(𝑡∗∗∗, 𝑡∗∗), and decreasing again in (𝑡∗∗,∞), reaching 0 as 𝑡
tends to∞; see Figure 2(b), for example.

As we can see from Figures 1(a), 1(b), 2(a), and 2(b), the
shape of the model (unimodal and bimodal) is affected by
the parameters choices. For example, when (𝛼, 𝜇, 𝜎) changes
from (2.0, 2.0, 1.0) to (1.5, 1.5, 0.12) the model is changed
from the unimodal case to the bimodal case.

3. Maximum Likelihood Estimation

In this section, we describe the ML approach for the estima-
tion of the 5-dimensional parameter vector Θ of the mixture
density in (1) based on a random sample of size 𝑛. The MLE
Θ̂ is obtained as the solution of the likelihood equations:

𝜕𝐿 (Θ)

𝜕𝜃
𝑖

= 0, 𝑖 = 1, 2, 3, 4, 5, (18)

or, equivalently,

𝜕 log 𝐿 (Θ)

𝜕𝜃
𝑖

= 0, 𝑖 = 1, 2, 3, 4, 5, (19)

where

𝐿 (Θ) =
𝑛

∏
𝑗=1

𝑓 (𝑡
𝑗
; Θ) (20)

is the likelihood function formed under the assumption of iid
data 𝑡

1
, . . . , 𝑡

𝑛
. The likelihood function corresponding to the

mixture density in (1) is then given by

𝐿 (Θ) =
𝑛

∏
𝑗=1

[𝑝
1
𝑓
1
(𝑡
𝑗
; Θ
1
) + 𝑝
2
𝑓
2
(𝑡
𝑗
; Θ
2
)] , (21)

where Θ
1
= (𝛼, 𝛽) and Θ

2
= (𝜇, 𝜎).

By differentiating the log-likelihood function 𝐿∗ =
log 𝐿(Θ) with respect to the five parameters of the model, we
get the first order derivatives of 𝐿∗ to be

𝜕𝐿∗

𝜕𝜃
1

=
𝜕𝐿∗

𝜕𝑝
1

=
𝑛

∑
𝑗=1

𝜔 (𝑡
𝑗
; Θ) = 0,

𝜕𝐿∗

𝜕𝜃
2

=
𝜕𝐿∗

𝜕𝛼
=
𝑛

∑
𝑗=1

𝑝
1
𝜙
1
(𝑡
𝑗
; Θ) 𝜂
1
(𝑡
𝑗
; Θ) = 0,

𝜕𝐿∗

𝜕𝜃
3

=
𝜕𝐿∗

𝜕𝛽
=
𝑛

∑
𝑗=1

𝑝
1
𝜙
2
(𝑡
𝑗
; Θ) 𝜂
1
(𝑡
𝑗
; Θ) = 0,

𝜕𝐿∗

𝜕𝜃
4

=
𝜕𝐿∗

𝜕𝜇
=
𝑛

∑
𝑗=1

𝑝
2
𝜓
1
(𝑡
𝑗
; Θ) 𝜂
2
(𝑡
𝑗
; Θ) = 0,

𝜕𝐿∗

𝜕𝜃
5

=
𝜕𝐿∗

𝜕𝜎
=
𝑛

∑
𝑗=1

𝑝
2
𝜓
2
(𝑡
𝑗
; Θ) 𝜂
2
(𝑡
𝑗
; Θ) = 0,

(22)

where 𝜔(𝑡
𝑗
; Θ), 𝜙

1
(𝑡
𝑗
; Θ), 𝜙

2
(𝑡
𝑗
; Θ), 𝜂

1
(𝑡
𝑗
; Θ), 𝜂

2
(𝑡
𝑗
; Θ),

𝜓
1
(𝑡
𝑗
; Θ), and 𝜓

2
(𝑡
𝑗
; Θ) are as follows:

𝜔 (𝑡
𝑗
; Θ) =

𝑓
1
(𝑡
𝑗
; Θ
1
) − 𝑓
2
(𝑡
𝑗
; Θ
2
)

𝑓 (𝑡
𝑗
; Θ)

, (23)

𝜙
1
(𝑡
𝑗
; Θ) = −𝛽𝛼−1 + 𝛽𝛼−(𝛽+1) (𝑡

𝑗
)
−𝛽

, (24)



Mathematical Problems in Engineering 5

Table 2

Maintenance data 𝑁 Mean Mode Median Variance Standard deviation Minimum Maximum
46 3.8499 0.3182 1.4670 59.1756 7.6926 0.2 24.5
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𝑗
− 𝜇)
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𝜎−3 − 𝜎−1, (29)

and 𝑓(𝑡
𝑗
; Θ), 𝑓

1
(𝑡
𝑗
; Θ
1
), and 𝑓

2
(𝑡
𝑗
; Θ
2
) are as in (1), (2), and

(3), respectively. The maximum likelihood estimates of the
five parameters may be obtained by solving (22) by using a
numerical method such as the Newton-Raphson method.

4. Data Analysis

In this section,we use a real data set to illustrate the usefulness
of the proposed mixture model. The following maintenance
data were reported on active repair times (hours) for an
airborne communication transceiver (seeVonAlven [18, page
156]): 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0,
1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0,
3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0,
and 24.5.

In Section 2, we introduce some properties of the
MIWLND and we use it to analyze this maintenance data.
Table 2 is descriptive statistics for maintenance data.

For interpretation of the failure rate function, the maxi-
mum point of the failure rate of the mixture is 𝑡∗ = 0.3424.
In addition, 𝑡

1
= 0.3083 and 𝑡

2
= 0.6123 represent the mode

of the density function of the inverse Weibull and lognormal
distributions, respectively. When the difference Δ between
𝑟
1
(𝑡) and 𝑟

2
(𝑡) in the interval (𝑡

1
, 𝑡∗) = (0.3083, 0.3424) is

small so that the first two terms of 𝑟(𝑡) in (2.35) dominate
the third term, then 𝑟(𝑡) > 0 in (0.3083, 0.3424). When the
difference Δ increases to the point that the third term in 𝑟(𝑡)
dominates the first two terms, then 𝑟(𝑡) < 0 in (0.3424,∞).
Summarizing, we have the failure rate of the MIWLND
increasing in (0, 0.3424) and decreasing in (0.3424,∞),
reaching zero as 𝑡 → ∞; see Figure 3.

In Figure 4, we see the inverseWeibull with itsMLEs (�̂� =

0.8851, 𝛽 = 1.0127) and lognormal normal with its MLEs
(𝜇 = 0.6584, �̂� = 1.1018) which are separately not good
fits for these data. Also, in Figure 4, we have shown the
fitted MIWLND model superimposed on the histogram of
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Figure 3: Failure rate for the fitted of MIWLN model.
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Figure 4: Histogram of the data superimposed with the fitted
model.

the observed data, which shows that the MIWLND provides
a very good fit for these data compared to the individual
components.

Further, we use Kolmogorov-Smirnov test (K-S) to fit the
data as shown in Table 3.
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Table 3

Model Inverse Weibull Lognormal MTIWD
K-S statistic 0.5086 1.9707 0.1688

Table 4

Parameter 𝑝
1

�̂� 𝛽 𝜇 �̂�

MLE 0.3181 2.4246 1.6378 0.9365 1.1946
Standard error 0.1208 0.6492 0.5524 0.2161 0.1876

It is observed that the K-S distance between the data and
the fitted of theMTIWD is 0.1688 which gives a good fit at 1%
level of significance than the inverseWeibull withK-S statistic
as 0.5068 and the lognormal with K-S statistic as 1.9709.

Now, themaximum likelihood estimates of theMIWLND
parameters with their standard errors were determined as
shown in Table 4.

The standard errors of these estimates were calculated
by inverting the Fisher information matrix derived in the
appendix.The Fisher information 𝐼(Θ) can also be utilized to
obtain the approximate 100(1−𝛿)%confidence intervals (CIs)

of the components of the vectorsΘ as Θ̂ ± 𝜉
𝛿/2

√𝑉(Θ̂), where
𝑉(Θ̂) are the variances of the parameters obtained from
𝐼−1(Θ̂), and 𝜉

𝛿/2
is the upper (𝛿/2) percentile of the standard

normal distribution. The variance-covariance matrix of Θ
was computed as

𝐼−1 (Θ̂)

= (

0.0146 −0.0151 0.0126 0.0089 −0.0026

−0.0151 0.4214 0.1063 −0.0136 −0.0041

0.0126 0.1063 0.3052 0.0162 −0.0079

0.0089 −0.0136 0.0162 0.0467 −0.0009

−0.0026 −0.0041 −0.0079 −0.0009 0.0352

).
(30)

The 90% CIs of the parameters that were calculated in this
manner are as shown in Table 5.

5. Concluding Remarks

In this paper, theMIWLND has been introduced as a lifetime
model.Then, themodes and themedian of theMIWLND are
examined for different choices of the parameters. Also, the
behavior of the failure rate function is discussed analytically
as well as through some graphs. The estimation of the
model parameters by the method of maximum likelihood is
then discussed. The estimation method described here is for
complete samples. Since most life-testing experiments result
in Type I and Type II censored data, it will be of interest to
develop inferential methods based on such censored samples.
Work in this direction is currently under progress and we
hope to report these findings in a future paper.

Appendix

Fisher Information Matrix

The likelihood function ofΘ based on theMIWLND is given
by

𝐿 (Θ) =
𝑛

∏
𝑗=1

[𝑝
1
𝑓
1
(𝑡
𝑗
; Θ
1
) + 𝑝
2
𝑓
2
(𝑡
𝑗
; Θ
2
)] , (A.1)

where Θ
1

= (𝛼, 𝛽) and Θ
2

= (𝜇, 𝜎). By differentiating the
log-likelihood function 𝐿∗ with respect to the parameters, we
obtain the first order derivatives of 𝐿∗ as given in (22). Upon
differentiating these expressions once again with respect to
the parameters, we obtain the partial derivatives of second
order as follows:
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Table 5

Parameter 𝑝
1

𝛼 𝛽 𝜇 𝜎

90% CIs 0.111, 0.516 1.351, 3.489 0.732, 2.544 0.582, 1.291 0.887, 1.502
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where 𝜉(𝑡
𝑗
; Θ), 𝑉

1
(𝑡
𝑗
; Θ), 𝑉

2
(𝑡
𝑗
; Θ), 𝑉

3
(𝑡
𝑗
; Θ), ℓ

1
(𝑡
𝑗
; Θ), and

ℓ
2
(𝑡
𝑗
; Θ) are given, respectively, by

𝜉 (𝑡
𝑗
; Θ) =

𝑓
1
(𝑡
𝑗
; Θ
1
) 𝑓
2
(𝑡
𝑗
; Θ
2
)

𝑓2 (𝑡
𝑗
; Θ)

,

𝑉
1
(𝑡
𝑗
; Θ) = 𝛽𝛼−2 − 𝛽 (𝛽 + 1) 𝛼−(𝛽+2)𝑡

−𝛽

𝑗
,

𝑉
2
(𝑡
𝑗
; Θ) = −𝛼−1 + 𝛼−(𝛽+1)𝑡

−𝛽

𝑗
− 𝛽𝛼−(𝛽+1)𝑡

−𝛽

𝑗
log (𝛼𝑡

𝑗
) ,

𝑉
3
(𝑡
𝑗
; Θ) = −(𝛽−2 + (𝛼𝑡

𝑗
)
−𝛽

(log (𝛼𝑡
𝑗
))
2

) ,

ℓ
1
(𝑡
𝑗
; Θ) = −

2 (log 𝑡
𝑗
− 𝜇)

𝜎3
,

ℓ
2
(𝑡
𝑗
; Θ) = −3 (log 𝑡

𝑗
− 𝜇)
2

𝜎−4 + 𝜎−2,

(A.3)

with 𝑓(𝑡
𝑗
; Θ), 𝑓

1
(𝑡
𝑗
; Θ
1
), 𝑓
2
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in (1), (2), (3), and (23)–(29), respectively.
The Fisher informationmatrix 𝐼(Θ) can then be obtained

as ((−𝜕2𝐿∗(Θ)/𝜕𝜃
𝑖
𝜕𝜃
𝑗
)), and based on an observed data, an

estimate of it can be obtained from the expressions in (A.2)
evaluated at Θ̂.
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