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We find the least values p, q, and s in (0, 1/2) such that the inequalities H(pa + (1 − p)b,
pb+(1 − p)a) > AG(a, b),G(qa+(1−q)b, qb+(1−q)a) > AG(a, b), and L(sa+(1−s)b, sb+(1−s)a) >
AG(a, b) hold for all a, b > 0 with a/= b, respectively. Here AG(a, b),H(a, b), G(a, b), and L(a, b)
denote the arithmetic-geometric, harmonic, geometric, and logarithmic means of two positive
numbers a and b, respectively.

1. Introduction

The classical arithmetic-geometric mean AG(a, b) of two positive real numbers a and b is
defined as the common limit of sequences {an} and {bn}, which are given by

a0 = a, b0 = b,

an+1 =
an + bn

2
, bn+1 =

√
anbn.

(1.1)

Let H(a, b) = 2ab/(a + b), G(a, b) =
√
ab, L(a, b) = (a − b)/(loga − log b),

I(a, b) = (1/e)(bb/aa)1/(b−a), A(a, b) = (a + b)/2, and Mp(a, b) = [(ap + bp)/2]1/p(p /= 0)
and M0(a, b) =

√
ab be the harmonic, geometric, logarithmic, identric, arithmetic, and p-th
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power means of two positive numbers a and b with a/= b, respectively. Then it is well known
that

min{a, b} < H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) < L(a, b)

< I(a, b) < A(a, b) = M−1(a, b) < max{a, b}
(1.2)

for all a, b > 0 with a/= b.
Recently, the inequalities for means have been the subject of intensive research. In

particular, many remarkable inequalities for arithmetic-geometric mean can be found in the
literature [1–9].

Carlson and Vuorinen [2], and Bracken [9] proved that

L(a, b) < AG(a, b) (1.3)

for all a, b > 0 with a/= b.
In [3], Vamanamurthy and Vuorinen established the following inequalities:

AG(a, b) < I(a, b) < A(a, b),

AG(a, b) < M1/2(a, b),

AG(a, b) <
π

2
L(a, b),

M1(a, b) <
AG
(
a2, b2

)

AG(a, b)
< M2(a, b)

(1.4)

for all a, b > 0 with a/= b.
We recall the Gauss identity [6, 7]

AG
(
1, r ′
)K(r) =

π

2
(1.5)

for r ∈ [0, 1) and r ′ =
√
1 − r2. As usual, K and E denote the complete elliptic integrals [8]

given by

K(r) =
∫π/2

0

(
1 − r2sin2θ

)−1/2
dθ =

π

2

∞∑

n=0

(1/2, n)2

(n!)2
r2n, K′(r) = K(r ′),

E(r) =
∫π/2

0

(
1 − r2sin2θ

)1/2
dθ =

π

2

∞∑

n=0

(−1/2, n)(1/2, n)
(n!)2

r2n, E′(r) = E(r ′),
(1.6)

where (a, 0) = 1 for a/= 0, and (a, n) =
∏n−1

k=0(a + k).
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For fixed a, b > 0 with a/= b and x ∈ [0, 1/2], let

f1(x) = H(xa + (1 − x)b, xb + (1 − x)a), (1.7)

f2(x) = G(xa + (1 − x)b, xb + (1 − x)a), (1.8)

f3(x) = L(xa + (1 − x)b, xb + (1 − x)a). (1.9)

Then it is not difficult to verify that f1(x), f2(x), and f3(x) are continuous and strictly
increasing in [0, 1/2], respectively. Note that f1(0) = H(a, b) < AG(a, b) < f1(1/2) = A(a, b),
f2(0) = G(a, b) < AG(a, b) < f2(1/2) = A(a, b) and f3(0) = L(a, b) < AG(a, b) < f3(1/2) =
A(a, b).

Therefore, it is natural to ask what are the least values p, q, and s in (0, 1/2) such that
the inequalitiesH(pa + (1 − p)b, pb + (1 − p)a) > AG(a, b), G(qa + (1 − q)b, qb + (1 − q)a) >
AG(a, b), and L(sa+(1−s)b, sb+(1−s)a) > AG(a, b) hold for all a, b > 0with a/= b, respectively.
The main purpose of this paper is to answer these questions. Our main results are Theorems
1.1–1.3.

Theorem 1.1. If p ∈ (0, 1/2), then inequality

H
(
pa +

(
1 − p

)
b, pb +

(
1 − p

)
a
)
> AG(a, b) (1.10)

holds for all a, b > 0 with a/= b if and only if p ≥ 1/4.

Theorem 1.2. If q ∈ (0, 1/2), then inequality

G
(
qa +

(
1 − q

)
b, qb +

(
1 − q

)
a
)
> AG(a, b) (1.11)

holds for all a, b > 0 with a/= b if and only if q ≥ 1/2 − √
2/4.

Theorem 1.3. If s ∈ (0, 1/2), then inequality

L(sa + (1 − s)b, sb + (1 − s)a) > AG(a, b) (1.12)

holds for all a, b > 0 with a/= b if and only if s ≥ 1/2 − √
3/4.

2. Lemmas

In order to establish our main results we need several formulas and lemmas, which we
present in this section.
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For 0 < r < 1, the following derivative formulas were presented in [6, Appendix E, pp.
474-475]:

dK
dr

=
E − r ′2K

rr ′2
,

dE
dr

=
E −K

r
,

d
(
E − r ′2K

)

dr
= rK,

d(K− E)
dr

=
rE
r ′2

,

(2.1)

K
(
2
√
r

1 + r

)
= (1 + r)K(r). (2.2)

The following Lemma 2.1 can be found in [6, Theorem 3.21(7) and Exercise 3.43(4)].

Lemma 2.1. (1) (1 + r ′2)E(r) − 2r ′2K(r) is strictly increasing from (0, 1) onto (0, 1);
(2) E(r)/r ′1/2 is strictly increasing from (0, 1) onto (π/2,+∞).

Lemma 2.2. Inequality

2
π
K(r)

√

1 − 1
2
r2 > 1 (2.3)

holds for all r ∈ (0, 1).

Proof. Let

f(r) = log

⎡

⎣ 2
π
K(r)

√

1 − 1
2
r2

⎤

⎦. (2.4)

Then simple computations lead to

f(0) = 0, (2.5)

f ′(r) =
E(r) − r ′2K(r)

rr ′2K(r)
− r

2 − r2
=

(
1 + r ′2

)
E(r) − 2r ′2K(r)

rr ′2(2 − r2)K(r)
. (2.6)

It follows from Lemma 2.1 (1) and (2.6) that f ′(r) > 0 for r ∈ (0, 1), which implies that
f(r) is strictly increasing in (0, 1).

Therefore, inequality (2.3) follows from (2.4) and (2.5) together with the monotonicity
of f(r).

Lemma 2.3. Inequality

2
√
3

π
rK(r) > log

(
2 +

√
3r

2 − √
3r

)

(2.7)

holds for all r ∈ (0, 1).
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Proof. Let

g(r) =
2
√
3

π
rK(r) − log

(
2 +

√
3r

2 − √
3r

)

. (2.8)

Then simple computations lead to

g(0) = 0, (2.9)

g ′(r) =
2
√
3

π

(

K(r) + r
E(r) − r ′2K(r)

rr ′2

)

− 4
√
3

4 − 3r2
=

2
√
3

π
(
1 + 3r ′2

)

(
1 + 3r ′2

r ′3/2
E(r)
r ′1/2

− 2π

)

.

(2.10)

Clearly the function r → (1 + 3r2)/r3/2 is strictly decreasing from (0, 1) onto (4,+∞).
Then (2.10) and Lemma 2.1 (2) lead to the conclusion that g ′(r) > 0 for r ∈ (0, 1). Thus, g(r)
is strictly increasing in (0, 1).

Therefore, inequality (2.7) follows from (2.8) and (2.9) together with the monotonicity
of g(r).

3. Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. Let λ = 1/4, then from the monotonicity of the function f1(x) = H(xa +
(1 − x)b, xb + (1 − x)a) in [0, 1/2] we know that to prove inequality (1.10) we only need to
prove that

AG(a, b) < H(λa + (1 − λ)b, λb + (1 − λ)a) (3.1)

for all a, b > 0 with a/= b.
From (1.1) and (1.7)we clearly see that both AG(a, b) andH(λa+(1−λ)b, λb+(1−λ)a)

are symmetric and homogeneous of degree 1. Without loss of generality, we can assume that
a = 1 > b. Let t = b ∈ (0, 1) and r = (1 − t)/(1 + t), then from (1.5)we have

H(λa + (1 − λ)b, λb + (1 − λ)a) −AG(a, b) =
(t + 3)(3t + 1)

8(1 + t)
− π

2K(t′)
. (3.2)

Let

F(t) =
(t + 3)(3t + 1)

8(1 + t)
− π

2K(t′)
. (3.3)

Then making use of (2.2)we get

F(t) =
(2 + r)(2 − r)

4(1 + r)
− π

2(1 + r)K(r)
=

π

8(1 + r)K(r)
F1(r), (3.4)
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where F1(r) = (2/π)(4 − r2)K(r) − 4. Note that

F1(r) =
∞∑

n=0

(1/2, n)2

(n!)2
r2n
(
4 − r2

)
− 4

= 4r2
∞∑

n=0

(1/2, n + 1)2

[(n + 1)!]2
r2n − r2

∞∑

n=0

(1/2, n)2

(n!)2
r2n

=
∞∑

n=0

(1/2, n)2

[(n + 1)!]2
(
3n2 + 2n

)
r2(n+1) > 0.

(3.5)

Therefore, inequality (3.1) follows from (3.2)–(3.5).

Next, we prove that the parameter p = λ = 1/4 is the best possible parameter in (0, 1/2)
such that inequality (1.10) holds for all a, b > 0 with a/= b.

Since for 0 < p < 1/2 and small x > 0,

AG(1, 1 − x) =
π

2K
(√

2x − x2
) = 1 − 1

2
x − 1

16
x2 + o

(
x3
)
, (3.6)

H
(
p(1 − x) + 1 − p,

(
1 − p

)
(1 − x) + p

)
= 1 − 1

2
x +
(
−p2 + p − 1

4

)
x2 + o

(
x3
)
. (3.7)

It follows from (3.6) and (3.7) that inequality AG(1, 1 − x) ≤ H(p(1 − x) + 1 − p, (1 −
p)(1 − x) + p) holds for small x only p ≥ 1/4.

Remark 3.1. For 0 < p < 1/2 and x > 0, one has

lim
x→ 0

H
(
px + 1 − p,

(
1 − p

)
x + p

)

AG(1, x)
= lim

x→ 0

4
[
px + 1 − p

][(
1 − p

)
x + p

]

(1 + x)π
K(x′) = +∞. (3.8)

Equation (3.8) implies that there does not exist p ∈ (0, 1/2) such that AG(1, x) >
H(px + 1 − p, (1 − p)x + p) for all x ∈ (0, 1).

Proof of Theorem 1.2. Let μ = 1/2 − √
2/4, then from the monotonicity of the function f2(x) =

G(xa + (1 − x)b, xb + (1 − x)a) in [0, 1/2] we know that to prove inequality (1.11) we only
need to prove that

AG(a, b) < G
(
μa +

(
1 − μ

)
b, μb +

(
1 − μ

)
a
)

(3.9)

for all a, b > 0 with a/= b.
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From (1.1) and (1.8)we clearly see that both AG(a, b) andG(μa+(1−μ)b, μb+(1−μ)a)
are symmetric and homogeneous of degree 1. Without loss of generality, we can assume that
a = 1 > b. Let t = b ∈ (0, 1) and r = (1 − t)/(1 + t), then from (1.5)we have

G
(
μa +

(
1 − μ

)
b, μb +

(
1 − μ

)
a
) −AG(a, b) =

√[
μ +
(
1 − μ

)
t
][
μt +

(
1 − μ

)] − π

2K(t′)
.

(3.10)

Let

G(t) =
√[

μ +
(
1 − μ

)
t
][
μt +

(
1 − μ

)] − π

2K(t′)
. (3.11)

Then making use of (2.2)we have

G(t) =
π

2(1 + r)K(r)

⎡

⎣ 2
π
K(r)

√

1 − 1
2
r2 − 1

⎤

⎦. (3.12)

Therefore, inequality (3.9) follows from (3.10)–(3.12) together with Lemma 2.2.

Next, we prove that the parameter q = μ = 1/2 − √
2/4 is the best possible parameter

in (0, 1/2) such that inequality (1.11) holds for all a, b > 0 with a/= b.
Since for 0 < q < 1/2 and small x > 0,

G
(
q(1 − x) + 1 − q,

(
1 − q

)
(1 − x) + q

)
= 1 − 1

2
x +

1
8

(
−4q2 + 4q − 1

)
x2 + o

(
x3
)
. (3.13)

It follows from (3.6) and (3.13) that inequality AG(1, 1 − x) ≤ G(q(1 − x) + 1 − q, (1 −
q)(1 − x) + q) holds for small x only q ≥ 1/2 − √

2/4.

Remark 3.2. For 0 < q < 1/2 and x > 0, one has

lim
x→ 0

G
(
qx + 1 − q,

(
1 − q

)
x + q

)

AG(1, x)
= lim

x→ 0

2
π

√[
qx + 1 − q

][(
1 − q

)
x + q

]K(x′) = +∞. (3.14)

Equation (3.14) implies that there does not exist q ∈ (0, 1/2) such that AG(1, x) >
G(qx + 1 − q, (1 − q)x + q) for all x ∈ (0, 1).

Proof of Theorem 1.3. Let β = 1/2 − √
3/4, then from the monotonicity of f3(x) = L(xa + (1 −

x)b, xb + (1 − x)a) in [0, 1/2] we know that to prove inequality (1.12) we only need to prove
that

AG(a, b) < L
(
βa +

(
1 − β

)
b, βb +

(
1 − β

)
a
)

(3.15)

for all a, b > 0 with a/= b.
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From (1.1) and (1.9)we clearly see that both AG(a, b) and L(βa+(1−β)b, βb+(1−β)a)
are symmetric and homogeneous of degree 1. Without loss of generality, we can assume that
a = 1 > b. Let t = b ∈ (0, 1) and r = (1 − t)/(1 + t), then from (1.5) one has

L
(
βa +

(
1 − β

)
b, βb +

(
1 − β

)
a
) −AG(a, b)

=
√
3(1 − t)

2 log
[((

2 − √
3
)
t + 2 +

√
3
)/((

2 +
√
3
)
t + 2 − √

3
)] − π

2K(t′)
.

(3.16)

Let

J(t) =
√
3(1 − t)

2 log
[((

2 − √
3
)
t + 2 +

√
3
)/((

2 +
√
3
)
t + 2 − √

3
)] − π

2K(t′)
. (3.17)

Then from (2.2)we get

J(t) =
π

2(1 + r)K(r) log
((

2 +
√
3r
)/(

2 − √
3r
))g(r), (3.18)

where g(r) is defined as in Lemma 2.3.
Therefore, inequality (3.15) follows from (3.16)–(3.18) together with Lemma 2.3.

Next, we prove that the parameter s = β = 1/2 − √
3/4 is the best possible parameter

in (0, 1/2) such that inequality (1.12) holds for all a, b > 0 with a/= b.
Since for 0 < s < 1/2 and small x > 0,

L(s(1 − x) + 1 − s, (1 − s)(1 − x) + s) = 1 − 1
2
x +

1
12

(
−4s2 + 4s − 1

)
x2 + o

(
x3
)
. (3.19)

It follows from (3.6) and (3.19) that inequality AG(1, 1 − x) ≤ L(s(1 − x) + 1 − s, (1 −
s)(1 − x) + s) holds for small x only s ≥ 1/2 − √

3/4.

Remark 3.3. For 0 < s < 1/2 and x > 0, one has

lim
x→ 0

L(sx + 1 − s, (1 − s)x + s)
AG(1, x)

= lim
x→ 0

2
π
K(x′) (1 − 2s)(1 − x)

log[(sx + 1 − s)/((1 − s)x + s)]
= +∞. (3.20)

Equation (3.20) implies that there exist no values s ∈ (0, 1/2) such that AG(1, x) >
L(sx + 1 − s, (1 − s)x + s) for all x ∈ (0, 1).
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