
Hindawi Publishing Corporation
Advances in Civil Engineering
Volume 2010, Article ID 820762, 12 pages
doi:10.1155/2010/820762

Research Article

Decision Fusion for Structural Damage Detection:
Numerical and Experimental Studies

Yong Chen,1 Senyuan Tian,1 and Bingnan Sun1, 2

1 Department of Civil Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
2 Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100, China

Correspondence should be addressed to Yong Chen, cecheny@zju.edu.cn

Received 31 August 2009; Revised 28 December 2009; Accepted 23 March 2010

Academic Editor: Yi Qing Ni

Copyright © 2010 Yong Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes a decision fusion strategy that can integrate multiple individual damage detection measures to form a new
measure, and the new measure has higher probability of correct detection than any individual measure. The method to compute
the probability of correct selection is presented to measure the system performance of the fusion system that includes the presented
fusion strategy. And parametric sensitive studies on system performance are also conducted. The superiority of the fusion strategy
herein is that it can be extended to deal with the multiresolution subdecision or blind adaptive detection, and corresponding
methodologies are also provided. Finally, an experimental setup was fabricated, whereby the vibration properties of damaged and
undamaged structures were measured. The experimental results with the undamaged structural model provide information for
producing an improved theoretical and numerical model via model updating techniques. Three existing vibration-based damage
detection methods with varied resolutions were utilized to identify the damage that occurred in the structure, based on the
experimental results. Then the decision fusion strategy was implemented to join the subdecisions from these three methods. The
fused results are shown to be superior to those from single method.

1. Introduction

In the structural health monitoring (SHM) for civil engi-
neering, the monitoring system that consists of numerous
sensors is usually employed to achieve more accurate damage
detection results, and a number of detection methods have
been developed to identify the damages in accordance with
structural vibration information (see, e.g., [1–5]). However,
there is no perfect damage detection method that is capable
of dealing with all kinds of structures, sensors or damages.
Focusing on achieving a perfect single damage detection
method to solve all damage detection problems does not
sound feasible especially for civil engineering structures.
Consequently, combining many detection methods together
and fusing the sub-results to obtain more accurate detection
results would be reasonable. Damage detection-oriented
decision fusion that has this ability attracted increasing atten-
tions of researchers studying SHM-based damage detection.

Actually, the initial data fusion researches were pre-
dominantly in the defense systems (see, e.g., [6]). It can

be traced back to Tenney and Sandell’s achievements [7],
and it has been developed quickly in recent years. In
early research, Chair and Varshney concentrated on binary
decision fusion [8]. Demirbas provided a decision rule,
based on maximizing the posteriori probability using binary
detection results [9]. The work of Baek and Bommareddy
brought the decision fusion research into a new field in
which multiple hypotheses are for decision making [10].
Subsequently, blind adaptive decision fusion was developed
to deal with the unknown system (see, e.g., [11–13]). Sinha
et al. classified the modern decision fusion methods into five
categories including linear opinion pool, log linear opinion
pool, voting/ranking method, classifier fusion, and artificial
neural net (ANN) fusion (see [6] for more details).

Similar as in fault diagnosis, image analysis, safety
assessment, and others (see, e.g., [14–16]), many beneficial
and novel studies on applying decision fusion method were
conducted in structural damage detection. It is found that
decision fusion can significantly improve the reliability and
robustness of monitoring system through fusing multiple
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damage detection results. Dempster-Shafer (D-S) evidential
theory has been proved to be a powerful information fusion
strategy, many studies on its application to structural damage
detection have been conducted. Guo and Zhang applied a
weighted balance evidence theory to identifying the damages
of a two dimensional truss structure [17]. Zhou et al.
utilized D-S evidential theory to merge the multiresolution
decision results [18]. Li et al. combined the ANN detection
methods and Dempster-Shafer evidential theory together to
identify the damages in civil structures, and ANN was used
to obtain sub-decision results [19]. In respect of statistical
inference, the effort is also seen. Tshöpe and wolff developed
a self-learning method which applies classifier in order
to identify objects or assess their states, and this method
was experimentally verified in damage identification of an
aluminum plate and a carbon fiber reinforced plastic plate
[20]. Based on Bayesian probability principles, Tian et al.
provided a statistical decision fusion methodology, defined as
maximum joint probability (MJP) decision rule for damage
detection [21]. With regard to comparison of decision fusion
strategies, Wang et al. applied four decision fusion strategies,
including voting scheme, Bayesian inference, D-S evidential
theory, and fuzzy inference, to a damage detection case of a
plate structure, and the corresponding experimental studies
were also conducted [22].

In this paper, we introduced extended utilizations of
MJP decision rule to deal with the multiresolution decision
fusion and adaptive decision fusion. With this method,
a fusion scheme was proposed for experimental damage
detection. Firstly, a cantilever beam was experimentally set
up in laboratory and numerically modeled by finite element
method (FEM), and the FEM model was updated by the
use of experimentally obtained vibration information of
undamaged beam. By the use of updated numerical model,
damages were simulated numerically, and corresponding
natural frequencies were calculated. Noises were added to
the natural frequencies for simulating the experimental
error. Then, using these numerical results, the probabilities
of correct selection of three damage detection methods
were obtained. Subsequently, the experimentally acquired
vibration information of the damaged physical beam was
treated as input of three damage detection methods. Thus,
the detection results and priori probabilities obtained in
advance were integrated by decision fusion rules to attain a
final detection results. The probabilities of correct selection
of this fusion system were also obtained, and superiority was
found while comparing with that of single damage detection
system.

2. Damage Detection Oriented Decision Fusion

Multiple damage cases and multiresolution damage detec-
tion requirements are the predominant factors in applying
the decision fusion rules to damage detection. This section
provides extended forms of MJP decision fusion strategy to
deal with those difficulties. For convenience of theoretical
expression, it is noted that the concepts of hypothesis,
sub-decision system, and decisions those expressions in
statistical theory have the same meaning as damage case,

damage detection method (detector or damage detector),
and damage detection results, respectively.

2.1. MJP Fusion Rule. MJP fusion rule (see [21] for more
details) is trying to make a decision that is capable of
minimizing the Bayesian risk function based on Bayesian
probability theory. It is assumed that there exist M + 1
hypotheses, which can be represented by variable H =
{H0,H1,H2, . . . ,HM}, and P(Hj) refers to the priori proba-
bility of the jth hypothesis. It is also assumed that there exist
N damage detectors. The sub-decision made by each detector
can be designated as ui(i = 1, . . . ,N), and all of sub-decisions
would form a decision state vector u = {u1,u2, . . . ,uN}. For
the ith detector, the description of its performance can be
represented by a conditional probability matrix hi, in which
each element is actually a conditional probability and has a
form of

hijk = P
(
ui = hj | Hk

)
,

i = 1, . . . ,N , j = 0, 1, . . . ,M, k = 0, 1, . . . ,M,
(1)

where hijk is the probability of the case that the jth hypothesis
is selected by the ith detector while the kth hypothesis occurs,
and hj is the jth hypothesis selected by detector.

By the use of the Bayesian risk function (see [23] for more
details) and the definition of the final decision f (u) = hB in
which B ∈ {0, 1, . . . ,M}, we have Bayesian risk as

RP
(
f | u

) = EH|uL
(
H , f

) =
M∑

k=0

L
(
Hk, f

)
P(Hk | u), (2)

in which the decision rule f (u) yields a final decision f (u) =
hB that leads to a minimum Bayesian risk. L(Hk, f (u)) is the
Loss Function defined as

L
(
Hk, f (u) = hj

)
=
⎧⎨
⎩

0, if k = j ,

1, otherwise.
(3)

Substituting (3) into (2) yields

RP
(
f = hB | u

) = minRP
(
f | u

)

= min
j∈{0, 1, ...,M}

⎡
⎣

M∑

k=0

L
(
Hk ,u = hj

)
P(Hk | u)

⎤
⎦

=
M∑

k=0

P(Hk | u)− max
k∈{0, 1, ..., M}

[P(Hk | u)]

= 1− max
k∈{0, 1, ..., M}

[P(Hk | u)].

(4)

Accordingly, if a P(HB | u) is the largest value among
all P(Hk | u), thus the final decision f (u) = hB is the
selection that minimizes the Bayesian cost function. This
decision process could be denoted as

f (u) � max−1

k∈{0, 1, ..., M}
[P(Hk | u)]. (5)
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It is also assumed that the detectors work independently.
Thus, the joint probability of combined decision state can be
obtained by

P(u | Hk) =
N∏

i=1

P(ui | Hk). (6)

With consideration that P(u) is a constant, using
Bayesian rule, (6) leads to a new form of the decision rule,
that is,

f (u) � max−1

k∈{0, 1, ..., M}

⎡
⎣P(Hk)

N∏

i=1

P(ui | Hk)

⎤
⎦

= max−1

k∈{0, 1, ..., M}
Ik,

(7)

in which Ik = P(Hk)
∏N

i=1P(ui | Hk) is defined as the picking
index of hypothesis Hk under determined u. Equation (7)
also means that the decision rule derived herein is to select
a hypothesis that maximizes the joint probability of all
detectors’ decisions,

According to (7), the final decision f (u) = hB satisfies

P(HB)
∏N

i=1P(ui | HB)

P(Hl)
∏N

i=1P(ui | Hl)
≥ 1, l ∈ {0, 1, . . . ,M}, l /=B,

(8)

that is,

ln
P(HB)
P(Hl)

+
N∑

i=1

ln
P(ui | HB)
P(ui | Hl)

≥ 0, l ∈ {0, 1, . . . ,M}, l /=B.

(9)

The picking coefficient vij for ith detector whose decision
is hg can be represented as

vij =
{

1 if j = g,

0 otherwise.
j = 0, 1, . . . ,M. (10)

Using the weight factors denoted as

wk,l = ln
P(Hk)
P(Hl)

,

wi, j,k,l = ln
P
(
ui = hj | Hk

)

P
(
ui = hj | Hl

)
(11)

and the picking coefficients also leads to a new form of the
decision rule, that is, the final decision f (u) = hB is the
hypothesis that satisfies

M∑

l=1
l /=B

sign
(
yB,l
) =M, (12)

where

yk,l = wk,l +
N∑

i=1

M∑

j=0

vijwi, j,k,l, (13)

and the definition of sign(·) is

sign(x) =
{

1 if x ≥ 0,

0 otherwise.
(14)

As well as (7), (12) is also another form of decision rule,
and it is easy to be utilized while considering an adaptive
fusion problem. Summarily, the decision rule derived herein
is to achieve the maximum joint probability of the sub-
decisions state {u1,u2, . . . ,un} while an actual unknown
damage case occurs. Accordingly, it was defined as maximum
joint probability (MJP) decision rule (see [21]).

2.2. Probability of Correct Selection. It is necessary to be
aware of the probability of correct selection (PCS) of the
whole fusion system. According to the definition of the Loss
Function in (4), the Bayesian risk function presented by (3) is
actually the probability of system making a wrong decision.
Therefore, the probability of failure (PF) for a decision made
according to MJP decision rule (see [21]) is

W
(
f (u) = uB | u

) = 1− P(HB)

∏N
i=1P(ui | HB)

P(u)
, (15)

where

P(u)=
M∑

k=1

P(uHk)P(Hk)=
M∑

k=1

P(Hk)
N∏

i=1

P(ui | Hk) (16)

and the PCS is

Q
(
f (u) = uB | u

) = 1−W( f (u) = uB | u
)
. (17)

For the entire decision system in association with deci-
sion rule f , the PF and PCS of the whole system, denoted as
W( f ) and Q( f ), respectively, are formed (see [21]) as

W
(
f
) =

∑
u
W
(
f (u) = uB | u

)
P(u), (18)

Q
(
f
) = 1−W( f ). (19)

2.3. Multiresolution. Damage detection results can be con-
ventionally classified into three levels: damage acknowledge-
ment, damage localization and damage quantification (see
[5]). Variable l is used to represent these three levels of
resolution. The damage detection method on the first level
(l = 1) is able to determine whether the damage occurred
or not. If a damage detection method is on the second level
(l = 2), it means that this method can alarm not only the
occurrence of damage but also the location of damage. The
third level (l = 3) is the highest level, and on this level the
damage detection method can provide both localization and
quantification of a damage.

Figure 1 illustrates an application of the definition of
resolution. The bridge in Figure 1 consists of three segments,
and there are two grades of damage quantity to be identified.
Thus, in case of the lowest level, the hypotheses for decision
fusion are Damaged and No Damage. For the second level,
the hypotheses for decision fusion would be No Damage and
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No damage Quantity 1 Quantity 2 Quantity 1 Quantity 2 Quantity 1 Quantity 2

No damage Location I Location II Location III

l = 1

l = 2

l = 3

No damage Damaged

Damage detection results

Location I Location II Location III

Figure 1: Three damage resolutions of damage detection methods.

Damaged-Location I, Damaged-Location II, and Damaged-
Location III. With respect to the highest level, a total of
seven hypotheses would be No Damage, Damaged-Location
I-Quantity 1, Damaged-Location I-Quantity 2, Damaged-
Location II-Quantity 1, Damaged-Location II-Quantity 2,
Damaged-Location III-Quantity 1, and Damaged-Location
III-Quantity 2. For example, we assume that the damage
occurred in the second segment with a damage degree that
is Quantity 2. We also assume that three damage detection
methods are on different resolution levels, and they are
sorted by resolution from the lowest to highest. If the
detectors detected the damage correctly, the results from
these three damage detection methods would sequentially be
Damaged, Damaged-Location II, and Damaged-Location II-
Quantity 2. For convenience, the hypotheses are convention-
ally numbered sequentially from zero, and a correlation table
is prepared to describe the relationship between the number
and hypothesis. Thus, the detection results in this example
should be 1, 2 and 4 sequentially.

In terms of multiresolution, the hypotheses or damage
cases are determined by the damage detection method that
is on the highest resolution level among all detectors. With a
consideration of a detector being on the highest level (l =
3), the damage case vector {hl=3

0 ,hl=3
1 , . . . ,hl=3

M } has a size
of M = s × r, in which s and r represent the number of
damage locations and grades, respectively. For example, if
considering the problem in Figure 1, then s is 3 and r is 2.
Hence, on the reduced level (l = 2) of resolution for the
same detection method, the damage cases for identifying
should be No Damage and the damage localizations, that is,
{hl=2

0 ,hl=2
1 , . . . ,hl=2

s }. Also, they would be No Damage and
Damaged, that is, {hl=1

0 ,hl=1
1 }, while the resolution is reduced

again to the first level (l = 1). The resolution level, that is,
l =1, 2 or 3, is marked as a superscript of the sub-decision,

as well as the detectors and the hypotheses. For instance, ul=2
2

means that the second detection method is on level 2.
A damage detection method with the highest level (l = 3)

resolution can be reduced to a method on the level of l = 2.
The corresponding conditional probability P(ul=2

i = hl=2
q |

Hk) of the latter can be computed through P(ul=3
i = hl=3

j |
Hk) of the former, that is,

hiqk = P
(
ul=2
i = hl=2

q | Hk

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qr∑

j=(q−1)r+1

P
(
ul=3
i = hl=3

j | Hk

)
if q = 1, . . . , s,

P
(
ul=3
i = hl=3

0 | Hk

)
if q = 0.

(20)

Similarly, if a method’s resolution is reduced from level 2
to level 1, the new conditional probabilities P(ul=1

i = hl=1
0 |

Hk) and P(ul=1
i = hl=1

1 | Hk) for the lowest resolution level
would be

hi1k = P
(
ul=1
i = hl=1

1 | Hk

)
=

s∑

q=1

P
(
ul=2
i = hl=2

q hq | Hk

)
,

hi0k = P
(
ul=1
i = hl=1

0 | Hk

)
= P

(
ul=2
i = hl=2

0 | Hk

)
.

(21)

According to the maximum joint probability decision
rule, for a multiresolution case, optimal final decision is
also the one that achieves a maximum joint probability
of sub-decisions made by detection methods with different
resolutions. For example, three sub-decisions are made but
on different resolution levels. If the sub-decisions for kth
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hypothesis are ul=1
1 = hl=1

1 , ul=2
2 = hl=2

2 , and ul=3
3 = hl=3

2 ,
thus the picking index in (7) is

Ik = P(Hk)
N∏

i=1

P(ui | Hk)

= P
(
ul=1

1 = hl=1
1 | Hk

)
P
(
ul=2

2 = hl=2
2 | Hk

)

× P
(
ul=3

3 = hl=3
2 | Hk

)
P(Hk)

= h1
1kh

2
2kh

3
2kP(Hk)

(22)

Then we can vary the hypothesis and make a comparison,
and the hypothesis corresponding to the maximum one is
the final decision.

Multiresolution decision fusion strategy can be carried
out on the reduced level, by taking advantage of (20) and
(21) and modifying the value range of k in (7) by

k ∈

⎧⎪⎪⎨
⎪⎪⎩

{0, 1, . . . ,M} if l = 3,

{0, 1, . . . , s} if l = 2,

{0, 1} if l = 1.

(23)

3. Parametric Study in Same Resolution Case

In the parametric study for system performance, it is
assumed that all of the detectors have the same resolution.
Also, the priori probability of each damage case is known as

P(Hk) = 1
(M + 1)

k = 0, 1, . . . ,M, (24)

whereM represents number of damage cases. The probability
of correct selection by damage detection method numbered
i is

Qi =
M∑

j=0

P
(
ui = hj | Hj

)
P
(
Hj

)
(25)

It is also assumed that each damage detection method has
the same performance which means that they have the same
PCS, that is, all P(ui = hj | Hj) of the detectors are equal
to Q0. And all P(ui = hj | Hk) in which j /= k are equal for
each damage detection methods. Summarily, the conditional
probability matrixes of the detectors are the same, and the
elements in the matrixes are

hijk = P
(
ui = hj | Hk

)
=

⎧⎪⎨
⎪⎩
Q0 if j = k
(1−Q0)

M
otherwise

i = 1, . . . ,N ; j = 0, 1, . . . ,M; k = 0, 1, . . . ,M.

(26)

Following Figures 2, 3, and 4 are based on these
assumptions represented by (24) and (26), and the PCS of
fusion system can be computed through (19).

Figure 2 illustrates the curves of the PCS of fusion system
versus that of sub-decision system. In case of using five
damage cases as shown in Figure 2(a), it is found that the
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(a) Use five damage cases
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0.9
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Q0

1 or 2
5 or 6

3 or 4
7 or 8

Number of sub-decisions

(b) Use two damage cases

Figure 2: PCS of fusion system versus that of sub-decision system.

PCS of the fusion system is improved while we increase
the number of sub-decision methods and the PCS of the
sub-decision systems. Also, the increment descends while
adding supplemental sub-decision methods. In case of using
two damage cases as shown in Figure 2(b), the similar
phenomenon is observed. It is also found that using either
2k − 1 or 2k sub-decisions will achieve the same PCS of the
fusion system, and k = 0, 1, . . ..
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The PCS of the sub-decisions in Figure 3 is fixed at 0.8.
It is found that if the number of the sub-decision systems
exceeds three, the PCS of the fusion system is significantly
improved, and it increases with the increasing of the number
of the damage cases. If we fix the number of sub-decisions at
four, Figure 4 also indicates that increasing the number of the
damage cases is beneficial to improve the PCS of the fusion
system.

4. Adaptive Decision Fusion

4.1. Algorithm. For an unknown system, the knowledge of
performance of the sub-decision systems, that is, conditional
probabilities, is not available, as well as the priori probabili-
ties of the hypotheses. That means the weight factors, which
are necessary for the decision fusion rule formed as (7) or
(13), are not available. Adaptive decision fusion strategy has
capability of dealing with that. A simple counting rule-based
(see, e.g., [11, 12]) adaptive strategy for MJP are introduced
herein to make a final decision by self learning and sensing
the system continually.

In accordance with the simple counting rule, relative fre-
quency (see, e.g., [11, 12]), which is the ratio of the numbers
of two events, is utilized to evaluate the weight factors. Since
the true hypothesis is unknown for fusion system, we use a
reliable hypothesis to replace the true hypothesis. This reliable
hypothesis during the whole adaptive fusion procedure can
be the final decision that is made by the decision fusion
system, and we put a notation “∧” above H to distinguish
the reliable hypothesis from the true hypothesis. Accordingly,
notation “∧” marked weight factors are used to indicate
that they are based on the reliable hypothesis. Let ak be the
number of Ĥk, al be the number of Ĥl, ai, j,k be the number
of decisions that is the jth hypothesis which is made by the
ith detector while Ĥk occurs, and ai, j,l be the number of
decisions that is the jth hypothesis which is made by the ith
detector while Ĥl occurs, thus the weight factors in (13) can
be approximately estimated by

ŵk,l = ln
P
(
Ĥk

)

P
(
Ĥl

) ≈ ln
ak
al

,

ŵi, j,k,l = ln
P
(
ui = hj , Ĥk

)

P
(
ui = hj , Ĥl

) − ln
P
(
Ĥk

)

P
(
Ĥl

) ≈ ln
ai, j,k
ai, j,l

− ŵk,l,

(27)

whereby, we have

al ≈ ak
exp
(
ŵk,l

) ,

ai, j,l ≈
ai, j,k

exp
(
ŵi, j,k,l + ŵk,l

) .
(28)

Then, the partial derivatives of the weight factors are

∂ŵk,l

∂ak
≈ 1
ak

,

∂ŵk,l

∂al
≈ − 1

al
≈ − 1

ak
exp
(
ŵk,l

)
,

∂ŵi, j,k,l

∂ak
≈ − 1

ak
,

∂ŵi, j,k,l

∂al
≈ 1
al
≈ 1
ak

exp
(
ŵk,l

)
,

∂ŵi, j,k,l

∂ai, j,k
≈ 1
ai, j,k

,

∂ŵi, j,k,l

∂ai, j,l
≈ − 1

ai, j,l
≈ − 1

ai, j,k
exp
(
ŵi, j,k,l + ŵk,l

)
.

(29)

By substitution of (29) into the increment form of (27),
the updating rule for weight factors can be

ŵ+
k,l = ŵ−k,l + Δŵk,l

ŵ+
i, j,k,l = ŵ−i, j,k,l + Δŵi, j,k,l,

(30)

where

Δŵk,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
ak

Ĥ = Ĥk,

− 1
ak

exp
(
ŵ−k,l

)
Ĥ = Ĥl,

0 Ĥ /= Ĥk, Ĥ /= Ĥl,

Δŵi, j,k,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
ak

+
1

ai, j,k
Ĥ = Ĥk , ui = hj ,

− 1
ak

Ĥ = Ĥk , ui /=hj ,
1
ak

exp
(
ŵ−k,l

)

− 1
ai, j,k

exp
(
ŵ−i, j,k,l + ŵ−k,l

)
Ĥ = Ĥl, ui = hj ,

1
ak

exp
(
ŵ−k,l

)
Ĥ = Ĥl, ui /=hj ,

0 Ĥ /= Ĥk , Ĥ /= Ĥl,
(31)

in which the superscript “+” means the current step, and “−”
the previous step.

4.2. Numerical Simulation Study. To justify the efficiency
of the proposed adaptive fusion methodology, a three
hypothesis problem was numerically studied. It is assumed
that the true priori probabilities of hypotheses are listed as

P(H0) = 0.4, P(H1) = 0.2, P(H2) = 0.4. (32)
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It is also assumed that there are four independently
working detectors. The true conditional probability matrices
of these four sub-decision systems are assumed to be

h1 =

⎡
⎢⎢⎢⎣

0.90 0.04 0.06

0.05 0.90 0.04

0.05 0.06 0.90

⎤
⎥⎥⎥⎦, h2 =

⎡
⎢⎢⎢⎣

0.82 0.07 0.08

0.09 0.85 0.09

0.09 0.08 0.83

⎤
⎥⎥⎥⎦,

h3 =

⎡
⎢⎢⎢⎣

0.91 0.04 0.05

0.05 0.91 0.05

0.04 0.05 0.90

⎤
⎥⎥⎥⎦, h4 =

⎡
⎢⎢⎢⎣

0.85 0.07 0.08

0.08 0.86 0.08

0.07 0.07 0.84

⎤
⎥⎥⎥⎦.

(33)

For adaptive fusion system, the true conditional probability
matrices and priori probabilities of hypotheses are unknown.
Equations (32), (33) are merely utilized to generate the
events and corresponding sub-decisions, as input data of
adaptive fusion system. A total of 10000 random events were
generated according to (32). Based on these events, a total
of 10000 sets of sub-decisions are also individually simulated
according to (33). Each set of them consists of four pseudo
sub-decisions on the corresponding event. Thus, by using the
fusion strategy and (30), the adaptation of the weight factors
can be figured out.

Figures 5 and 6 illustrate the adaptations of selected two
weight factors, and compare them with true values. In the
figures, the true values computed by (27) are horizontal
straight lines and the true values are pointed out by variables
without “∧”. As shown in Figures 5 and 6, the convergence of
these curves justifies the effectiveness of the adaptive strategy
we proposed. However, a very slow speed of convergence is
observed, which is not suitable for civil structural damage
detection. It is necessary to improve the speed of convergence
in the future study.

5. Experimental Study

In this section, the framework of using decision fusion is
introduced. We used two models for the same test structure,
one is physical model for test and the other one is numerical
model for performance study of detectors. The fusion
scheme can be described as follows.

Step 1. Obtain the priori probabilities of hypotheses and
conditional probability matrices of detectors;

Step 2. Detectors make sub-decisions based on the test
results of actual structure.

Step 3. By the use of decision fusion, provide a final decision
to determine the damage which occurred in actual structure.

The work in Step 1 should be completed in advance
before starting damage detection, and it requires a lot of
computational time and data preparation for civil engineer-
ing structures. The priori probabilities of hypotheses can
be approximately obtained by taking advantage of expert
experience or lots of statistical inspections of the existing
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Figure 3: PCS of system versus number of damage cases in case of
Q0 = 0.8.
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Figure 4: PCS of system versus that of sub-decision system, number
of sub-decisions is four.

structures that considered congeneric with the test structure.
The conditional probability matrixes of the detectors can be
acquired according to the experience from applications, or by
supplier.

We also introduce a countermeasure to obtain the condi-
tional probability matrixes based on numerical damages that
are simulated by using finite element analysis (FEA) method.
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.

At first, numerical damage cases were simulated by the use
of FEA method, and corresponding natural frequencies of
undamaged and damaged structures were calculated. It is
well known that the failure in detecting is due to the test
noise. Therefore, we added a numerical white noise on the
natural frequencies that are calculated by FEA. The noise
level is the same as that of the actual measuring system,
and the actual noise can be obtained by repeated tests on
the actual structure. Thus, numerous noised samples were
obtained. Whereby, all of the detectors are examined to detect
the numerical simulated damage. For each detector, by taking
statistical analysis on the detection results on all events,
it is easy to approximately achieve conditional probability
matrixes.

Damage detections in Step 2 are a kind of blind damage
detection, since the structural damage is unknown. The
detection results made by the detectors may agree or disagree
with each other, and each detection result is provided with
a probability of correct selection. If we stop at this step, the
only reasonable selection is the one provided by the detector
that has the highest PCS. If we go on, and fuse these detection
results by decision fusion rule with the priori probabilities
and the conditional probability matrixes in Step 1, then a
final decision that has a higher PCS will be obtained.

Regarding the experimental application presented in
this section, Figure 7 illustrates the corresponding strategy
for damage detection, which is based on decision fusion.
The strategy utilized three vibration-based (actually natural

Table 1: Natural frequencies of cantilever beam (Hz).

Order 1 2 3 4 5

Experimental results 7.39 45.46 128.6 256.5 415.8

Numerical results 7.66 47.44 134.0 263.5 433.9

After model updating 7.39 45.46 128.5 253.0 414.6

frequency-based) damage detection methods as sub-decision
systems. Since the detection methods employed herein are
different in resolution, we use a multiresolution fusion rule
to carry out the decision fusion.

5.1. Test Structure. The specimen for the experimental study
is a steel cantilever beam with 1 m in length as shown
in Figure 8. Three accelerometers SA1, SA2 and SA3, were
installed at different positions of the structure to measure the
accelerations of the beam. The location of excitation is EP in
Figure 8, where force hammer was used to give an impulse
excitation.

The vibrations under impulse excitation were measured
to identify the natural frequencies of undamaged structure.
The identified natural frequencies are also compared with
FEA results, as shown in Table 1. Though a small error
between numerical and experimental results is found, it
would not be good enough for damage detection. This is
because the damage detection methods used herein merely
rely on the variation of natural frequency of structure, and
it is well known that the frequency variation of structural
vibration is not sensitive to the change of stiffness which
could be caused by structural damage. Furthermore, this
FEA numerical model will be employed to simulate the
numerical damages. Thus, the more accurate the FEA model
is, the closer it would be between the numerical results and
experimental results. Also, the conditional probability matrix
evaluated through numerical simulation will be closer to that
through experiments. Therefore, model updating techniques
should be utilized to achieve a relative accurate FEA model.
Due to implementing blind damage detection in Step 2, the
model updating is merely applied to undamaged structure,
that is, taken to obtain a numerical undamaged FEA model.

The model updating technique used herein is a kind of
parametric method, which updates the model by minimizing
the objective function that includes system parameters.
Whereby, we construct an objective function J(v) as

J(v) =
N∑

i=1

βi
[
f Ti − f Ci (v)

]2
(34)

in which f Ti and f Ci represent the natural frequencies
obtained by vibration test and FEA respectively, N is the
number of frequencies and is assigned a value of five, βi is
the weight factor for ith natural frequency, and v is a vector
consisting of elastic module, dimensions of cantilever, and
mass of accelerometers.

To minimize the objective function, stochastic research
method was implemented to solve this optimization prob-
lem. Whereby, we achieved an updated model, and the
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Figure 8: Dimensions of cantilever beam.

natural frequencies obtained through FEA are very close to
those through vibration tests, as shown in Table 1.

5.2. Detection Methods. A total of three damage detection
methods are employed to identify the damage in the
structure. These vibration-based methods employ a linear
motion system governed by

Mx′′ + Cx′ + Kx = f(t), (35)

where M, C and K are mass, damp and stiffness matrix,
respectively, and x is displacement vector, and f(t) is external
excitation.

5.2.1. Damage Detection Method 1. Damage will cause the
changes of both mass and stiffness matrices, and lead to a
change of natural frequency ω and mode ϕ. According to
the work by Hearn and Testa [2], if mass change and second
order items can be ignored, we have the square of the ith
natural frequency increment, Δω2

i , formed as

Δω2
i =

ϕTi ΔKϕi
ϕTi Mϕi

. (36)

It is assumed that the change of stiffness matrix caused
by damage can be represented by the original stiffness matrix

multiplied by a scalar αl. Thus, we divide the structure into n
elements and consider the lth element, and (36) can be

Δω2
i =

αlε
T
l

(
ϕi
)

klεl
(
ϕi
)

ϕTi Mϕi
, (37)

where εl(ϕ) is the element’s deformation that can be
calculated by changed mode due to damage. Thus

Δω2
i

Δω2
j

= εTl
(
ϕi
)

klεl
(
ϕi
)

εTl
(
ϕj
)

klεl
(
ϕj
) ·

ϕTj Mϕj

ϕTi Mϕi
. (38)

Equation (38) indicates that the ratio of any two Δω2

would be a function of damage location, but independent
of damage quantity. Hence, this method is on the second
resolution level, and the detection result u1 = hj obtained
is merely capable of localizing the damage or indicating no
damage.

5.2.2. Damage Detection Method 2. According to Stubbs and
Osegueda’s work [1], for the ith natural frequency, we use a
variation rate bi to describe the ratio of Δω2

i to ω2
i for the ith

natural frequency, that is,

bi = Δω2
i

ω2
i

= αlε
T
l

(
ϕi
)

klεl
(
ϕi
)

ϕTi Kϕi
(39)

It was considered that n damaged elements were involved
and p modes were measured, therefore (39) can be rewritten
as

Ap×nXn×1 = Bp×1, (40)

where vector B = [b1, b2, . . . , bp]T consists of p variation

rates, vector X = [α1,α2, . . . ,αn]T is damage vector whose
each element is the same as αl in (37), and matrix A
represents the relationship matrix of damage and changing
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rate. According to (39), the elements in A can be computed
by

Aij =
εTj
(
ϕi
)

k j ε j
(
ϕi
)

ϕTi Kϕi

= bi
aj

(
i = 1, 2, . . . , p, j = 1, 2, . . . ,n

)
(41)

The matrix A should be obtained in advance before start-
ing damage detection, thus, numerical damage simulation is
conventionally employed to obtain it. Firstly, we attain the
natural frequencies of the numerical model with a damage of
αl by FEA. Then, the variation rate vector B can be achieved
by (39). Finally, the elements of A can be computed by (41).

With knowledge of that n < p may occur frequently
during actual damage detection, thus (40) would lead to an
undetermined system. The countermeasure suggested herein
to solve (40) is to minimize an objective function Js as

Js = 1
2
‖AX− B‖2

2 − 1 ≤ αj ≤ 0, j = 1, . . . ,n. (42)

Obviously, the second method is on the highest resolu-
tion level, which means that it can both localize and quantify
the damage which occurred in the structure.

5.2.3. Damage Detection Method 3. The third selected
method is a kind of ANN method, which utilizes neural
network to identify damage. According to the achievements
of Ko et al. [4], we used a three-layer BP neural network,
with seven outputs representing seven damage cases, three
inputs representing the first three natural frequency variation
rates, and a hidden layer of eight nodes. After simulating
the numerical damage, corresponding variation rates and
damage cases were put into the neural network for training.
Then, the trained neural network is ready for damage
detection.

5.3. Damage Cases and Tests. Three damage locations are
considered as shown in Figure 8, and they are named as DP1,
DP2 and DP3. The damage cases for each location would
be no damage, damaged with a gap in depth ≤3 mm, and
damaged with a gap in depth >3 mm. Then we achieved a
total of seven damage cases or a seven hypothesis problem,
as shown in Table 2.

In dynamic test, we used three test specimens to phys-
ically simulate the damages of three locations. Table 1 just
lists the results of one of the specimens. For each specimen,
we measured the vibrations of the undamaged beam, that
is, whose gap is zero deep, and the damaged beam. The
damage beam is a beam that has a gap, and the gap is
sequentially cut in depth of 1, 2, 3, 4, 5, and 6 mm on the
side at the same location. Five repeated vibration tests were
conducted for the gap in each depth, whereby, we conducted
a total of 35 tests for one specimen and 105 tests for total
three specimens. Then, these tests were classified according
to Table 2. Whereby, 105 samples are prepared for damage
identification, and the corresponding results would include
the manufacturing errors and measuring errors.

5.4. Final Decision

5.4.1. Priori Perception. The priori perception for damage
detection is the information that should be achieved before
starting damage detection. As described in Step 1, the
priori perception herein includes the priori probabilities of
hypotheses and the conditional probability matrixes of all
detectors.

For this experimental study, it is assumed that the
hypotheses are equally probable, that is, the damage case
obeys discrete uniform distribution. Thus, all of the priori
probabilities of hypotheses are equal and each one is equal to
1/7.

The conditional probability matrixes of three detectors
were numerically studied. By using the updated FEA model,
we also constructed the FEA models for the damage beams.
The damage kind of gap is simulated through eliminating
the finite elements where damage occurs. A total of 35
damage cases are simulated, and the corresponding natural
frequencies are obtained through FEA. Thus by adding the
pseudo experimental errors, which were numerical simulated
according to the statistics of dynamic test results, to those
natural frequencies, we generated lots of numerical samples.
With these, three detectors were then examined, and the sub-
decisions obtained were counted to approximately estimate
the conditional probability matrices. These matrixes are
listed as

h1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

84.1 40.2 0.8 50.3 0.2 51.6 0.1

3.8 36.6 78.8 10.3 5.2 5.3 0

5.2 16.2 18.9 38.5 94.5 4.5 0.1

6.9 7.0 1.5 0.9 0.1 38.6 99.8

⎤
⎥⎥⎥⎥⎥⎥⎦

%,

h2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

34.5 7.6 0 3.2 0 7.5 0

8.4 78.3 0.6 4.3 0 4.5 0

0 2 99.4 0 0 0 0

22.7 0.1 0 83.2 0.8 26.7 0

0.1 0 0 3 99.2 0 0

34.2 12 0 6.3 0 61.3 1.8

0.1 0 0 0 0 0 98.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

%,

h3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

56 20 0 6.9 0 10.5 0

3.1 73.3 13.3 2.3 0 18.2 0

0.2 0 86.7 0 0 0 0

25.2 0 0 81.3 4.9 28.7 0

0.3 0 0 0.3 95.1 0 0

15.1 6.7 0 9.2 0 42.6 2.8

0.1 0 0 0 0 0 97.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

%.

(43)

However, by taking advantage of actual test results, the
statistics of the sub-decisions by the detectors also provides
the conditional probability matrixes of the detectors. We use
an overbar to distinguish these experimental results from



Advances in Civil Engineering 11

the numerical results given in (43), and these experimentally
obtained matrixes are

h
1 =

⎡
⎢⎢⎢⎣

86.7 33.3 0 53.3 0 66.7 0
0 40 80 6.7 6.7 0 0

6.7 20 20 40 93.3 0 0
6.7 6.7 0 0 0 33.3 100

⎤
⎥⎥⎥⎦%,

h
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

33.3 6.7 0 6.7 0 0 0
6.7 80.0 0 6.7 0 0 0
0 0 100 0 0 0 0

26.7 0 0 80.0 0 26.7 0
0 0 0 0 100 0 0

33.3 13.3 0 6.7 0 73.3 0
0 0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

%,

h
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 20 0 6.7 0 6.7 0
0 73.3 13.3 0 0 20 0
0 0 86.7 0 0 0 0

26.7 0 0 86.7 0 26.7 0
0 0 0 0 100 0 0

13.3 6.7 0 6.7 0 46.7 0
0 0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

%. (44)

Comparing the conditional probability matrixes from
numerical simulations with those from tests, only a small
difference could be observed. Accordingly, it is reasonable to
use the conditional probability matrices from the numerical
analysis results. Usually, the performance of the detector is
not available, experience from applications is absent, and
dynamic tests for damaged structure could not be realized,
in civil engineering. Therefore, this numerical simulation-
based method is useful to achieve those conditional proba-
bility matrixes.

5.4.2. Damage Detections by Detectors and Fusion. With
the priori probability of hypotheses as introduced in the
Section 5.4.1, and the detectors’ performance matrix as listed
in (43), the priori perception for this experimental study of
decision fusion are prepared now. Whereby, (7) is capable of
achieving a final decision while the sub-decisions are made.
It is noted that the sub-decisions made by the detectors for
a damage case should be based on the actual test results,
because we are dealing with blind damage detection.

Firstly, for each one of 105 tests in Section 5.3, all of
three damage detection methods should make a decision to
determine the damage case, according to the experimental
results from that test. Then, by the use of priori perception
and (7), the sub-decisions were fused to achieve a final
decision about damage case. It is noted, because the detectors
employed herein are in different resolutions, the fusion
strategy for multiresolution should be implemented.

The Selected 6 samples with corresponding three damage
detection results ui (i = 1, 2, 3) and final decision u are listed
in Table 3, in which the value is the damage case number.
The actual damage cases represented by H are also presented
in Table 3, for comparison.

It is shown that a decision fusion system can make a
more reliable decision, compared with using single damage
detection method. It often happens that the final decision
conforms well to the actual damage case but conflicts occur

Table 2: Damage cases denoted according to damage location and
degree.

Damage
case no.

H0 H1 H2 H3 H4 H5 H6

Damage
location None

DP1 DP1 DP2 DP2 DP3 DP3

Damage
degree

≤3 mm >3 mm ≤3 mm >3 mm ≤3 mm >3 mm

Table 3: Selected samples and fusion result.

Samples no. H u1 u2 u3 u Correct or Wrong

1 0 0 0 0 0
√

2 0 0 3 0 0
√

3 0 2 0 5 0
√

4 1 0 1 0 1
√

5 1 3 5 4 0 ×
6 1 2 1 1 1

√

among three damage detectors. After applying the decision
fusion to the results of 105 vibration tests, we also achieved
a conditional probability matrix, as shown in (45), which
shows superiority to that of any one of the detectors.

h
u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

80 13.3 0 20 0 26.7 0
6.7 66.7 0 0 0 0 0
0 20 100 0 0 0 0
0 0 0 80 0 0 0
0 0 0 0 100 0 0

13.3 0 0 0 0 73.3 0
0 0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

%. (45)

6. Conclusion

Decision fusion method can integrate individual damage
detection measures to obtain a single measure, and achieve
a higher probability of correct selection than any individual
one. This paper introduced the implementation of decision
fusion in structural damage detection. The MJP decision
fusion rule was employed to deal with multiple hypotheses
detection, fusing sub-decisions in multiple resolutions, and
blind adaptive detection. An implementation using experi-
mental structure was conducted. The whole detection and
fusion process were illustrated.

MJP method relies on the priori perception of system,
including priori probability of damage cases and conditional
probability matrixes of detectors. Therefore, we introduced
a method to obtain the conditional probability matrix of
detectors by FEA method. This method was approved by
comparing the matrixes from numerical simulation with
those from test results. A cantilever beam structure was set
up for experimental study, and 105 vibration test samples
were obtained for damage detection. Then, three vibration-
based detectors were employed to make sub-decisions based
on test results. In terms of priori perceptions and these sub-
decisions, a final decision can be obtained by using the MJP
decision fusion rule. Thus, 105 final decisions were achieved,
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and it was found that the final decisions were superior to
those from a single damage detection method.
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