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Compared with conventional mechanisms, tensegrity mechanisms have many attractive characteristics such as light weight, high
ratio of strength to weight, and accuracy of modeling. In this paper, the kinematics, singularity, and workspaces of a planar 4-
bar tensegrity mechanism have been investigated. Firstly, the analytical solutions to the forward and inverse kinematic problems
are found by using an energy based method. Secondly, the definition of a tensegrity mechanism’s Jacobian is introduced. As a
consequence, the singularity analysis of the planar 4-bar tensegrity mechanism has been completed. Thirdly, the actuator and
output workspaces are mapped. Finally, some attractive characteristics of the mechanism are concluded.

1. Introduction

As the complexity of robotic applications in space increases,
new demands for lighter and quicker mechanisms arise.
Tensegrity mechanisms can be viewed as one alternative
solution to conventional mechanisms. For this reason, a
planar 4-bar tensegrity mechanism is proposed in this paper
and the kinematics and statics of the mechanism are studied.

The term tensegrity was created by Fuller [1] as a combi-
nation of the words tensional and integrity. It seems that he
was inspired by some novel sculptures completed by Snelson
[2].Thedetailed history of tensegrity systemswas reviewed by
Motro [3]. Tensegrity systems are formed by a set of compres-
sive components and tensile components. Tensegrity systems
have advantages of light weight, deployability, being easily
tunable, and so forth. Due to these attractive characteristics,
tensegrity systems have been used in several disciplines such
as architecture, biology, aerospace, mechanics, and robotics
during the last fifty years [4].

The applications of tensegrity systems can be divided into
twomain branches. One application is used as structures and
the other one is used asmechanisms. In addition, the research
of tensegrity structures has two main issues, which are
the form-finding problem and the behaviors under external
loads. The form finding of a tensegrity structure corresponds

to the computation of the structure’s equilibrium shape for
a given set of parameters. This problem has been studied
by many authors [5–7]. Moreover, a review of form-finding
methods is given by Tibert and Pellegrino [5]. The behaviors
of tensegrity structures under external loads have also been
researched by many researchers [8, 9]. A static analysis of
tensegrity structures was given by Juan and Mirats Tur [10].
When some components (rigid rods or springs) are actuated,
tensegrity mechanisms can be obtained. In the past twenty
years, several tensegrity mechanisms have been proposed
[11–17]. The proposed applications of tensegrity mechanisms
range from a flight simulator [18], a space telescope [19], and
a robot [20] to a sensor [21]. For tensegrity mechanisms, the
dynamics and open problems have been reviewed by Mirats
Tur and Juan [22].

During the past twenty years, considerable research has
been performed on the control, statics, and dynamics of
class-1 tensegritymechanisms.However, there are few articles
relating to class-2 tensegrity mechanisms, especially on the
study of them.The main objective of this paper is to perform
an analytical investigation of the kinematics, singularity, and
workspaces of a planar 4-bar (class-2) tensegrity mechanism.
The definitions of class-1 and class-2 tensegrity systems are
given by Skelton and Oliveira [4].
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Figure 1: Planar 4-bar tensegrity mechanism.

Marc Arsenault and Gosselin [23] introduced the con-
ditions of static balancing of tensegrity mechanisms, which
leads to important simplifications in the analysis of tensegrity
mechanisms. These conditions of the static balancing of
tensegrity mechanism were used in this paper to find the
analytical solutions to the forward and inverse kinematic
problems of the planar 4-bar tensegrity mechanism.

This paper is organized as follows. In Section 2, the planar
4-bar tensegrity mechanism was introduced. The forward
and inverse kinematic analysis was performed in Section 3.
Furthermore, the Jacobian was computed and the singularity
configurations were obtained in Section 4. The actuator and
output workspaces were mapped, respectively, in Section 5.
Finally, conclusions were reported in Section 6.

2. Mechanism Description

A diagram of the planar 4-bar tensegrity mechanism con-
sidered here is shown in Figure 1. It is composed of three
springs, four bars, and two prismatic actuators. The bars of
length 𝐿 are joining node pairs DE, CF, BC, and AD while
the springs are joining node pairs CE, EF, and DF. Moreover,
the prismatic actuators are used to vary the distances between
node pairs AC and BD.

As shown in Figure 1, the bars, springs, and prismatic
actuators are connected to each other at each node by 2D
frictionless rotational joints. Furthermore, nodes 𝐴 and 𝐵
are fixed to the ground and the whole mechanism lies in a
horizontal plane. From Figure 1, it can be seen that joints 𝐴
and 𝐵 have restrained translational DOF in 𝑥- and 𝑦-axes

but free rotational DOF. In addition, the angle between the
x-axis and the bar joining nodes AD is defined as 𝛼 while the
angle between the horizontal and the bar joining nodes BC is
defined as 𝛽. Moreover, the angle between the x-axis and the
bar joining nodes CF is defined as 𝛾 while the angle between
the horizontal and the bar joining nodes DE is defined as
𝜃. From Figure 1, it can also be observed that the distance
between nodes 𝐴 and 𝐵 is 𝐿.

In Figure 1, the stiffness of the springs of lengths ℓ
𝑖
(𝑖 =

1, 2, 3) is denoted by 𝐾. Furthermore, it is assumed that
the springs have zero free length. This hypothesis is not
problematic since, as was explained by Gosselin [24] and
Shekarforoush et al. [25], virtual zero-free-length spring can
be created by extending the actual spring beyond its attach-
ment point.The actuator lengths (𝜌

1
and 𝜌
2
) are chosen as the

mechanism’s input variables while the Cartesian coordinates
of node 𝐹 (𝑥 and 𝑦) are chosen as the mechanism’s output
variables. From Figure 1, it can be seen that the shape of the
mechanism can be determined for the given actuator lengths.
Moreover, the 𝑌 coordinates of nodes 𝐶 and 𝐷 are chosen to
be nonnegative. For this reason, the ranges imposed to 𝛼 and
𝛽 can be obtained as follows:

0 ≤ 𝛼 ≤ 𝜋, 0 ≤ 𝛽 ≤ 𝜋. (1)

Furthermore, the ranges imposed to 𝜃 and 𝛾 are chosen as

0 < 𝛾 < 𝜋, 0 < 𝜃 < 𝜋. (2)

From Figure 1, it can be observed that the mechanism is
unstable in the case ofDE andCF being parallel. In particular,
in this case, themechanism cannot be in equilibrium. For this
reason, 𝛾 + 𝜃 ̸= 𝜋.

3. Kinematic and Static Analysis

For a tensegritymechanism, the kinematics and statics should
be considered simultaneously since the relationships between
the input and output variables depend not only on the
mechanism’s geometry but also on the internal forces in the
springs. For this reason, it is always assumed that the planar
4-bar tensegrity mechanism is in equilibrium. Under this
assumption, the explicit relationships between the input and
output variables can be developed.

3.1. Forward Kinematic Analysis. For the mechanism con-
sidered here, the forward kinematic analysis consists in
computing the Cartesian coordinates of node 𝐹 for the given
actuator lengths. From Figure 1, it can be seen that when the
actuator lengths (𝜌

1
and 𝜌
2
) are specified, the triangle formed

by nodes 𝐴, 𝐵, and 𝐷 and the triangle formed by nodes 𝐴,
𝐵, and 𝐶 are determined. As a consequence, the movement
of node 𝐸 is confined to a rotation centered on node 𝐷.
Moreover, the movement of node 𝐹 is also constrained to
a rotation centered on node 𝐶. For the mechanism shown
in Figure 1, the potential energy of the system will reach its
minimum when the mechanism is in equilibrium.Therefore,
the relationships between the input and output variables can
be obtained by minimizing the potential energy with respect
to a set of parameters, chosen here as 𝜃 and 𝛾.
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From Figure 1, the coordinates of nodes 𝐴, 𝐵, 𝐶, and 𝐷
can be obtained as follows:

P
𝐴
= [
0

0
] , P

𝐵
= [
𝐿

0
] ,

P
𝐶
= [
𝐿 (1 − cos𝛽)
𝐿 sin𝛽 ] , P

𝐷
= [
𝐿 cos𝛼
𝐿 sin𝛼] .

(3)

With the coordinates of nodes 𝐶 and 𝐷 now known, the
coordinates of nodes 𝐸 and 𝐹 can be written in the following
form:

P
𝐸
= [
𝐿 (cos𝛼 − cos 𝜃)
𝐿 (sin𝛼 + sin 𝜃)] ,

P
𝐹
= [
𝐿 (1 − cos𝛽 + cos 𝛾)
𝐿 (sin𝛽 + sin 𝛾) ] .

(4)

Since the Cartesian coordinates of node 𝐹 are chosen as
the output variables, we therefore write

𝑥 = 𝐿 (1 − cos𝛽 + cos 𝛾) ,

𝑦 = 𝐿 (sin𝛽 + sin 𝛾) .
(5)

Furthermore, the lengths of the springs CE, EF, and FD
can be easily calculated according to (3) and (4). Then, the
potential energy of the mechanism takes the form

𝑈 =

3

∑

𝑖=1

1

2
𝐾ℓ
2

𝑖

=
𝐾𝐿
2

2
[13 + 6 (cos𝛼 cos𝛽 − sin𝛼 sin𝛽 − cos𝛼 − cos𝛽)

+ 4 (1 − cos𝛽 − cos𝛼)

⋅ (cos 𝛾 + cos 𝜃) + 2 cos (𝜃 + 𝛾)

+ (sin𝛼 − sin𝛽) (sin 𝜃 − sin 𝛾)] .
(6)

As shown in Figure 1, a cosine law for the triangle formed
by nodes 𝐴, 𝐵, and𝐷 can be written as

cos𝛼 =
2𝐿
2
− 𝜌
2

2

2𝐿2
. (7)

Moreover, a cosine law for the triangle formed by nodes𝐴, 𝐵,
and 𝐶 can be written as

cos𝛽 =
2𝐿
2
− 𝜌
2

1

2𝐿2
. (8)

Due to the ranges imposed to 𝛼 and 𝛽, the expressions for
sin𝛼 and sin𝛽 can be derived as follows:

sin𝛼 = √1 − cos2𝛼 =
𝜌
2
√4𝐿2 − 𝜌

2

2

2𝐿2
,

(9)

sin𝛽 = √1 − cos2𝛽 =
𝜌
1
√4𝐿2 − 𝜌

2

1

2𝐿2
.

(10)

Substituting (7), (8), (9), and (10) into (6), the potential
energy of the mechanism can be expressed as

𝑈 =
𝐾𝐿
2

2
[
3

2𝐿4
(𝜌
2

1
𝜌
2

2
−

2

∏

𝑖=1

𝜌
𝑖
√4𝐿2 − 𝜌

2

𝑖
) + 7

+
2

𝐿2
(𝜌
2

1
+ 𝜌
2

2
− 2𝐿
2
) (cos 𝛾 + cos 𝜃)

+
2

𝐿2
(𝜌
2
√4𝐿2 − 𝜌

2

2
− 𝜌
1
√4𝐿2 − 𝜌

2

1
)

× (sin 𝜃 − sin 𝛾) + 2 cos (𝜃 + 𝛾)] .

(11)

By differentiating 𝑈 with respect to 𝜃 and 𝛾 separately
and equating the results to zero, the following equations are
generated:

𝜕𝑈

𝜕𝜃
=
𝐾𝐿
2

2
[
2

𝐿2
(𝜌
2

1
+ 𝜌
2

2
− 2𝐿
2
) (− sin 𝜃) + 2

𝐿2

× (𝜌
2
√4𝐿2 − 𝜌

2

2
− 𝜌
1
√4𝐿2 − 𝜌

2

1
)

× cos 𝜃 − 2 sin (𝜃 + 𝛾)] = 0,

(12)

𝜕𝑈

𝜕𝛾
=
𝐾𝐿
2

2
[
2

𝐿2
(𝜌
2

1
+ 𝜌
2

2
− 2𝐿
2
) (− sin 𝛾) − 2

𝐿2

× (𝜌
2
√4𝐿2 − 𝜌

2

2
− 𝜌
1
√4𝐿2 − 𝜌

2

1
)

× (cos 𝛾) − 2 sin (𝜃 + 𝛾)] = 0.

(13)

Due to 𝛾 + 𝜃 ̸= 𝜋, the following equation can be obtained
by eliminating the expression sin(𝜃 + 𝛾) from (12) and (13):

𝜃 = 𝛾 + 2tan−1

×
[
[

[

(𝜌
2
√4𝐿2 − 𝜌

2

2
− 𝜌
1
√4𝐿2 − 𝜌

2

1
)

(𝜌
2

1
+ 𝜌
2

2
− 2𝐿2)

]
]

]

.

(14)

Substituting (14) into (13) yields

[−𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) − 3𝑁

0
𝑁
1
] 𝑡
4

1

+ 2 [𝑁
0
(𝑁
2

0
+ 𝑁
2

1
) − (𝑁

2

0
− 𝑁
2

1
)] 𝑡
3

1

− 2𝑁
0
𝑁
1
𝑡
2

1
+ 2 [𝑁

0
(𝑁
2

0
+ 𝑁
2

1
) + (𝑁

2

0
− 𝑁
2

1
)] 𝑡
1

+ 𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) + 𝑁

0
𝑁
1
= 0,

(15)
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where 𝑡
1
= tan(𝛾/2). The expressions for 𝑁

0
and 𝑁

1
are

detailed in Appendix A. It is apparent that (15) is an equation
of degree 4 in 𝑡

1
. Solving (15) for 𝑡

1
, we obtain

𝑡
1𝑗
=
1

4
[(−1)

𝑗+1
(𝐸
2

1
− 𝐸
2
+ 𝐸
5
)
1/2

− 𝐸
1
] +

𝛿
1

4

× [ (𝐸
1
+ (−1)

𝑗
(𝐸
2

1
− 𝐸
2
+ 𝐸
5
)
1/2

−8 (𝐸
1
𝐸
5
− 2𝑀
3
) (−1)

𝑗
)

× ((𝐸
2

1
− 𝐸
2
+ 𝐸
5
)
1/2

− 8𝐸
5
)

−1

]

1/2

,

(16)

where 𝛿
1
= ±1. Moreover, the variables 𝐸

𝜉
(𝜉 = 1, . . . , 5) are

also detailed in Appendix A. 𝑡
1𝑗
represents four solutions to

(15) for 𝑗 = 1, 2. Computing the arctangent of 𝑡
1
generates

a unique solution for 𝛾 due to the range imposed to 𝛾.
Moreover, negative solutions for 𝑡

1
should be eliminated.

With the solutions for 𝛾 now known, the solutions to the
forward kinematic problem can be found by substituting (8)
and (10) into (5).

3.2. Inverse Kinematic Analysis. The inverse kinematic analy-
sis of the mechanism corresponds to the computation of the
actuator lengths for the given Cartesian coordinates of node
𝐹.

Eliminating the parameter, 𝛾, from (5) yields

[(𝑥 − 𝐿)
2
+ 𝑦
2
− 2𝐿 (𝑥 − 𝐿)] 𝑡

2

2

− 4𝑦𝐿𝑡
2
+ (𝑥 − 𝐿)

2
+ 𝑦
2
+ 2𝐿 (𝑥 − 𝐿) = 0,

(17)

where 𝑡
2
= tan(𝛽/2).

Solving (17) for 𝑡
2
, we obtain

𝑡
2
= (2𝑦𝐿 ± {4𝑦

2
𝐿
2
− [(𝑥 − 𝐿)

2
+ 𝑦
2
− 2𝐿 (𝑥 − 𝐿)]

×[(𝑥 − 𝐿)
2
+ 𝑦
2
+ 2𝐿(𝑥 − 𝐿)]}

1/2

)

× ((𝑥 − 𝐿)
2
+ 𝑦
2
− 2𝐿(𝑥 − 𝐿))

−1

.

(18)

Substituting the expression 𝑡
2
= tan(𝛽/2) into (8) yields

𝜌
1
=

2𝐿𝑡
2

√1 + 𝑡
2

2

. (19)

Therefore, substituting (18) into (19), two solutions for 𝜌
1
are

found. In the following paragraphs, we will find the solutions
for 𝜌
2
.

By substituting (8) and (10) into (5), we obtain

sin 𝛾 =
2𝐿𝑦 − 𝜌

1
√4𝐿2 − 𝜌

2

1

2𝐿2
,

cos 𝛾 =
2𝐿𝑥 − 𝜌

2

1

2𝐿2
.

(20)

Moreover, substituting (7), (8), (9), and (10) into (14)
yields

𝜃 = 𝛾 + 2tan−1 [[

[

(2𝐿
2 sin𝛼 − 𝜌

1
√4𝐿2 − 𝜌

2

1
)

(𝜌
2

1
− 2𝐿2 cos𝛼)

]
]

]

. (21)

Substituting (20) and (21) into (13) and rearranging yields

𝜆
1
𝑡
4

3
+ 𝜆
2
𝑡
3

3
+ 𝜆
3
𝑡
2

3
+ 𝜆
4
𝑡
3
+ 𝜆
5
= 0, (22)

where 𝑡
3
= tan(𝛼/2). The expressions for 𝜆

𝜁
(𝜁 = 1, . . . , 5) are

detailed in Appendix B.
It can be seen that (22) is an equation of degree 4 in 𝑡

3
.

Therefore, solving (22), the following is obtained:

𝑡
3𝜇
=

(−1)
𝜇+1
(4𝜆
2

1
𝜂 − 4𝜆

1
𝜆
3
+ 𝜆
2

2
)
1/2

− 𝜆
2

2𝜆
1

+
𝛿
2

2
{
1

4𝜆
2

1

[𝜆
2
+ (−1)

𝜇
(4𝜆
2

1
𝜑 − 4𝜆

1
𝜆
3
+ 𝜆
2

2
)
−1/2

]

2

− (−1)
𝜇
2 (𝜆
2
𝜂 − 2𝜆

4
)

× (4𝜆
2

1
𝜑 − 4𝜆

1
𝜆
3
+ 𝜆
2

2
)
−1/2

− 2𝜂}

1/2

,

(23)

where

𝜂 =
𝜆
3

3𝜆
1

+ [

[

−𝑄

2
+ √

𝑄
2

4
−
𝑃
3

27

]

]

1/3

+ [

[

−𝑄

2
− √

𝑄
2

4
−
𝑃
3

27

]

]

1/3

,

(24)

and where

𝑃 =
1

𝜆
2

1

[𝜆
2
𝜆
4
− 4𝜆
1
𝜆
5
−
1

3
𝜆
2

3
] ,

𝑄 =
1

𝜆
3

1

[
2𝜆
3

3

27
+
𝜆
3

3
(𝜆
2
𝜆
4
− 4𝜆
1
𝜆
5
)

+ (4𝜆
1
𝜆
3
𝜆
5
− 𝜆
2

2
𝜆
5
− 𝜆
1
𝜆
2

4
)] .

(25)

Substituting the expression 𝑡
3
= tan(𝛼/2) into (7), we obtain

𝜌
2
=

2𝐿𝑡
3

√1 + 𝑡
2

3

. (26)

In (23), it should be noted that 𝛿
2
= ±1. Moreover, 𝑡

3𝜇

represents four solutions to (22) for 𝜇 = 1, 2. Considering
the range imposed to 𝛼, negative solutions for 𝑡

3
should be

eliminated. Substituting (23) into (26), the solutions for 𝜌
2
are

found.
Two solutions for 𝜌

1
are given by (19). Four solutions for

𝜌
2
can be found by (26). In particular, if these solutions for

𝜌
1
and 𝜌

2
are all nonnegative, eight solutions to the inverse

kinematic problem are found.
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4. Singularity Analysis

The singularity analysis of a mechanism can be completed
by analyzing its Jacobian. The objective of this section is to
obtain singular configurations of the planar 4-bar tensegrity
mechanism.

4.1. Mechanism Jacobian. For conventional mechanisms,
Jacobian is used to describe the relations between input
and output velocities. However, for tensegrity mechanisms,
these relationships cannot be established since there are
more degrees of freedom than actuators. When a tensegrity
mechanism is in equilibrium, its Jacobian can be defined as

𝛿𝜑 = J𝛿𝜓, (27)

where 𝜑 = [𝑥, 𝑦]T and 𝜓 = [𝜌
1
, 𝜌
2
]
T. For the 4-bar tensegrity

mechanism considered here, J can be written as follows:

J =
[
[
[

[

𝜕𝑥

𝜕𝜌
1

𝜕𝑥

𝜕𝜌
2

𝜕𝑦

𝜕𝜌
1

𝜕𝑦

𝜕𝜌
2

]
]
]

]

. (28)

Substituting (8) and (10) into (5), we obtain

𝑥 =
𝜌
2

1

2𝐿
+ 𝐿 cos 𝛾,

𝑦 =
𝜌
1

2𝐿
√4𝐿2 − 𝜌

2

1
+ 𝐿 sin 𝛾.

(29)

The elements of the Jacobian matrix, J, can be computed as
follows:

𝜕𝑥

𝜕𝜌
1

=
𝜌
1

𝐿
− 𝐿 sin 𝛾

𝜕𝛾

𝜕𝜌
1

,

𝜕𝑥

𝜕𝜌
2

= −𝐿 sin 𝛾
𝜕𝛾

𝜕𝜌
2

,

𝜕𝑦

𝜕𝜌
1

=
2𝐿
2
− 𝜌
2

1

𝐿√4𝐿2 − 𝜌
2

1

+ 𝐿 cos 𝛾
𝜕𝛾

𝜕𝜌
1

,

𝜕𝑦

𝜕𝜌
2

= 𝐿 cos 𝛾
𝜕𝛾

𝜕𝜌
2

.

(30)

Then, in the following paragraphs, we will derive the expres-
sion for 𝜕𝛾/𝜕𝜌

𝑖
for 𝑖 = 1, 2. Substituting (7), (8), (9), and (10)

into (12) and (13) yields

2 (1 − cos𝛼 − cos𝛽) sin 𝜃 − 2 (sin𝛼 − sin𝛽) cos 𝜃

+ sin (𝜃 + 𝛾) = 0,

2 (1 − cos𝛼 − cos𝛽) (− sin 𝛾)

− 2 (sin𝛼 − sin𝛽) cos 𝛾 − sin (𝜃 + 𝛾) = 0.

(31)

By differentiating both sides of (31) and with respect to 𝜌
𝑖
, for

𝑖 = 1, 2, we obtain

[2 cos 𝜃 + cos (𝜃 + 𝛾) − 2 cos (𝛽 − 𝜃) − 2 cos (𝛼 − 𝜃)] 𝜕𝜃
𝜕𝜌
𝑖

+ cos (𝜃 + 𝛾)
𝜕𝛾

𝜕𝜌
𝑖

− 2 cos (𝛼 + 𝜃) 𝜕𝛼
𝜕𝜌
𝑖

+ 2 cos (𝛽 − 𝜃)
𝜕𝛽

𝜕𝜌
𝑖

= 0,

(32)

[2 cos (𝛽 + 𝛾) + 2 cos (𝛼 − 𝛾) − cos (𝜃 + 𝛾) − 2 cos 𝛾]
𝜕𝛾

𝜕𝜌
𝑖

− cos (𝜃 + 𝛾) 𝜕𝜃
𝜕𝜌
𝑖

− 2 cos (𝛼 − 𝛾) 𝜕𝛼
𝜕𝜌
𝑖

+ 2 cos (𝛽 + 𝛾)
𝜕𝛽

𝜕𝜌
𝑖

= 0.

(33)

Furthermore, the following equations can be derived from (7)
and (8):

𝜕𝛼

𝜕𝜌
1

= 0,
𝜕𝛽

𝜕𝜌
2

= 0. (34)

Considering the condition shown in (34) and combining (32)
with (33), we have

𝜕𝛾

𝜕𝜌
1

=
Φ
1

Φ
2

⋅
𝜕𝛽

𝜕𝜌
1

, (35)

𝜕𝛾

𝜕𝜌
2

=
Φ
3

Φ
2

⋅
𝜕𝛼

𝜕𝜌
2

, (36)

where

Φ
1
= − {2 cos (𝛽 − 𝜃) cos (𝜃 + 𝛾) + 2 cos (𝛽 + 𝛾)

× [2 cos 𝜃 − 2 cos (𝛽 − 𝜃)

+ cos (𝜃 + 𝛾) − 2 cos (𝛼 − 𝜃)]} ,

Φ
2
= cos2 (𝜃 + 𝛾)

+ [2 cos 𝜃 + cos (𝜃 + 𝛾) − 2 cos (𝛽 − 𝜃) − 2 cos (𝛼 − 𝜃)]

⋅ [2 cos (𝛽 + 𝛾) + 2 cos (𝛼 − 𝛾) − cos (𝜃 + 𝛾) − 2 cos 𝛾] ,

Φ
3
= 2 cos (𝛼 + 𝜃) cos (𝜃 + 𝛾)

+ 2 cos (𝛼 − 𝛾) [2 cos 𝜃 + cos (𝜃 + 𝛾)

−2 cos (𝛽 − 𝜃) − 2 cos (𝛼 − 𝜃)] .
(37)
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Moreover, the expressions for 𝜕𝛼/𝜕𝜌
2
and 𝜕𝛽/𝜕𝜌

1
can be

computed from (7) and (8) as follows:

𝜕𝛼

𝜕𝜌
2

=
−1

√1 − cos2𝛼
⋅
𝜕 cos𝛼
𝜕𝜌
2

=
2

√4𝐿2 − 𝜌
2

2

,

𝜕𝛽

𝜕𝜌
1

=
−1

√1 − cos2𝛽
⋅
𝜕 cos𝛽
𝜕𝜌
1

=
2

√4𝐿2 − 𝜌
2

1

.

(38)

By substituting (35) and (36) into (30), the elements of the
mechanism’s Jacobian can be computed.

The Jacobian, J, describes the relationships between
the infinitesimal movements of the actuators and the end-
effector (node 𝐹) of the mechanism. In addition, the detailed
discussion of the Jacobian will be presented in Section 4.2.

4.2. Singular Configurations. The singular configurations of a
mechanism correspond to situations where the determinant
of J is zero, goes to infinity, or is indeterminate.

The determinant of J can be derived from (28) as follows:

det (J) = 𝐿2 sin (𝛽 + 𝛾)
𝜕𝛽

𝜕𝜌
1

⋅
𝜕𝛾

𝜕𝜌
2

. (39)

Substituting (36) and (38) into (39), we obtain

det (J) =
4𝐿
2 sin (𝛽 + 𝛾)

√(4𝐿2 − 𝜌
2

1
) (4𝐿2 − 𝜌

2

2
)

⋅
Φ
3

Φ
2

, (40)

where the expressions for Φ
2
and Φ

3
are shown in (37).

Furthermore, the singular configurations can be obtained by
examining (37) and (40). The expressions of these singular
configurations and the corresponding behaviors of themech-
anism are described as follows.

(i) 𝜌
1
= 0. One has the following.

(1) Node 𝐴 is coincident with node 𝐶.
(2) Finite movements of node 𝐹 in a direction

perpendicular to the line joining nodes 𝐶 and
𝐹 are possible while finite movements of node 𝐸
in a direction perpendicular to the line joining
nodes 𝐷 and 𝐸 are also possible with actuators
being locked.

(3) Infinitesimal movements of node 𝐹 along a
direction parallel to the line joining nodes𝐶 and
𝐹 cannot be generated. Moreover, infinitesimal
movements of node 𝐸 in a direction parallel to
the line that joins nodes 𝐷 and 𝐸 cannot be
generated either with actuators being locked.

(4) External forces applied in a direction perpendic-
ular to the line joining nodes 𝐸 and𝐷 cannot be
resisted by the actuators.

(ii) 𝜌
2
= 0. One has the following.

(1) Node 𝐵 is coincident with node𝐷.

(2) Finite movements of node 𝐸 along a direction
perpendicular to the line joining nodes𝐷 and 𝐸
are possible with actuators being locked.

(3) Infinitesimal movements of node 𝐸 in a direc-
tion parallel to the line that joins nodes 𝐷 and
𝐸 cannot be generated with actuators being
locked.

(4) External forces applied along a direction per-
pendicular to the line joining nodes 𝐶 and 𝐹
cannot be resisted by the actuators.

(iii) 𝜌
1
= 2𝐿. One has the following.

(1) Node 𝐶 is located on the 𝑥-axis.
(2) Finite movements of Node 𝐹 along a direction

perpendicular to the line joining nodes 𝐶 and
𝐹 are possible with actuators locked. Moreover,
finite movements of node 𝐶 in a direction
parallel to the 𝑦-axis are also possible with
actuators being locked.

(3) Infinitesimal movements of node 𝐶 along a line
parallel to the 𝑥-axis cannot be generated.

(4) External forces applied in a direction perpendic-
ular to the line joining nodes𝐷 and 𝐸 cannot be
resisted by the actuators.

(iv) 𝜌
2
= 2𝐿. One has the following.

(1) Node𝐷 is located on the 𝑥-axis.
(2) Finite movements of node 𝐸 along a direction

perpendicular to the line joining nodes 𝐷 and
𝐸 are possible while finite movements of node
𝐷 in a direction parallel to the 𝑦-axis are also
possible with actuators being locked.

(3) Infinitesimal movements of node𝐷 along a line
parallel to the 𝑥-axis cannot be generated.

(4) External forces applied in a direction perpendic-
ular to the line joining nodes 𝐶 and 𝐹 cannot be
resisted by the actuators.

(v) 𝜌
1
= 𝜌
2
= 2𝐿. One has the following.

(1) All the nodes of the mechanism are located on
the 𝑥-axis.

(2) Node 𝐹 is coincident with node 𝐴 while node 𝐸
is coincident with node B.

(3) Finite movements of nodes 𝐶,𝐷, 𝐸, and 𝐹 along
a direction parallel to the 𝑦-axis are possible.

(4) External forces applied in a direction parallel
to the 𝑦-axis cannot be resisted by the actua-
tors. Moreover, external forces applied along a
direction parallel to the 𝑥-axis are resisted by
the mechanism with no forces generated in the
actuators.

(vi) 𝜌
1
= 𝜌
2
= 𝐿. One has the following.

(1) Node 𝐶 is coincident with node𝐷while node 𝐸
is coincident with node 𝐹.



Journal of Robotics 7

(2) Finite movements of node 𝐸 in a direction
perpendicular to the line joining nodes𝐷 and 𝐸
are possible.Moreover, the compressive element
joining node pairs𝐸 and𝐷 can gain an arbitrary
rotation with respect to node 𝐷 with actuators
being locked.

(3) Infinitesimal movements of node 𝐸 in a direc-
tion parallel to the line joining nodes 𝐷and 𝐸
cannot be generated.

(4) External forces applied along a direction per-
pendicular to the line joining nodes 𝐷 and 𝐸
cannot be resisted by the actuators.

(vii) sin(𝛽 + 𝛾) = 0, Φ
2
= 0 and Φ

3
= 0. One has the

following.

(1) Finite movements of node 𝐸 in a direction
perpendicular to the line joining nodes 𝐷 and
𝐸 are possible while finite movements of node 𝐹
in a direction perpendicular to the line joining
nodes 𝐶 and 𝐹 are also possible with actuators
being locked.

It can be noted that the mechanism will reach its dead
point when the configuration described in (v) occurs. In such
situations, the mechanism cannot be operated by actuators
since the actuators cannot provide forces along a direction
parallel to the 𝑦-axis with all the mechanism’s nodes located
on the 𝑥-axis. Moreover, an external force parallel to the 𝑦-
axis is needed to put themechanism to use in its normal state.
Furthermore, this characteristic brings an advantage to the
mechanism.Themechanism can be folded in a small volume
for transportation purposes.

5. Workspace

The actuator workspace of a mechanism is defined as the
region that the actuators can operate while the output
workspace is defined as the region that the end-effectors can
reach. The boundaries and singular curves of a workspace
usually correspond to the mechanism’s singular configura-
tions since, in such situations, the mechanism cannot be
controlled or cannot generate certain displaces of its actuators
and end-effectors.

5.1. ActuatorWorkspace. For the 4-bar tensegritymechanism
researched here, the actuator workspace consists of the ranges
of variables,𝜌

1
and𝜌
2
. Generally, the boundary of the actuator

workspace and singular curves inside the actuator workspace
always correspond to the singular configurations. Moreover,
by plotting the curves of singular configurations described in
Section 4.2, the actuator workspace of the mechanism can be
obtained as shown in Figure 2.

From Figure 2, it can be seen that each curve is identified
according to the singular configurations listed in Section 4.2.
In addition, the singular configuration described in (v)
corresponds to a point (𝜌

1
= 𝜌
2
= 20m) of the actuator

workspace boundary. Moreover, the configuration described
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Figure 2: Actuator workspace and singular curves for the planar 4-
bar tensegrity mechanism with 𝐿 = 10m.

in (vi) corresponds to a singular point (𝜌
1
= 𝜌
2
= 10m) inside

the actuator workspace.

5.2. Output Workspace. The output workspace corresponds
to the ranges of Cartesian coordinates of node 𝐹. In most
cases, the output workspace can be obtained by mapping
the actuator workspace into the output domain. However,
the boundaries of the actuator workspace are not always
corresponding to the boundaries of the output workspace.
Generally, the outputworkspace can be obtained by analyzing
the singular configurations and the corresponding behaviors
of the mechanism. An example of the mechanism’s output
workspace and singular curves is shown in Figure 3.

From Figure 3, it can be seen that curve i corresponds
to the singular configuration (i) described in Section 4.2. In
addition, curve i takes the form

𝑥
2
+ 𝑦
2
= 𝐿
2
. (41)

Furthermore, curve iii corresponding to the singular
configuration (iii) can be described by

(𝑥 − 2𝐿)
2
+ 𝑦
2
= 𝐿
2
. (42)

From Section 4.2, we know that the mechanism becomes
uncontrollablewhen the singular configuration (vi) occurred.
The node 𝐶 is coincident with node 𝐷 while node 𝐸 is
coincident with node 𝐹. Moreover, the force in the spring
joining nodes 𝐸 and 𝐹 is equal to zero. The only possible
deformation of the mechanism is a rotation with respect to
node 𝐶 of the strut joining nodes 𝐶 and 𝐹. Therefore, the
expression for the singular configuration (vi) in the output
workspace can be written as

(𝑥 − 𝑥
𝑐
)
2
+ (𝑦 − 𝑦

𝑐
)
2
= 𝐿
2
, (43)
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Figure 3: Output workspace and singular curves for the planar 4-
bar tensegrity mechanism with 𝐿 = 10m.

where

𝑥
𝑐
=
𝐿

2
, 𝑦

𝑐
=
√3𝐿

2
. (44)

In (43), 𝑥
𝑐
and 𝑦
𝑐
are the Cartesian coordinates of node𝐶

with 𝜌
1
= 𝜌
2
= 𝐿.

From Figure 3, it can be observed that the curve viii does
not correspond to any singular configuration described in
Section 4.2. Moreover, curve viii is obtained by analyzing the
behaviors of the mechanism. As illustrated in Figure 1, the
movement of node 𝐶 is a rotation with respect to node 𝐵
while the movement of node 𝐹 is a rotation with respect to
node 𝐶. Therefore, when the node 𝐹 generates a rotation
centered on node 𝐵 with 2𝐿 in radius, the end-effector of
the mechanism, node 𝐹, will reach the boundaries of output
workspace. Furthermore, the curve viii can be described by

(𝑥 − 𝐿)
2
+ 𝑦
2
= (2𝐿)

2
. (45)

Finally, the actuator workspace and output workspace
are both obtained by analyzing the singular configurations
and corresponding behaviors of themechanism.The actuator
and output workspaces of the planar tensegrity mechanism
should be considered when such a mechanism is put to use
or being designed.

6. Conclusion

Compared with conventional mechanisms, tensegrity mech-
anisms can be modeled with greater accuracy since all of
their components are axially loaded. Furthermore, the use
of springs in tensegrity allows them to have the advantage

of being deployable. For this reason, tensegrity mechanisms
can be viewed as one alternative solution to conventional
mechanisms in some applications. In this paper, the kinemat-
ics, singularity, and workspaces of a planar 4-bar tensegrity
mechanism were presented.

The analytical solutions to the forward and inverse kine-
matic problemswere found by using an energy basedmethod.
Unlike conventional mechanisms, the shape of the 4-bar
tensegrity mechanism depends not only on its geometry but
also on the internal forces in the springs. As a consequence,
the kinematic analysis should consider the constraint that
the potential energy of the mechanism will reach its mini-
mum when the mechanism is in equilibrium. Afterwards, a
Jacobian was developed and the singular configurations were
discussed. It was demonstrated that the finite movements
of the actuators can be generated when the end-effector
reached the boundaries of the output workspace. Moreover,
the external loads exerted on the end-effector cannot be
resisted by the actuators when the singular configurations
corresponding to the singular curves inside the actuator
workspace occurred. Furthermore, an attractive characteris-
tic was found; that is, the mechanism can be folded in a small
volume for transportation purposes. Finally, according to the
singular configurations and the corresponding behaviors of
the mechanism, the actuator and output workspaces were
mapped. The singular configurations and workspaces of the
mechanism should be considered when such a mechanism is
put to use or being designed.

In future work, the authors wish to research the control of
the 4-bar tensegrity mechanism.

Appendices

A. Details of Variables 𝑁
0
, 𝑁
1
, and 𝐸

𝜉

Consider the following

𝑁
0
=
𝜌
2

1
+ 𝜌
2

2

2𝐿2
− 1,

𝑁
1
=

𝜌
2
√4𝐿2 − 𝜌

2

2
− 𝜌
1
√4𝐿2 − 𝜌

2

1

2𝐿2
,

𝐸
1
=

2 (𝑁
2

0
− 𝑁
2

1
) − 2𝑁

0
(𝑁
2

0
+ 𝑁
2

1
)

𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) + 3𝑁

0
𝑁
1

,

𝐸
2
=

2𝑁
0
𝑁
1

𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) + 3𝑁

0
𝑁
1

,

𝐸
3
= −

2𝑁
0
(𝑁
2

0
+ 𝑁
2

1
) + 2 (𝑁

2

0
− 𝑁
2

1
)

𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) + 3𝑁

0
𝑁
1

,

𝐸
4
= −

𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) + 𝑁

0
𝑁
1

𝑁
1
(𝑁
2

0
+ 𝑁
2

1
) + 3𝑁

0
𝑁
1

,

(A.1)
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𝐸
5
=
𝐸
2

3
+ [

[

−𝑞

2
+ √

𝑞
2

4
−
𝑝
3

27

]

]

1/3

+ [

[

−𝑞

2
− √

𝑞
2

4
−
𝑝
3

27

]

]

1/3

.

(A.2)

In (A.2), the expressions for 𝑝 and 𝑞 are as follows:

𝑝 = [𝐸
1
𝐸
3
− 4𝐸
4
] −
𝐸
2

2

3
,

𝑞 =
2

27
𝐸
3

2
+
𝐸
2

3
[𝐸
1
𝐸
3
− 4𝐸
4
] + [4𝐸

2
𝐸
4
− 𝐸
2

1
𝐸
4
− 𝐸
2

3
] .

(A.3)

B. Details of Variables 𝜆
𝜁

Consider the following

𝜆
1
=
5

𝐿2
[2𝐿𝑦 − 𝐺

0
− 𝐺
1
𝐿
2
] −

𝜌
2

1
+ 2𝐿
2

2𝐿2
𝐺
2
+
3𝐺
3

2
,

𝜆
2
=
1

𝐿2
{3[2𝑥 −

𝜌
2

1

𝐿
] + 2𝐺

0
[𝐺
1
−
2𝐿𝑦 − 𝐺

0

𝐿2
]

+
1

2
[2𝐿
2
+ 𝜌
2

1
− 𝐺
0
] 𝐺
4
+ 4} ,

𝜆
3
=

(2𝐿𝑦 − 𝐺
0
) [2𝐿
2
− 3 (2𝐿𝑥 − 𝜌

2

1
)]

2𝐿4
− 2𝐺
1
(9 −

𝜌
2

1

𝐿2
) ,

𝜆
4
=
1

𝐿2
{3 (2𝐿𝑥 − 𝜌

2

1
) − 2𝐿

2
− 2 (2𝐿

2
− 𝜌
2

1
) (2𝐿𝑥 − 𝜌

2

1
)

+ 𝐺
0
𝐺
1
+ [𝐺
0
− 2𝐿
2
+ 𝜌
2

1
] 𝐺
4
} ,

𝜆
5
=
3𝐿
2
− 2𝜌
2

1

𝐿2
+ (1 −

𝜌
2

1

2𝐿2
)𝐺
2
−
1

2
𝐺
3
.

(B.1)

In (B.1), the expressions for 𝐺
0
–𝐺
4
are as follows:

𝐺
1
= 𝜌
1
√4𝐿2 − 𝜌

2

1
,

𝐺
2
=
1

2𝐿3
{𝜌
1
[(𝑥 − 𝐿)√4𝐿

2 − 𝜌
2

1
− 𝜌
1
𝑦] + 2𝜌

2

1
𝑦} ,

𝐺
3
=
1

4𝐿6
{𝜌
1
√4𝐿2 − 𝜌

2

1
[(2𝐿𝑥 − 𝜌

2

1
)
2

− 𝐿
4
] + (2𝐿

2
− 𝜌
2

1
)

× (2𝐿𝑦 − 𝜌
1
√4𝐿2 − 𝜌

2

1
) (2𝐿𝑥 − 𝜌

2

1
)} ,

𝐺
4
=
1

2𝐿2
(2𝐿𝑦 − 𝜌

1
√4𝐿2 − 𝜌

2

1
) (2𝐿𝑥 − 𝜌

2

1
) ,

𝐺
5
=
1

2𝐿4
[(2𝐿𝑥 − 𝜌

2

1
)
2

− 2𝐿
4
] .

(B.2)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research is supported by the National Natural Sci-
ence Foundation of China (no. 51375360) and the Funda-
mental Research Funds for the Central Universities (no.
K505131000087).

References

[1] B. Fuller, “Tensile-integrity Structures,” USA Patent 30,635,21,
November 1965.

[2] K. Snelson, “Continuous Tension, Discontinuous Compression
Structures,” USA Patent 31,696,11, February 1965.

[3] R.Motro, “Tensegrity systems: the state of the art,” International
Journal of Space Structures, vol. 7, pp. 75–83, 1992.

[4] R. E. Skelton and M. C. Oliveira, Tensegrity Systems, Springer,
New York, NY, USA, 2009.

[5] A.G. Tibert and S. Pellegrino, “Reviewof form-findingmethods
for tensegrity structures,” International Journal of Space Struc-
tures, vol. 18, no. 4, pp. 209–223, 2003.

[6] K. Koohestani, “Form-finding of tensegrity structures via
genetic algorithm,” International Journal of Solids and Struc-
tures, vol. 49, no. 5, pp. 739–747, 2012.

[7] H. C. Tran and J. Lee, “Form-finding of tensegrity structures
using double singular value decomposition,” Engineering with
Computers, vol. 29, pp. 71–86, 2013.

[8] N. Ben Kahla and K. Kebiche, “Nonlinear elastoplastic analysis
of tensegrity systems,” Engineering Structures, vol. 22, no. 11, pp.
1552–1566, 2000.

[9] A. Nuhoglu and K. A. Korkmaz, “A practical approach for
nonlinear analysis of tensegrity systems,” Engineering with
Computers, vol. 27, no. 4, pp. 337–345, 2011.

[10] S. H. Juan and J. M. Mirats Tur, “Tensegrity frameworks: static
analysis review,”Mechanism and Machine Theory, vol. 43, no. 7,
pp. 859–881, 2008.

[11] I. J. Oppenheim and W. O. Williams, “Tensegrity prisms as
adaptive structures,” in in Proceedings of the ASME International
Mechanical Engineering Congress and Exposition, pp. 113–120,
1997.

[12] J. B. Bayat, Position analysis of planar tensegrity structures [Ph.D.
thesis], University of Florida, Gainesville, Fla, USA, 2006.

[13] M. Arsenault andC.M.Gosselin, “Kinematic and static analysis
of a 3-PUPS spatial tensegrity mechanism,” Mechanism and
Machine Theory, vol. 44, no. 1, pp. 162–179, 2009.

[14] T.M.Tran,Reverse displacement analysis for tensegrity structures
[M.S. thesis], University of Florida, Gainesville, Fla, USA, 2002.

[15] M. Q. Marshall, Analysis of tensegrity-based parallel platform
devices [M.S. thesis], University of Florida, Gainesville, Fla,
USA, 2003.

[16] M. Arsenault, “Stiffness analysis of a 2dof planar tensegrity
mechanism,” Journal of Mechanisms and Robotics, vol. 3, no. 2,
Article ID 021011, 2011.

[17] S. Chen and M. Arsenault, “Workspace computation and
analysis of a planar 2-DOF translational tensegritymechanism,”
in Proceedings of the ASME International Design Engineering



10 Journal of Robotics

Technical Conferences and Computers and Information in Engi-
neering Conference (IDETC/CIE ’10), pp. 223–232, August 2010.

[18] C. Sultan, M. Corless, and R. E. Skelton, “Tensegrity flight
simulator,” Journal of Guidance, Control, and Dynamics, vol. 23,
no. 6, pp. 1055–1064, 2000.

[19] C. Sultan, M. Corless, and R. E. Skelton, “Peak to peak control
of an adaptive tensegrity space telescope,” in Smart Structures
and Materials, Mathematics and Control in Smart Structures,
Proceedings of SPIE, pp. 190–201, March 1999.

[20] C. Paul, F. J. Valero-Cuevas, andH. Lipson, “Design and control
of tensegrity robots for locomotion,” IEEE Transactions on
Robotics, vol. 22, no. 5, pp. 944–957, 2006.

[21] C. Sultan and R. Skelton, “A force and torque tensegrity sensor,”
Sensors and Actuators A: Physical, vol. 112, no. 2-3, pp. 220–231,
2004.

[22] J. M. Mirats Tur and S. H. Juan, “Tensegrity frameworks:
dynamic analysis review and open problems,” Mechanism and
Machine Theory, vol. 44, no. 1, pp. 1–18, 2009.

[23] M. Arsenault and C.M. Gosselin, “Static balancing of tensegrity
mechanisms,” Journal of Mechanical Design, vol. 129, no. 3, pp.
295–300, 2007.

[24] C. M. Gosselin, “Static balancing of spherical 3-DoF paral-
lel mechanisms and manipulators,” International Journal of
Robotics Research, vol. 18, no. 8, pp. 819–829, 1999.

[25] S. M. M. Shekarforoush, M. Eghtesad, and M. Farid, “Design
of statically balanced six-Degree-of-Freedom parallel mecha-
nisms based on tensegrity system,” in Proceedings of the ASME
International Mechanical Engineering Congress and Exposition
(IMECE ’09), pp. 245–253, November 2009.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


