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For infrared images, it is a formidable challenge to highlight salient regions completely and suppress the background noise effectively
at the same time. To handle this problem, a novel saliency detection method based on multiscale local sparse representation and
local contrast measure is proposed in this paper. The saliency detection problem is implemented in three stages. First, a multiscale
local sparse representation based approach is designed for detecting saliency in infrared images. Using it, multiple saliency maps
with various scales are obtained for an infrared image. These maps are then fused to generate a combined saliency map, which
can highlight the salient region fully. Second, we adopt a local contrast measure based technique to process the infrared image. It
divides the image into a number of image blocks. Then these blocks are utilized to calculate the local contrast to generate a local
contrast measure based saliency map. In this map, the background noise can be suppressed effectually. Last, to make full use of the
advantages of the above two saliency maps, we propose combining them together using an adaptive fusion scheme. Experimental
results show that our method achieves better performance than several state-of-the-art algorithms for saliency detection in infrared

images.

1. Introduction

In the field of image processing and computer vision, a
number of methods for saliency detection in visible images
have been proposed [1-5]. These techniques have been proved
to be very mature. However, when applied to infrared (IR)
images, they tend to fail. The reason is that infrared images,
which are generated by infrared imaging sensors, always
have low resolutions, low signal-to-noise ratios (SNR), low
contrasts, and few useful image features. If the commonly
used saliency detection methods that have been originally
designed for visible images are directly applied to infrared
images without considering the special characteristics of
infrared images, their effect cannot be fully played, which
directly leads to reduced saliency detection performance [6].

To this end, some techniques have been later proposed
especially for saliency detection in infrared images [7-10].
The idea of many of these methods is to predict the size and

shape of the background and salient region as accurately as
possible and then adopt the method of background suppres-
sion to eliminate background and simultaneously preserve
the salient region. To some extent, they have achieved good
detection effect, but the premise is that the salient region
should have a certain signal-to-noise ratio; that is to say, the
gray intensity of the salient region must be much higher than
the surrounding background region in infrared images. Thus,
when the salient region has a low signal-to-noise ratio, most
of the above methods cannot effectively restrain background
noise as well as highlight the salient region.

In recent years, the sparse representation (SR) theory has
been developed in the field of signal processing and analysis
[11]. Image sparse representation is the linear representation
of image signal by a few atoms in the learned overcomplete
dictionary. The key of sparse representation is to construct
a good dictionary to make the image signal sparser. Sparse
representation has been used in many fields, such as image
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denoising [12], image restoration [13], and image target
detection [14]. Nowadays, researchers begin to apply sparse
representation to image saliency detection. For example, in
[15], Xia et al. presented a saliency model based on a nonlocal
reconstruction. In the method, the saliency was measured by
the sparse reconstruction residual of representing the central
patch with a linear combination of its surrounding patches
sampled in a nonlocal manner. In [16], Fareed et al. proposed
detecting salient region through sparse reconstruction and
graph-based ranking. In the first step, the original image
was segmented into superpixels. In the second step, the
sparse representation measure and uniqueness of the features
were computed. Then both were ranked on the basis of the
background and foreground seeds, respectively. Thirdly, a
location prior map was used to enhance the foci of attention.
Rigas et al. [17] presented an algorithm for efficient modeling
of visual saliency based on local sparse representation and
the use of Hamming distance. This method was based on
an efficient comparison scheme for the local sparse repre-
sentations deriving from nonoverlapping image patches. The
sparse coding stage was implemented via an overcomplete
dictionary trained with a soft-competitive bioinspired algo-
rithm and the use of natural images. The resulting local sparse
codes were pairwise compared using the Hamming distance
as a gauge of their coactivation. The calculated distances were
used to quantify the saliency strength for each individual
patch, and then, the saliency values were nonlinearly filtered
to form the final map. Fan and Qi [18] introduced a saliency
detection method based on global and local short-term sparse
representation. They employed the ICA algorithm to learn
a set of basis functions at first and then represented the
input image by this set of basis functions. Next, a global
and local saliency framework was employed to measure the
saliency, where the global saliency was obtained through
Low-Rank Representation (LRR), and the local saliency was
obtained through a sparse coding scheme. Based on the above
introduction, we can see that sparse representation is indeed
an effective tool for image saliency detection, so we tried
applying the existing sparse representation based saliency
detection methods to infrared images. Unfortunately, they
cannot obtain satisfying results due to the special charac-
teristics of infrared images. Because of the special imaging
mechanism, infrared images usually have low contrast and
lots of background noise. The saliency maps obtained by the
existing sparse representation based methods always contain
much noise and hardly present complete saliency regions.
Hence, to utilize the advantages of sparse representation
for saliency detection in infrared images and at the same
time overcome the above-mentioned deficiencies, we present
a novel saliency detection algorithm based on multiscale
local sparse representation and local contrast measure in
this paper. First, a multiscale local sparse representation
(MLSR) based approach is proposed to detect saliency in
infrared images. Based on this approach, multiple saliency
maps with various scales are obtained for an input infrared
image. Then, to enhance the salient region completely, the
maps are combined together to derive a fused saliency
map. Subsequently, in order to suppress the disturbances
of background and further improve the saliency detection
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performance, a local contrast measure (LCM) based tech-
nique is adopted to process the input infrared image. Based
on this technique, the original infrared image is divided into
many image blocks. Then the blocks are used to calculate the
local contrast so as to compute a local contrast measure based
saliency map. Since this technique takes the characteristics of
infrared images into consideration, it can effectively suppress
the background noise. Finally, by combining the advantages
of multiscale local sparse representation which can fully
highlight salient region and local contrast measure which
can restrain background noise, the proposed algorithm can
guarantee that the detected salient regions of infrared images
are accurate and integral, and the background clutters are
restrained. Experimental results show that it can provide
more accurate and reliable results of saliency detection in
infrared images than fested conventional algorithms.

The rest of this paper is organized as follows. Section 2
describes the proposed multiscale local sparse representation
and local contrast measure based saliency detection method
in detail. Section 3 presents and discusses the evaluation
results on real-life infrared images. Section 4 concludes the

paper.
2. The Proposed Algorithm

The proposed saliency detection method for infrared images
involves three main stages, as shown in Figure 1, which
correspond to the multiscale local sparse representation
based saliency computation, local contrast measure based
saliency computation, and adaptive saliency map combina-
tion, respectively. We describe these three main stages of the
method in detail as follows.

2.1. Multiscale Local Sparse Representation Based Saliency
Computation. It has been verified that sparse representation
is a useful tool for saliency detection, but it is difficult to
obtain complete salient regions when applied to infrared
images [15]. To solve this problem, here we propose a multi-
scale local sparse representation based approach to compute
saliency for infrared images. This approach combines the
advantages of local sparse representation that can highlight
the edge profile of salient object and the advantages of
multiscale idea that can enhance the internal area of salient
object, which guarantees the integrality of the salient region.

2.1.1. Scale Selection. Multiscale analysis is very useful for
estimating visual saliency, since it can help capturing salient
objects in the visual field no matter what sizes the objects
are. Hence we apply multiscale idea to infrared image salient
detection, that is, extracting visual saliency over different
scales. However, finding an appropriate number of image
scales is not easy for infrared images. While we wish to
preserve the fine image structures by selecting a large number
of image scales, we also want to avoid decomposing con-
nected regions into smaller noisy image patches. After deep
consideration, in this work, a scheme is implemented based
upon our previous work [19] that aims to decompose the
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FIGURE 1: The framework of the proposed saliency detection method.

infrared image with different numbers of image scales. The
scales are given as follows:

)

Lnax = i
by = by + (d = 1) 2 min,
where [, is the smallest scale which is used to represent
the coarse structure of infrared images. [, is the largest
scale which is used to represent the fine structure of infrared
images. M is the total number of scales. d = 1,...,M
corresponds to the scale d.

For simplicity and efficiency, here we consider two dif-
ferent scales; that is, M = 2. For fine scale, [, is 1. For
coarse scale, experiments showed that [;, = 0.7 is sufficient
to represent the coarse structure of infrared images. Finally,
two saliency maps at both the large and the small scales will be
calculated, respectively, based on local sparse representation.

2.1.2. Multiscale Local Sparse Representation Based Saliency
Map. Given an original infrared image, we get two images
with different scales based on the aforementioned multiscale
idea and compute the saliency map using local sparse repre-
sentation [15]. The detailed steps are given as follows.

Step 1. Given an original infrared image F, calculate its
saliency map S, at scale [, = 1. Specifically, in image F,
given a pixel x € R?, we use ¢(x) € R" to represent the
vector of the square local patch with n pixels at x, which is
formed by sequentially stacking each column of the patch.
Let R(x) be the Vk + 1 x Vk + 1 search window centered at
x. The central patch ¢(x) can be represented by using a linear

combination of patches whose central pixels are in the search
window R(x) — {x}:

k
¢ (x) = Y ap () = OA, )

i=1

where @ = [@(y,),...,0(y)] € R is the data matrix
and A = [a,...,0q]" is the coefficient vector of the
linear combination. In order to make full use of the sparse
representation for the original infrared image, we should
ensure that the coefficient vector contains only few nonzero
elements. So we transform (2) to the following form:

A =argmin [A], ,
! (3)
st. PA=¢(x),

where | - [, denotes the pseudo /j-norm. Orthogonal Match-

ing Pursuit (OMP) can be used to compute the coefficient A,
and then reconstructed patch is calculated by

é(x) = DA, (4)

Subsequently, the reconstruction residual is calculated by

r (X) = “(p (X) - (p(x)“z ’ (5)

where | - ||, denotes the /,-norm.

By applying the above local sparse representation to the
whole infrared image, that is, changing the central patch by
scanning the original image from left to right and top to
bottom, we can finally get the saliency map S, atscalel , =
1 of the original infrared image.



Step 2. For the coarse scale [;, = 0.7, resize the original
infrared image to get a cutdown image and, at the same
time, reduce the size of the search window of local sparse
representation to Vt+1 x Vt+1, where t = [k x [ |
Similar to Step 1, we can obtain the saliency map S,,, at scale
Inin = 0.7 of the original infrared image. Note that S, is
ultimately rescaled to the original size of the infrared image.

Step 3. Combine the saliency map S, and the saliency map
Sy, by weighted additive fusion:

Sy =AxSyy + (1 =A) xSy, (6)

where A = 0.5 gives the same importance of S,;; and S,,.
The final multiscale local sparse representation based saliency
map S, is obtained for the original infrared image. Since
this result combines the advantages of multiscale analysis
and local sparse representation, the salient region can be
well highlighted. Nevertheless, when the infrared image has
complex background clutters, this saliency map will include
much background noise. Therefore, in the following section,
we will adopt the local contrast measure [9] as an auxiliary
tool to solve this problem.

2.2. Local Contrast Measure Based Saliency Computation. As
an important factor in human visual perception, contrast
has been extensively studied by researchers in psychology
and computer vision. Numerous methods have been pro-
posed computing contrast saliency maps using various visual
properties, such as color, intensity, texture, and structure.
For infrared images, intensity is usually regarded as a very
important and distinctive visual characteristic [9]. Motivated
by these, we focus on calculating intensity contrast for
saliency detection for infrared images, which is unaffected by
temperature variations in infrared image applications.

Considering that infrared images usually exhibit much
noise due to the infrared sensors, electronic circuit noise,
background noise, and so forth, to reduce the influence of
noise and generate a more robust saliency map, we calculate
a saliency map by using local contrast measure as follows.

First, given an infrared image F, slide a window on it from
up to down and left to right at a certain step to get a set of
subblocks.

Second, let o be a subblock. Calculate the average intensity
value u, for o:

1
=+ 2 F(pa), @)
0 (p,g)€0
where N, represents the number of pixels in o. Also, search
the maximum intensity value I, in o:

L = max (F (p,q)),  (p.q) €o. (8)

Third, apply an image area whose side length is three
times the subblocK’s side length on the image and take o as the
central subblock. Then eight adjacent subblocks of o can be
obtained in this area. Calculate their average intensity values

Uy, ..., ug. The local contrast measure of o can be defined by
It
LCM = min2220 " -1, 8. 9)
i u

i
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Obviously, if the central block o is a target block, max(u;)
is usually lower than I,_,.. Thus, LCM > u,, then target is
enhanced. If 0 is a background block, there may be max(u;) >
I .- Thus, LCM < u,; then the background is suppressed.
Finally, apply the above local contrast measure to the
whole infrared image, we can obtain a local contrast measure
based saliency map S; ;. In this map, the background noise

can be effectively restrained.

2.3. Adaptive Saliency Map Combination. After obtaining the
multiscale local sparse representation based saliency map S,
and the local contrast measure based saliency map S; ¢y, we
design an adaptive fusion scheme to combine them together.

In the human visual attention, the fusion of different char-
acteristics is very important. Currently, there exist various
fusion methods, such as additive fusion [20], multiplicative
fusion [21], and maximum fusion [22]. Considering that
multiplicative fusion is likely to lose much information, while
maximum fusion is easily influenced by background noise,
we select additive fusion for saliency maps combination.

For additive fusion, computing the weight of each
saliency map is an interesting and important task. There are
two ways for the weight calculation: one is the fixed weighting
methods [20], and another is the adaptive weighting method
[19]. Comparing these two kinds of weighting methods, the
former is simple and fast to implement but lacks flexibility
and easily results in a bad result; on the contrary, the latter has
strong flexibility and adaptability and usually achieves better
fusion effect. Therefore, here we adopt a mutual consistency
guided fusion method, the effectiveness of which has been
verified in our recent related work [19], to adaptively combine
Sy and Sy

Given the multiscale local sparse representation based
saliency map S,; and the local contrast measure based
saliency map S; ;> their mutual consistencies are first calcu-
lated:

2ij [Sa (i 1) x Spem (8 )]
Xij [Sn (i 7)]

2ij [Sa (i 1) x Spem (8 )]
Yij[Siem G

where P,; denotes consistency of S,,(i, j) relative to
Stem (s 7). Prov denotes the consistency of S; oy (4, 7) relative
to Sy(4, /). Both Py, and P, take values in [0, 1].

Then, the relative adaptive weights for S,,(i,j) and
Siem (s j) are calculated by

P, =

Piom =

p
M= P +A;3
Mt oM
b (11)
LCM
Wy = ———.
KM Py + P
Finally, the fused saliency map S is obtained by
S (i j) = wag x Sag (6 ) + wiom % Siem (5 7) - (12)

Figures 2 and 3 show two saliency detection examples.
For each example, the original infrared image, the multiscale
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FIGURE 2: Saliency maps generated by different fusion schemes (the salient object is a pedestrian). (a) Original infrared image. (b)
Multiscale local sparse representation based saliency map. (c) Local contrast measure based saliency map. (d)-(g) Saliency maps generated
by multiplicative fusion, maximum fusion, additive fusion with fixed weights, and our adaptive fusion approaches, respectively.

local sparse representation based saliency map, the local
contrast measure based saliency map, and the combined
saliency maps using different fusion strategies, including
multiplicative fusion, maximum fusion, additive fusion of
fixed weights (i.e., wy; = wi oy = 0.5), and additive fusion
of our adaptive weights, are illustrated. From these two
examples, we can see that the multiscale local sparse repre-
sentation based saliency map can well highlight the whole
salient object, but it includes too much noise (see Figures
2(b) and 3(b)). While the saliency map based on local
contrast measure can effectively suppress the background
noise, but the detected salient region is incomplete (see
Figures 2(c) and 3(c)). In order to achieve better results,
these two kinds of saliency maps are combined together. By
comparing various fusion strategies, it can be seen that, since
multiplicative fusion loses much information, the salient
region is incomplete in the fused saliency map (see Figures
2(d) and 3(d)); maximum fusion easily tends to the response
of one predominant channel and cannot effectively suppress
background noise (see Figures 2(e) and 3(e)); fixed weights-
based additive fusion method lacks flexibility, so it also leads
to bad results (see Figures 2(f) and 3(f)). On the contrary, our

adaptive fusion method produces superior results. As shown
in Figures 2(g) and 3(g), it can not only enhance the salient
regions, but also simultaneously suppress the background
noise.

3. Experimental Results

In this section, we evaluate the performance of the proposed
method. We compare it with ground truth data as well
as eight state-of-the-art saliency detection algorithms. The
first selected model, called a structured matrix decomposi-
tion model, was recently proposed by Peng et al. [23] for
salient object detection. It utilized a tree-structured sparsity-
inducing regularization and a Laplacian regularization to
complete the saliency detection (we refer to this method as
SMD). Second, Chen et al. [24] presented a contrast measur-
ing method for infrared salient object detection. It firstly mea-
sured the dissimilarity between the current location and its
neighborhoods and then used an adaptive threshold to obtain
the salient object (we refer to this method as LC). Third, Hou
and Zhang [25] proposed a dynamic visual attention model
for saliency detection, which introduced the Incremental
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FIGURE 3: Saliency maps generated by different fusion schemes (the salient object is an airplane). (a) Original infrared image. (b) Multiscale
local sparse representation based saliency map. (c) Local contrast measure based saliency map. (d)-(g) Saliency maps generated by
multiplicative fusion, maximum fusion, additive fusion with fixed weights, and our adaptive fusion approaches, respectively.

Coding Length to measure the perspective entropy gain
of each feature (we refer to this method as ICL). Fourth,
the selected model was proposed by Itti et al. [5]. In this
model, color, intensity, and orientation features were used to
calculate saliency in an image: given an image, it was first
decomposed into color, intensity, and orientation channels
to generate three conspicuity maps by using the multiscale
and center-surround operations; then these three conspicuity
maps were linearly combined together to produce the final
saliency map for the input image (we refer to this method
as ITTI). Fifth, in [26], Zhai and Shah presented a visual
attention detection algorithm using spatiotemporal cues. In
the spatial attention model, they developed a fast method for
computing pixel-level saliency maps using color histograms
of images (We refer to this method as SC). Sixth, in [27], Hou
and Zhang proposed a spectral residual approach for visual
saliency detection. This model was independent of features,
categories, or other forms of prior knowledge of the objects.
By analyzing the log-spectrum of an input image, the spectral
residual of an image was extracted in spectral domain, and
then the corresponding saliency map was constructed in
spatial domain (we refer to this method as SR). Seventh,

in [28], Achanta et al. provided a frequency-tuned saliency
model relying on difference of Gaussian bandpass filters. This
method exploited features of color and luminance and was
computationally efficient (we refer to this method as FT).
The last selected saliency detection model for comparison
was based on local sparse representation [15], which divided
a test image into a number of patches at first; then, each
patch was sparsely coded with its surrounding patches. Based
on the learned dictionary, the sparse reconstruction error
of each patch was computed as the saliency values for the
corresponding patch (we refer to this method as LSR).

In this paper, we mainly compare the above methods
by using the publicly available dataset [29]. Our test dataset
contains a number of various infrared images with different
salient objects, such as pedestrian, airplane, and vessel.
The salient regions in each image are manually labeled to
generate the ground truths. Both qualitative evaluation and
quantitative evaluation are made.

3.1. Qualitative Evaluation. In this section, we present some
qualitative comparison results of our algorithm and other
eight methods, as shown in Figures 4 and 5. Figure 4 displays
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TaBLE 1: Computational cost comparison among different saliency detection methods for a single image.

Evaluation indicators Ours SMD LC ITTI SC SR FT LSR

Time (sec) 2.701 1.050 0.989 0.408 0.366 0.452 0.187 0.467 1.553

Code Matlab Matlab Matlab Matlab Matlab Matlab Matlab Matlab Matlab

the computed saliency maps of infrared images which contain
various salient human objects, while Figure 5 shows the
computed saliency maps of infrared images which include
different salient nonhuman objects.

From Figures 4 and 5, we can see that our method can
highlight all the salient regions completely no matter how
many human objects the images have, and at the same time,
it can suppress the background noise effectively. On the con-
trary, other eight approaches achieve inferior performance
for infrared images. For example, SMD, LC, SC, and FT
can highlight most salient regions, but the background noise
cannot be suppressed. ICL, LSR, and ITTT tend to generate
diffuse saliency maps. SR produces the worst performance,
since it not only fails to detect the salient regions, but
also contains too much noise. Thus, the proposed approach
outperforms the other methods.

3.2. Quantitative Evaluation. To further evaluate our algo-
rithm, we also make quantitative comparison. We select three
metrics, namely, recall, precision, and F-measure [30, 31],
which are defined as follows:

num (sm N gt)

1=
reca num (g0
. num (sm N gt)
precision = ——————— (13)
num (sm)
(1 + ﬁz) # precision # recall
F-measure =

[3* * precision + recall

where sm denotes the binary salient region mask and gt
is the corresponding binary ground truth. num(sm) and
num(gt) are the numbers of pixels in sm and gt, respectively.
In general, precision and recall are two conflicting goals.
To consider precision and recall simultaneously, F-measure
metric is always calculated. Similar to [32], % is set to 0.3. The
binary salient region mask sm is found by applying a simple
threshold operation on a saliency map [21].

The quantitatively results are shown in Figure 6. As can be
seen, our method achieves the best performance compared
with the state-of-the-art saliency detection algorithms for
infrared images. It should be emphasized again that such
favorable results can be obtained since our proposed method
is especially designed for infrared images based on the
analysis of characteristics of infrared images.

Besides, all experiments are implemented on an Intel
Dual Core 2.3 GHz laptop with 4 GB RAM. The program-
ming platform is Matlab R2013b. We compute the saliency
detection time for all test images with the above-mentioned

Ours SMD LC

ICL ITTI SC SR FT LSR

B Recall
B Precision
F-measure

FIGURE 6: Recall, precision, and F-measure achieved using different
saliency detection methods.

algorithms. The results are reported in Table 1, where the time
is computed as an average over all the test images.

When compared with other eight methods, that is, SMD,
LC,ICL,ITTI, SC, SR, FT, and LSR, which only take about 1-2
seconds to handle one image, the efficiency of our multiscale
local sparse representation and local contrast measure based
approach is much lower, for it involves online learning pro-
cesses. As shown in Table 1, for an image with the size of 320 x
400, our average computational time is about 3 s in the above
experimental setup. An efficient C/C++ implement or even a
parallel architecture would reduce the overall execution time
dramatically and would make the proposed method feasible
for real-world application.

4. Conclusion

This paper proposes a novel saliency detection method for
infrared images based on multiscale local sparse represen-
tation and local contrast measure. We first develop a multi-
scale local sparse representation based approach to compute
saliency for infrared images, which can highlight the salient
regions fully. We then adopt a local contrast measure based
scheme to compute saliency for infrared images, which can
suppress the background noise effectively. By incorporating
these two categories of saliency maps into a unified one, we
can generate reliable saliency maps. Compared with several
up-to-date approaches, we have shown that the proposed
method is able to achieve more accurate and robust results
of saliency detection for infrared images. In the future, we
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will apply it to infrared video analysis, such as video retrieval,
abstraction, and event recognition.
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