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Abstract. There is a clear industrial trend towards chip multiprocessors (CMP) as the most power efficient way of further
increasing performance. Heterogeneous CMP architectures take one more step along this power efficiency trend by using multiple
types of processors, tailored to the workloads they will execute. Programming these CMP architectures has been identified as
one of the main challenges in the near future, and programming heterogeneous systems is even more challenging. High-level
programming models which allow the programmer to identify parallel tasks, and the runtime management of the inter-task
dependencies, have been identified as a suitable model for programming such heterogeneous CMP architectures.

In this paper we analyze the performance of Cell Superscalar, a task-based programming model for the Cell Broadband Engine
Architecture, in terms of its scalability to higher number of on-chip processors. Our results show that the low performance of the
PPE component limits the scalability of some applications to less than 16 processors. Since the PPE has been identified as the
limiting element, we perform a set of simulation studies evaluating the impact of out-of-order execution, branch prediction and
larger caches on the task management overhead.

We conclude that out-of-order execution is a very desirable feature, since it increases task management performance by 50%.
We also identify memory latency as a fundamental aspect in performance, while the working set is not that large. We expect a
significant performance impact if task management would run using a fast private memory to store the task dependency graph
instead of relying on the cache hierarchy.
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1. Introduction

Power consumption and design complexity have led
the computer architecture community to design chip
multiprocessors (CMP). Current commercial CMP in-
tegrate 4–8 processors in one chip, but the current in-
terpretation of Moore’s Law says that the number of
cores will double every 18 months, leading to hun-
dreds or even thousands of cores per chip in the near
future [2]. In order to exploit the performance po-
tential of these architectures, huge amounts of paral-
lelism need to be exploited. Supercomputing class ap-
plications efficiently exploit thousands of processors to
run applications coded using low-level programming
models, like MPI. However, explicit data distribution
and communication is not the desirable programming
model for future multicore architectures.

*Corresponding author: Alejandro Rico, Universitat Politecnica
de Catalunya, Jordi Girona 1-3, D6-113, 08034 Barcelona, Spain.
Tel.: +34 93 40 54097; E-mail: arico@ac.upc.edu.

The increasing hardware complexity, and the match-
ing software complexity, will force programmers to use
higher level programming models. The use of tasks as
high level abstraction, and the runtime detection of task
parallelism is becoming widely accepted into main-
stream programming models like OpenMP 3.0 [24].
Other example implementations of such task level
parallelism are Thread Building Blocks (TBB) [27],
a parallel programming model by Intel that encapsu-
lates tasks in a C++ class so as to represent parallel
computation and Cilk [5], with specific keywords to
spawn independent tasks when calling functions. There
are also pure task-based parallel programming mod-
els such as Cell Superscalar [4] and Tagged Procedure
Calls (TPC) [18]. In all these models, the task concept
provides an intuitive abstraction that can be directly
mapped to processing units since it encapsulates not
only computation but also its working data set.

In this paper, we analyze the behavior of the Cell Su-
perscalar task-based programming model on the Cell
Broadband Engine (Cell BE), a state-of-the-art CMP
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with distributed on-chip memories. Our results show
that the speed at which tasks are generated and man-
aged is an intrinsic limitation to the scalability of task-
based programming models. We obtain experimental
data to compute how far Cell Superscalar would scale
on the current Cell BE chip, and perform a simulation
study looking for ways to improve such scalability.

We consider multiprocessor systems to be scalable
if there is a linear relationship between the number
of cores and the speed-up with respect to the sequen-
tial (single-processor) version [13]. As the number of
processing elements increases, a scalable system will
take less time to solve a problem of a fixed size, or will
be able to solve a larger problem in the same amount
of time.

In a task-based scenario, the problem size of an ap-
plication is the number of tasks times the task size
(Eq. (1)). Here, the size of a task is the size of its work-
ing data set (task problem size). Increasing the problem
size means either increasing the size of the tasks, or
increasing the number of tasks. The scalability of the
system depends on its ability to keep all the processing
elements computing such tasks in parallel.

Problem size = number of tasks × task size. (1)

Task-based programming models split an applica-
tion into two types of threads: the master thread and a
set of worker threads. The master thread runs through
the application sequentially and spawns tasks, insert-
ing them in the work queue. The worker threads take
tasks from the work queue and execute them. Figure 1
shows an example task-based application on an 8-core
multiprocessor. In this example, the master thread is
executing and is exclusively dedicated to task gener-
ation (TG). Each TG takes 1 time unit (t.u.). Thus,

the master thread generates one task every time unit
which is shown as the initiation interval. Tasks are as-
signed to the first free worker and are executed in 5 t.u.
Worker 1 executes task 1, worker 2 executes task 2, and
so on. However, when task 6 is ready to be dispatched,
worker 1 has finished executing task 1 and is available
to take task 6 instead of worker 6. This situation re-
peats for tasks 11, 16, and further, leaving workers 6
and 7 idle for the whole execution.

Our example does not consider thread communica-
tion delays, and assumes a master thread exclusively
generating tasks. Under these assumptions, the num-
ber of parallel active tasks is the task execution time
divided by the task generation time (Eq. (2)). Task ex-
ecution time depends on the working set (task size),
but also on the type of computation. Some applications
(such as sparse linear algebra) do not use all the data on
the working set, so enlarging the task size has a smaller
impact. Despite of this fact, the task execution time is
proportional to the task size.

Max. active tasks =
⌈

task execution time
task generation time

⌉
,

task execution time ∝ task size. (2)

The result of Eq. (2) is the maximum number of
active tasks. Any additional overhead due to commu-
nications, or extra computation for task management,
would decrease the maximum parallelism. In a sce-
nario where an application has to use all the processors
in the system, the maximum number of parallel tasks
should be greater or equal to the number of processors.
Otherwise, a number of processors will be idle.

In order to increase the available parallelism, one
has to increase the task size. For larger problems, it

Fig. 1. Task distribution among processing elements on an 8-core multiprocessor. Master thread continuously generates tasks. Workers 6 and 7
remain idle during the whole execution. The initiation interval is the task generation (TG) time.
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is possible to split the problem in a fixed number of
tasks, and so increase task size. However, for fixed-size
problems, increasing the task size also means reducing
the number of available tasks, and so the available par-
allelism. Furthermore, some algorithms already define
the natural size of a task. For example, multimedia ap-
plications work with fixed size data elements. A PAL-
DVD frame is composed of 720 × 576 pixels, and
encoding–decoding algorithms work on 16 × 16 pixel
macroblocks. Hardware specifications could also be a
limiting factor for the task size. Architectures using lo-
cal memories, such as the Cell BE or several embedded
platforms, limit the task size to what can be fit in such
local memory. Architectures relying on caches may ex-
pand the task size, but still rely on temporal locality
and the cache size.

The Cell BE [17] is a 9-core heterogeneous multi-
processor with a general-purpose processor and 8 ac-
celerators and the first implementation of the Cell
Broadband Engine Architecture (CBEA) [6]. The ac-
celerators only operate on data located in their local
memories. Therefore, enlarging the task size to achieve
more parallelism is not a possible solution for CBEA-
compliant processors. This situation sets our focus
on decreasing the task generation overhead which be-
comes the critical factor regarding scalability and full
resource utilization.

This article presents an analysis of the achievable
parallelism of the Cell BE running Cell Superscalar [4]
applications. This analysis is performed using high
performance scientific applications and validated with
a synthetic application (Section 2). Section 3 presents
a characterization of the task generation phase of these
applications. This study shows the features of the task
generation code and the possible strategies to speed
it up. Section 4 presents existing works about scala-
bility analysis, task-based execution environments and
potential scenarios for processor underutilization. The
conclusions are exposed in Section 5.

2. Scalability on the Cell BE

As it is later explained in Section 4, there are several
attempts in the literature to provide a universal defini-
tion for scalability, but none of them has been success-
ful. In this paper, we assume the intuitive definition for
which a parallel system is scalable if performance im-
proves as the problem size and the number of proces-
sors increase.

In this section, we present a scalability study of ap-
plications written using the Cell Superscalar program-
ming model [4] on the Cell BE. First, we present the
execution environment, and the performance analysis
methodology. Next, we measure the achievable paral-
lelism for a set of scientific application kernels. Finally,
we validate our preliminary conclusions using a syn-
thetic application where we can tune the task genera-
tion and task execution costs.

The Cell BE is a joint initiative of Sony, Toshiba
and IBM (STI) and the first implementation of the Cell
Broadband Engine Architecture (CBEA) [6]. It is com-
posed of a general-purpose processor named PowerPC
Processor Element (PPE) and eight SIMD accelerators:
the Synergistic Processor Elements (SPE). The PPE is
a 64-bit PowerPC-compliant processor with in-order
execution and two-way simultaneous multithreading
support. It integrates a vector multimedia extension
(VMX) unit, 32-kB level 1 instruction and data caches
and a 512-kB level 2 cache. Each SPE is composed
of a Synergistic Processor Unit (SPU), a 256-kB local
memory named Local Store (LS) and a Memory Flow
Controller (MFC). A SPU is an in-order, dual-issue,
SIMD-ISA processor with 128 registers of 128 bits.
The LS is shared for both instructions and data, and
transfers between the LS and main memory (or other
LS) are performed through the DMA engine incorpo-
rated in the MFC.

The Cell Superscalar (CellSs) programming model
is a task-based programming model for the CBEA.
A CellSs program is a sequential C code with
OpenMP-like annotations on functions. Annotated
functions are specified as parallel tasks to be executed
on the SPEs. Task parameters are defined as read-only,
write-only or read–write data to allow the CellSs run-
time to track the dependencies among SPE tasks be-
fore their dispatch to ensure correctness. CellSs appli-
cations execute two threads on the PPE (master and
helper) and one thread on each SPE (workers). The en-
try point of a CellSs program is executed by the mas-
ter thread which starts running the user code. When an
annotated function is called, a new SPE task is created
and added to the dependence graph. Periodically, the
helper thread checks the dependence graph for avail-
able tasks. If there are enough tasks, they are bundled
together, scheduled to satisfy dependencies, and dis-
patched to the first available SPE. On bundle execu-
tion finalization, the SPE notifies it to the PPE, where
the master and helper threads remove the finished tasks
from the dependence graph.
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2.1. Methodology

The scalability analysis in this section has been per-
formed on IBM QS21 Blades, with 2 Cell BE run-
ning at 3.2 GHz and 512 MB of XDR memory. The
applications have been written and compiled for the
CellSs v1.4 runtime environment [8]. The CellSs run-
time library is instrumented to provide timing infor-
mation and detailed performance analysis traces. After
program execution, we obtain a time annotated trace
of the different execution phases of all the applica-
tion threads, including master, helper and all worker
threads. The trace is analyzed using Paraver [25], a vi-
sualization tool that allows graphically representing
the execution phases and thread communications of
multithreaded programs.

Time measurements have been made for the task
generation cost on the PPE and the task execution time
on SPEs. As previously mentioned, the master thread
creates tasks and adds them to the dependence graph,
while the helper thread schedules tasks, groups them in
bundles and dispatches them to the SPEs. Since these
two phases are executed in parallel on the PPE, the task
generation cost is the maximum of the master thread
and helper thread parts. The task creation phase on
the master thread is performed for each task, while the
task scheduling, grouping and dispatching phases on
the helper are executed for each bundle. Our measure-
ments show that the task generation time on the helper
thread is always much lower than the time of creating
and adding the task to the graph on the master thread.
Hence, from now on, task generation cost refers only
to the master thread part, since it is always the maxi-
mum of the two.

In order to calculate the maximum number of active
tasks for each program, the durations of the task gen-
eration and task execution phases have been measured
for each program. The task generation and task execu-
tion times for an application are the average over all
task generation and task execution instances through-
out the whole execution. Misbehaviours due to operat-
ing system activity or other external agents (like inter-
rupts or context switches) may condition the results of
averaging. Some phase durations may seem larger than
they actually were because of execution interference.
These data are not representative and have been con-
sidered outliers. Since the distribution of phase time
values resembles a Gauss curve, an outliers removal al-
gorithm can be applied in order to use only represen-
tative data for averaging. Equation (3) shows the limits
for extreme outliers deletion [29]. The lowest represen-

tative value is the lower quartile (Q1) minus 3 times the
interquartile range (IQR) and the highest valid value is
the upper quartile (Q3) plus 3 times the interquartile
range (IQR):

IQR = Q3 − Q1,

Q1 = lower quartile,

Q3 = upper quartile, (3)

Lower outlier limit = Q1 − 3 ∗ IQR,

Upper outlier limit = Q3 + 3 ∗ IQR.

Since the operating system only runs on the PPE,
task execution on the SPEs has a negligible variability.
However, task generation cost could suffer severe mis-
behaviours. This leads to the situation where the av-
erage of all measured times always shows a task gen-
eration cost higher than the average without outliers.
On the other hand, task execution remains almost in-
variable. Therefore, considering all measured times for
task generation would lead to much lower achievable
parallelism results when applying Eq. (2), which is not
representative of the mean behaviour of the program.
For this reason, all averages of execution phases pre-
sented in this paper have been calculated after deleting
outliers.

Nevertheless, since measurements are performed in
a real system, results may significantly vary from
one execution to another in spite of outliers deletion.
Hence, the results presented for an application are the
average over 10 executions of the same program.

2.2. Scientific applications

The first part of the scalability analysis consists on
the measurement of the task generation and task ex-
ecution times for a set of high performance scientific
applications. These applications are written and com-
piled with CellSs v1.4 [8]. This set is composed by the
following programs: Cholesky factorization, LU de-
composition, Jacobi, matrix transposition and matrix
multiplication. For the matrix multiplication there are
5 versions with different levels of optimization: non-
vectorized, vectorized 1, vectorized 2, vectorized 3
and one using the SPU code of the matrix multiplica-
tion in IBM’s SDK [6]. The non-vectorized version is
the usual three loop implementation using scalar code.
Vectorized 1 performs the computation with vector in-
structions for multiply and add. Vectorized 2 uses vec-
tor instructions and unrolls the innermost loop. Vec-
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torized 3 performs as vectorized 2 and also unrolls
the second level loop. The SDK matrix multiplication
code for the SPE is a fully unrolled, vectorized and
scheduled version achieving over 90% efficiency on
the SPU.

As discussed in Section 1, the size of SPE tasks is
limited by the LS size. For this analysis, the working
data set for each application has been set to the max-
imum that fits the LS in order to study the maximum
task size. Table 1 shows the task data size for each ap-
plication. Each bundle of tasks in matrix multiplication
works on a matrix block which is independent from
the rest. Thus, all tasks are independent and parallelism
is not limited by data dependencies. Both Cholesky
factorization and LU decomposition algorithms have
inter-task dependencies that further restrict the avail-
able parallelism. The Jacobi algorithm works as a se-
quential scan of the matrix rows, making all tasks de-
pend on the previous one, removing all possible paral-
lelism.

For the purpose of this study, we will use the task
generation and task execution cost of these algorithms
in order to compute the maximum available parallelism
that could be achieved by a fully-parallel application
having the same costs. We consider those measure-

Table 1

Task working set of the analyzed high performance scientific
applications

Application Task data size

Cholesky 3 blocks, 64 × 64 float

LU decomposition 2 blocks, 64 × 64 float

Jacobi 3 rows, 8192 float

matrix transpose 2 blocks, 64 × 64 float

matmul novec 3 blocks, 64 × 64 float

matmul vec1 3 blocks, 64 × 64 float

matmul vec2 3 blocks, 64 × 64 float

matmul vec3 3 blocks, 64 × 64 float

matmul spu sdk 3 blocks, 64 × 64 float

ments to be a better indication than wild-guessing on
the costs of random fully parallel applications.

All applications have been executed 10 times. Task
generation and task execution durations have been
measured on each program so as to compute the max-
imum number of parallel active tasks (Eq. (2)). This
calculation results in 10 values, one for each execution
of the program. The final number of maximum parallel
active tasks for an application is the average over the
10 executions after removing outliers for each as men-
tioned before. Figure 2 shows the results of these mea-
surements. The dotted line marks the required number
of active tasks to fully utilize a 64-core multiproces-
sor (this is the expected by Moore’s Law by 2013).
As shown in the graph, only the non-vectorized and
vectorized 1 versions of the matrix multiplication and
LU decomposition could achieve more than 64 active
tasks.

Matrix multiplication benchmarks show the impact
of task optimization when task size is limited. Opti-
mized task code requires less execution time while task
generation overhead is the same. This leads to the situ-
ation where the non-optimized version of matrix mul-
tiplication provides a high amount of parallelism (up
to 637 parallel tasks) but, as task code is optimized,
the achievable parallelism decreases. The vectorized 2
version (vectorization and innermost loop unrolling)
achieves a maximum of 44 active tasks and the fully
unrolled version in the SDK only 9. This is also the
case for Cholesky, which is an optimized version for
the SPE and only achieves 9 concurrent tasks. Like-
wise SDK matrix multiplication and Cholesky, matrix
transposition exploits enough parallelism to use all the
resources on a single Cell BE. However, two Cell BE
chips can be connected through a coherent I/O con-
troller which allows sharing their SPEs. In this case,
none of these applications would be able to feed all
16 SPEs. On the other hand, LU decomposition and Ja-
cobi are able to exploit enough parallelism for the Cell

Fig. 2. Maximum active tasks for CellSs high performance scientific applications on the Cell BE. Only non-fully optimized versions of matrix
multiplication and LU decomposition achieve more than 64 active tasks.
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BE. However, these two programs are not optimized so
the maximum number of active tasks could drop when
applying specific optimization.

Our results show that current applications would
need to enlarge the task size in order to exploit all
the available parallelism in the Cell BE. However,
the size of the Local Store prevents such task size
enlargement. Other CMP implementations relying on
caches do not have such a hard limitation, however,
task performance is still strongly dependent on the
working set fitting in the cache hierarchy. Therefore,
task size can not keep growing indefinitely since it will
be limited by the memory system. If task execution
can not be increased further, then we must reduce the
task creation overhead for next generation CMP archi-
tectures to be able to exploit all the available paral-
lelism.

2.3. Synthetic application

In this section a synthetic application is used to val-
idate the methodology proposed in Section 2.1 for the
computation of the maximum number of parallel tasks.
The synthetic application is tuned so that it does not
use all the SPEs in order to check the expected under-
utilization. It is also used to study the CellSs task gen-
eration variability in different scenarios. CellSs master
thread code creates tasks and adds them to the depen-
dence graph in the css_addTask function. In this phase,
it creates the suitable data structures for task manage-
ment and performs the suitable modifications on the
tasks dependence graph. These modifications are per-
formed once for each task parameter since dependen-
cies among tasks are due to data hazards on their pa-
rameters. Thus, the number of task parameters deter-
mines the task generation cost so the variability study
is performed with several numbers of task parameters.

Figure 3 shows a simplified version of the code of
the synthetic application. The master thread executes
the main while loop. Each iteration spawns a task with
the specified number of parameters, so the number of
iterations of the master thread loop is the total number
of tasks in the application. Spawned tasks are executed
by the worker threads in the SPEs and all of them are
independent. Task execution is essentially composed
of a for loop that performs a dummy operation in each
of its iterations.

The synthetic application can be tuned in three dif-
ferent ways. First, task duration can be adjusted by
specifying the number of times the task repeats its
computation (task loop iterations). This allows varying

task size in order to achieve different levels of paral-
lelism. The synthetic application also allows modify-
ing the number of task parameters so as to see their im-
pact on task generation cost (task parameters). Finally,
the number of total tasks can be also established so as
to manipulate the program execution time (total tasks).
This allows avoiding too short executions where ini-
tialization effects can affect master thread execution.
The total tasks parameter has been set to 32,768 for
all the experiments in this section which is enough to
achieve a steady execution state.

2.3.1. Methodology validation
The first experiment is to perform executions with

small task sizes so as to see the processor underutiliza-
tion effect on the Cell BE. This allows validating the
presented methodology for measuring achievable par-
allelism. As an example, the synthetic application has
been run with 128 task loop iterations, each task receiv-
ing 4 parameters. The measured average task genera-
tion time is 5.96 µs while average task execution time
is 34.46 µs. Applying Eq. (2) for computing the maxi-
mum number of active tasks we obtain �5.78� = 6 ac-
tive tasks. Figure 4(a) shows the Paraver trace of the
whole execution for 128 task loop iterations and 4 task
parameters. X-axis is time and horizontal rows are ex-
ecution on different threads. Main thread stands for
the master thread while Spu thread is each one of the
worker threads on the SPEs. The graph shows that
6 SPEs are continuously working (grey color), while
Spu threads 7 and 8 are idle (white color) most of the
time. Actually, workers 7 and 8 are waiting for tasks
the 96.8% of the total time. Figure 4(b) shows another
example: the execution for 32 task loop iterations and
8 task parameters. In this case, task generation lasts for
4.31 µs on average and task execution requires 15.4 µs.
This results in �3.58� = 4 active tasks when apply-
ing Eq. (2). Workers 5, 6, 7 and 8 are idle the 99.2%
of the time. These processing elements are not idle the
whole execution for several reasons. CellSs is config-
ured to wait until a specific number of tasks is added to
the dependence graph before sending tasks to workers.
Then, when the PPE starts dispatching tasks, there is
a large number of ready tasks so it is able to feed all
SPEs with the first burst. This also happens when op-
erating system activity stalls the helper thread on the
PPE, which does not allow it to dispatch tasks to SPEs.
In this time, the SPEs have finished their work and the
master has created more tasks so that all SPEs will be
free and there would be a lot of ready tasks as well as in
the situation of the first burst. Interconnection network
contention may also delay a DMA transfer more than
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//Includes and definitions

void work(vector float *block) {
//dummy operation: adds and substracts 1 to all positions in
// block using intrinsics

}
#pragma gss task input(it) inout(A)
void shortAddTask(int it, float A[SZ]) {

int i; vector float *vecA = (vector float *)A;
for(i=0;i<it;i++) {

work(vecA);
}

}
#pragma gss task input(it,B,C) inout(A)
void midAddTask(int it, float A[SZ], float B[MIN_SZ], float C[MIN_SZ]) {

int i; vector float *vecA = (vector float *)A;
for(i=0;i<it;i++) {

work(vecA);
}

}
#pragma gss task input(it,B,C,D,E,F,G) inout(A)
void longAddTask(int it, float A[SZ], float B[MIN_SZ], float C[MIN_SZ],

float D[MIN_SZ], float E[MIN_SZ],float F[MIN_SZ], float G[MIN_SZ]) {
int i; vector float *vecA = (vector float *)A;
for(i=0;i<it;i++) {

work(vecA);
}

}
int main(int argc, char* argv[])
{

//Declarations and initialization
//ppe_it -> main loop iterations (total tasks)
//task_it -> task loop iterations
//add_task_len -> number of parameters modifier

#pragma css start
while(ppe_it>0) {

ppe_it--;
switch(add_task_len) {
case 0: shortAddTask(task_it,mat_one[ppe_it]);

break;
case 1: midAddTask(task_it,mat_one[ppe_it],victim1,victim2);

break;
case 2: longAddTask(task_it,mat_one[ppe_it],victim1,victim2,

victim3,victim4,victim5,victim6);
break;

}
}
#pragma css finish

//checks and error printing
return 0;

}

Fig. 3. Simplified synthetic application source code.
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(a)

(b)

Fig. 4. Synthetic application Paraver [25] traces. (a) Task loop iterations: 128. Task parameters: 4. The maximum active tasks is 6 and workers 7
and 8 are idle the 97% of the time. (b) Task loop iterations: 32. Task parameters: 8. The maximum active tasks is 4 and workers 5, 6, 7 and 8 are
idle the 99% of the time.

expected. This prolongs the corresponding task dura-
tion which causes an SPE to be busy for a longer pe-
riod, so a task that would be dispatched to it may go to
an idle worker. These situations make idle processors
to work, however, they seldom occur and only suppose
work for the 1–5% of the total time.

The vertical white spaces in the trace are due to the
trace flushing work on the master thread. The CellSs
tracing engine buffers the occurred events in memory
so as to minimize its intrusion on program execution
with periodic disk accesses. When the events buffer is
full, the master thread flushes it to disk. During this op-
eration it does not generate tasks and SPEs do not have
work which is shown as an idle period on the trace.

As a result, previous examples demonstrate that
the presented methodology is useful for calculating
achievable parallelism and predict processor underuti-
lization. Despite the fact that processing elements that

are supposed to be idle may infrequently perform tasks,
they are unused more than the 90% of the time because
the hardware is not capable of exploiting enough par-
allelism.

2.3.2. Task generation cost variability
The second aim of this study using the synthetic ap-

plication is to measure the variability of the task gen-
eration phase on the master thread. As it is previously
explained, task generation cost depends on the num-
ber of task parameters. Dependencies among tasks are
due to hazards on the data ranges specified in their
parameters, so the master thread has to update the
dependence graph for each task parameter. Figure 5
shows the task generation time on the PPE for exe-
cution of tasks with different numbers of loop itera-
tions (X-axis) and 2, 4 or 8 task parameters. Config-
urations with less than 128 task loop iterations do not
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Fig. 5. Task generation time of the synthetic application with different task loop iterations and task parameters. On average, specifying 4 para-
meters is 11% more expensive than 2, and 8 parameters costs a 27% more than generating a task with 2 parameters.

achieve enough parallelism to feed all 8 SPEs. Hence,
the master thread never waits for tasks finalization and
is continuously generating tasks. Moreover, as task du-
ration is short, DMA transfers (which are performed
before and after task execution) occur more frequently
and may cause interconnection network contention and
cache conflicts. This affects the execution on the PPE,
which is continuously performing the task generation
phase. However, DMA transfers occur less often for
larger tasks and may be overlapped with the waiting
for tasks finalization phase on the master thread so the
task generation phase is not interfered. This situation
results in more expensive task generations for shorter
tasks while, for larger ones, task generation is much
less interfered by workers activity.

Average task generation times are 3.7 µs for tasks
with 2 parameters, 4.1 µs for tasks with 4 parameters
and 4.7 µs for tasks with 8 parameters. This generation
costs require tasks with 2 parameters executing in at
least 30 µs, tasks with 4 parameters executing in 33 µs
or tasks with 8 parameters executing in 38 µs in order
to fully utilize the Cell BE. Two Cell BE chips sharing
their SPEs would require tasks during 60 (2 parame-
ters), 66 (4 parameters) or 76 (8) µs.

3. Task generation analysis

As exposed in previous section, task-based appli-
cations could face a problem when trying to use all
the processing units on future multiprocessor architec-
tures because the hardware could not be able to ex-
ploit enough parallelism. Achievable parallelism de-
pends on the task execution time and the cost of task
generation. Since task execution time is proportional to

the task size, and it is restricted by the characteristics of
the memory system, task generation overhead becomes
a critical factor. The task generation phase of CellSs is
executed on the PPE. The PPE is quite limited in terms
of superscalar performance, being only 2-wide and ex-
ecuting instructions in-order, making it slow compared
to other current commercial general-purpose architec-
tures.

This section analyzes the CellSs v1.4 task genera-
tion phase. This analysis focus on the features of the
PPE that determine task generation performance and
tries to find opportunities to speed it up.

3.1. Simulation setup

The task generation phase simulations have been
carried out using the SMTSIM [30] simulator extended
for PowerPC traces. The traces has been generated us-
ing the IBM BProber [15] instrumentation tool. This
tool allows instrumenting PowerPC executable bina-
ries by inserting function calls at specific locations in
the code. CellSs task generation phase is completely
performed in the master thread css_addTask function
so only this function had to be instrumented for this
study. Hence, traces are composed of the instructions
of all css_addTask instances along program execution.
The applications traced for this study are the same ones
used in Section 2: Cholesky factorization, LU decom-
position, Jacobi, matrix transposition and the five ver-
sions of matrix multiplication.

Table 2 shows the average percentage of instruction
types in the generated traces. Almost half of the in-
structions perform integer arithmetic operations (49%)
including integer multiplication and division (0.2%).
Memory operations are 31%: 20% loads and 11%
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Table 2

Percentage of instructions composing css_addTask traces

Arithmetic Load Store Branch Other

49% 20% 11% 17% 3%

stores. Branches are 17% of the total instructions: 13%
conditional and 4% unconditional. The remaining 3%
is mainly composed of special purpose register opera-
tions (2.6%), synchronization (0.33%) and cache man-
agement (0.07%) instructions. No floating point is car-
ried out by css_addTask. These are average values for
all traces but the mean is very representative because
the variation among all applications is less than 1% for
each instruction type.

Compared to SPEC-type applications, the ratio of
load/store and branch instructions is very high. This
is typical of control intensive code, as is the case of
css_addTask. Given the high ratio of load and branch
instructions, it is to be expected that cache size, latency,
and branch prediction accuracy play a significant role
in performance. There is still a high number of integer
instructions, and our simulation study will also explore
the amount of ILP available there, while evaluating the
impact of wider superscalar issue.

SMTSIM has been extended to support in-order ex-
ecution and has been configured to simulate a Cell BE
PPE processor. Table 3 shows the parameters for sev-
eral SMTSIM configurations we used. The column en-
titled in-2 is the default PPE configuration with dual-
issue in-order execution. The number of functional
units has been enlarged for wider-issue configurations.

The following sections evaluate several architecture
features and their impact on task generation execution
using the SMTSIM configurations in Table 3.

3.2. Execution order

Most high-performance processors execute instruc-
tions out of order, in order to exploit more Instruction
Level Parallelism (ILP), and to hide part of the mem-
ory latency (either in a cache hit or a cache miss). Out-
of-order execution requires a number of complex, and
power-hungry structures such as the issue queue and
reorder buffer, plus larger register file for register re-
naming. In order to minimize its size, the PPE was de-
signed for in-order execution [14]. This section eval-
uates the performance impact of wide superscalar and
out-of-order execution on the CellSs task generation
phase against the baseline dual-issue, in-order PPE.

Figure 6 shows the normalized IPC of wider super-
scalar configurations (with increased number of func-

tional units to match), in-order and out-of-order with
respect to the 2-wide in-order (PPE-like) configuration.

For in-order execution, increasing the superscalar is-
sue width only has minimal impact. The 4-wide and
8-wide configurations are only 3% faster than the base-
line. However, out-of-order execution does have an im-
portant effect on performance. The ooo-2 configura-
tion, which represents an out-of-order PPE, achieves a
50% higher IPC. Increasing issue width and functional
units has a higher impact for out-of-order configura-
tions. The ooo-4 configuration achieves an additional
9% speedup, and the ooo-8 only a mere extra 1%. We
must take into account that by deciding to run out-of-
order, the processor may not be able to run at the same
frequency as an in-order one, and so the 50% higher
IPC may not fully translate into a 50% higher perfor-
mance.

In addition, we must also consider that the task gen-
eration code has not been recompiled for each simu-
lator configuration. Code compiled and scheduled for
the wider issue configurations may have been able to
exploit them better. This is specially meaningful for
the 8-wide configurations, which may suffer from re-
stricted fetch efficiency caused by the high number of
taken branches, and has not been scheduled to take
advantage of register renaming and higher number of
functional units.

In spite of the specific-compilation issue, the re-
sults show that out-of-order execution is a very desir-
able hardware design for CellSs task generation per-
formance. A 2/4-wide issue out-of-order design would
decrease by 50–60% the task generation overhead
which means exploiting a 50–60% more task-level par-
allelism.

3.3. Branch prediction

The PPE branch predictor is a 4 kB by 2-bit branch
history table (BHT) with 6 bits of global history per
thread, and it does not incorporate a branch target
buffer (BTB) for target address prediction. In this sec-
tion, we evaluate a wider set of branch predictors: the
BHT [26], Gshare [22] and Perceptron [16] predic-
tors, and an ideal (perfect) branch predictor. All of
them are compared to the PPE branch predictor using
the in-2 and ooo-2 configurations so as to see the im-
pact of branch prediction not only on the PPE but also
on an alternative out-of-order design. A BTB has also
been added to simulations except for the perfect pre-
dictor which already performs both perfect branch and
target prediction. The evaluated BTB has 512 entries
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Table 3

SMTSIM parameter configurations

in-2 in-4 in-8 ooo-2 ooo-4 ooo-8

Execution In order Out of order

Fetch width 8 (4 each thread)

Issue width 2 4 8 2 4 8

Func units

Integer 2 4 8 2 4 8

Ld/St 1 2 4 1 2 4

FP 1 2 4 1 2 4

L1 ICache

Size 32 kB

Assoc. 2

Latency 1

L1 DCache

Size 32 kB

Assoc. 4

Latency 4

L2 cache

Size 512 kB

Assoc. 8

Latency 16

Br predictor 4 kB by 2-bit BHT, 6-bit GHR (no BTB) 9-cycle misprediction penalty

Notes: Configuration in-2 corresponds to the Cell BE PPE. The number of functional units
has been increased for wider-issue configurations.

Fig. 6. Normalized IPC with respect to the Cell BE PPE (in-2). Out-of-order execution provides a 50% speed-up over in-order. Increasing issue
width and functional units has small impact on in-order configurations and up to a 10% on out-of-order.

and is 4-way associative. The BHT and pattern his-
tory tables (PHT) of all the evaluated branch predictors
have been configured with 16K 2-bit wide entries. The
branch misprediction penalty is 9 cycles. Despite being
quite lower than the Cell BE PPE 23 cycles, we have
checked that both configurations show similar speed-
up results for branch prediction.

Figure 7(a) shows the normalized IPC for the dif-

ferent branch predictors on in-order execution with re-
spect to the in-2 configuration. The results show that
the performance impact is very small. BHT is only
2.5% worse while Gshare and Perceptron performs
the same as the PPE branch predictor. Perfect branch
prediction outperforms the PPE’s by 3.8%. Adding a
BTB to any of these branch predictors on the in-2
configuration does not provide any further improve-
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(a)

(b)

Fig. 7. Normalized IPC with respect to the PPE branch predictor. BHT loses a 2.5% (in-2) and a 5.8% (ooo-2) performance, Gshare does not
have any impact as well as Perceptron for in-2, which gains a mere 0.3% for ooo-2 on average. BTB does not impact in-2 but improves ooo-2 in
a 3.5% for all branch predictors. Perfect branch prediction improves IPC in a 3.8% for in-2 and a 16% for ooo-2. (a) Branch prediction on in-2;
(b) Branch prediction on ooo-2.

ment. Clearly, the in-order configurations are limited
by something else than the branch predictor.

Figure 7(b) shows the results for the same experi-
ments but on the ooo-2 configuration. As shown in the
graph, all branch predictors have a larger influence on
out-of-order execution than on the in-order one. BHT
loses 5.8% performance on average, Gshare has the
same performance, and Perceptron provides a negligi-
ble 0.3% speed-up. Also, adding a BTB does have a
performance impact in this case. It provides a further
3.5% performance improvement on all branch predic-
tors. Finally, perfect branch prediction provides an im-
pressive 16% IPC improvement.

As a result, the evaluated branch predictors do not
alter much the execution of the task generation phase.

Real branch predictors speed-up ranges from −2.5% to
0% on in-order execution while the impact on the out-
of-order PPE goes from −5.8% to 3.8% (Perceptron +
BTB). Larger improvements were expected due to the
fact that the amount of branch instructions in the task
generation code is quite high, 17%, being conditional
the 13%. However the results for perfect branch pre-
diction are more interesting. While the task generation
execution on the in-order configuration is a 3.8% faster
with perfect branch prediction, the impact on out-of-
order execution is a 16%. Nevertheless, this improve-
ments are due to the Return Address Stack (RAS) ac-
curacy, which is quite low for real branch predictors
(20–30%). Perfect branch prediction implies perfect
RAS behaviour which results in the observed higher
speedups.
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Given the negligible impact of perfect branch pre-
diction on in-order execution, and its higher impact on
out-of-order, we conclude that the major impact of im-
proved branch prediction is an increase in the number
of in-flight (overlapping) cache misses. In the next sec-
tions, we evaluate the impact of cache size and mem-
ory latency.

3.4. Cache size

The results in the previous sections show that Mem-
ory Level Parallelism (MLP) is a critical factor for the
task generation phase of CellSs. In this section we ana-
lyze the importance of the cache size on the task gener-
ation execution. The Cell PPE includes a 32 kB 2-way

associative instruction cache and a 32 kB 4-way as-
sociative data cache for level 1. The level 2 cache is
8-way associative and provides 512 kB of storage. In
this section both L1 data cache and L2 cache are evalu-
ated. All experiments assume a constant cache latency
of 4 cycles to L1 and 16 extra cycles to L2 (total 20),
since changing both parameters at the same time would
make results harder to interpret.

We have simulated L1 cache sizes from 32 kB to
4 MB, plus a pseudo-infinite 512 MB configuration,
with a fixed L2 size of 512 MB, so that the entire con-
tents of the L1 fits in L2, and a perfect cache (always
hit). Figure 8(a) shows results for 2-wide in-order exe-
cution and Fig. 8(b) for 2-wide out-of-order.

(a)

(b)

Fig. 8. Normalized IPC with respect to 32 kB L1 data cache on the in-2 and ooo-2 configurations. L2 cache is 512 MB. Speed-up increases with
larger L1 data cache sizes up to 2.9% for 4 MB in-2 and 3.5% for 4 MB ooo-2. Perfect L1 data caches have a higher impact 5.2% (in-2) and
7.5% (ooo-2). (a) L1 data cache size on in-2; (b) L1 data cache size on ooo-2.
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In both cases, IPC improves with cache size up to
4 MB. Cache sizes larger than 4 MB do not further im-
prove performance. Even though the impact is greater
for out-of-order execution, results for both execution
orders are very small, 3.5% for 4 MB out-of-order and
2.9% for 4 MB in-order. However, the perfect L1 con-
figurations provide higher speed-ups: up to 5.2% for
in-2 and 7.5% for ooo-2.

L2 cache size simulations have been carried out
maintaining the original 32 kB data and instruction
caches. The L2 cache size has been varied from the
original 512 kB to 16 MB. As we did for the L1 cache,
we have also studied a pseudo-infinite configuration of
512 MB and a perfect L2 cache. Figure 9(a) and (b)
shows the normalized IPC for several L2 cache sizes

with respect to the one with 512 kB on in-order and
out-of-order executions, respectively.

As we already observed with the L1 simulations,
IPC improves as the L2 grows up to 4 MB, but caches
larger than 4 MB do not make a difference. The maxi-
mum speed-up for in-2 is 9% and for ooo-2 is 11.5%.
On average, the improvement on out-of-order is only a
2% larger than for in-order so the L2 cache influence
does not depend as much on the type of execution. In
this case, a perfect L2 provides a 11.5% improvement
for in-order and a 16% for out-of-order which is not as
far from realistic configurations as the perfect and L1
cache size experiments.

Regarding cache size, L1 cache size can be kept rea-
sonably small, since there is no big improvement when

(a)

(b)

Fig. 9. Normalized IPC with respect to 512 kB L2 on the in-2 and ooo-2 configurations. Speed-up increases with larger L2 cache sizes up to 9%
for 4 MB in-2 and 11.5% for 4 MB ooo-2. Perfect L2 caches provide a larger improvement, 11.5% for in-2 and 16% for ooo-2, but much less
than perfect L1 data caches. (a) L2 cache size on in-2; (b) L2 cache size on ooo-2.
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going from 32 kB to 1 MB. The L2 cache size does
have a more significant impact, and increasing cache
size to 4 MB would provide some benefits. In any
case, in the next section we perform some evaluations
to verify the importance of the cache latency that we
have observed here. From those simulations, we con-
clude that the whole working set of the task generation
code could fit comfortably in a local on-chip memory
since caches larger than 4 MB do not provide further
speedups.

3.5. Memory latency

In the previous section we have seen that the perfor-
mance of the task generation code does not improve
with cache sizes beyond 4 MB. It would be interest-
ing to off-load all css_addTask data to a local on-chip
memory to avoid first reference and collision cache
misses. Technologies such as IBM’s eDRAM (“em-
bedded DRAM”) allow large on-chip memory sizes.
However, a 4 MB memory would not have the 4 cycle
latency of the 32 kB L1 cache. In this section we eval-
uate the performance impact of a memory hierarchy
composed of a 32 kB L1 cache and an ideal memory
with different latencies, ranging from 8 to 256 cycles.
Figure 10 shows our simulation results for the different
latencies of the ideal memory relative to the 16-cycle
512 kB L2 cache of the baseline configuration on the
2-way out-of-order processor.

Our results show that the latency of a local mem-
ory used exclusively by the task generation code does
not seem to have a significant impact. As shown in the
previous section, and ideal memory with a 16-cycle la-

tency increases performance by over 15%. This plot
shows that increasing the latency to 64 cycles still pro-
vides a similar improvement, and that even a 128-cycle
memory would improve by close to 15%.

These simulations only serve the purpose of show-
ing the potential benefits of using a local on-chip
memory for the task generation code. Fully verifying
these results, and measuring the actual size of such
memory, would require rewriting part of the Cell Su-
perscalar runtime library, which is beyond the scope
of this work. However, given the potential improve-
ment, we will consider it as future work to be ex-
plored.

4. Related work

The term scalability is widely used in the hardware
and software communities. However, there is not a
common understanding of the scalability concept. This
issue was discussed by Hill in 1990 [13]. Hill presented
several failed attempts to rigorously define scalability
and finally questioned the usefulness of this concept
and challenged the technical community to either pro-
vide a rigorous definition or stop using the term to de-
scribe systems. Several researchers took the challenge
and attempted to provide a better definition [12,21].
Duboc et al. in [9] assert that a universal definition
should be avoided and present a framework to ana-
lyze and predict the scalability of software systems.
In this paper we use the intuitive definition of scala-
bility applied to parallel systems presented by Zhang
et al. in [31]. They claim that: “scalability measures the

Fig. 10. Normalized IPC of an ideal memory with latencies ranging from 8 to 256 cycles with respect to the out-of-order PPE configuration
(ooo-2). Ideal memories provide more than 15% performance improvement with latencies up to 128 cycles. Only the 256-cycle very high latency
harm this performance, achieving only a 5% IPC improvement.



74 A. Rico et al. / Available task-level parallelism on the Cell BE

ability of a parallel system to improve performance as
the size of an application problem and the number of
processors involved increase”.

Regarding resource utilization bounds, Liu and Lay-
land presented in 1973 a study of the achievable
processor utilization on single-processor systems [19].
This study provided the least upper bound (Liu and
Layland bound (LLB)) to processor utilization factor
depending on the scheduling algorithm. The processor
utilization factor in Liu and Layland’s work was de-
fined as the fraction of processor time spent in the ex-
ecution of a task set, which is equivalent to one mi-
nus the idle processor time. Lopez et al. extended this
analysis for multiprocessor systems in [20]. They ana-
lyzed some allocation algorithms and proved their op-
timality in processor utilization for a specific schedul-
ing scheme.

There are several studies and tools for measuring
and analyzing the overheads of parallel programming
models. Ovaltine [3] is a tool that performs OpenMP
code instrumentation for analyzing OpenMP over-
heads, however it is restricted only to automatically
compute load imbalance and unparallelized overheads.
Scalea [28] is another tool for performance analysis of
Fortran OpenMP, MPI and HPF codes. It allows the
categorization of either a specific overhead for all par-
allel regions or all the overheads of a specific paral-
lel region. Fürlinger and Gerndt presented a method-
ology for the analysis of the overheads and the scala-
bility of OpenMP codes on CMP architectures in [11].
This analysis is performed using an OpenMP profiler
that extracts four classes of overheads: synchroniza-
tion, imbalance, limited parallelism (i.e, mutual exclu-
sions) and thread management.

As previously mentioned in Section 1, there is a
trend towards the use of tasks on parallel programming
models. OpenMP [24] version 3.0 includes a pragma
annotation for identifying functions as parallel inde-
pendent tasks. Intel’s Thread Building Blocks [27] par-
allel programming model provides an object-oriented
interface to encapsulate the computation and the work-
ing set of independent tasks. Cilk is another parallel
programming model with specific keywords that allow
off-loading tasks on function calls. Tagged Procedure
Calls (TPC) [18] is a pure task-based parallel program-
ming model. It provides semantics for declaring and
spawning functions as parallel tasks. Their communi-
cation and synchronization is transparent to the pro-
grammer, who only has to specify the data used by the
parallel computation.

The Cell BE SDK [6] provides a low-level library
for programming all the processors in the chip. Sev-

eral programming models were proposed in order
to distribute computation among the processing ele-
ments [7]. However, all of them require the program-
mer to deal with code and data distribution. Bellens
et al. presented the Cell Superscalar task-based pro-
gramming model for the CBEA in [4]. This program-
ming model provides a higher-level abstraction and al-
lows programming the Cell BE using sequential code
and OpenMP-like annotations for functions. Annotated
functions are considered parallel tasks and, as well as
TPC, all synchronization and communication among
tasks is performed by the runtime.

There are other type of architectures that are proper
to task-based programming. The Viper [10] by NXP
is a multimedia-specific processor for set-top box de-
vices. It is composed by a general-purpose MIPS
processor, a VLIW TriMedia coprocessor and a set of
multimedia specific accelerators and controllers. Viper
applications start their execution on the MIPS proces-
sor which off-loads work to the TriMedia core. Both
of them eventually dispatch tasks to the specific ac-
celerators for encoding/decoding/filtering audio and/or
video signals. This is also the case of the Nomadik [1]
architecture by STMicroelectronics, which integrates
an ARM processor, and video and audio accelerators.
Apart from embedded multimedia architectures, the
task-based scheme can be also applied to the GPGPU
programming concept. It consists on programming
GPUs in order to execute general-purpose code. In
this case, program execution is launched on a general-
purpose core which may off-load computation- and
data-intensive tasks to GPUs in order to accelerate
their execution. An example of GPGPU is the NVIDIA
CUDA technology [23] which allows general-purpose
execution on NVIDIA GPUs.

The contributions of our paper are the scalability
study for Cell Superscalar on the Cell BE, based on
the comparison of the task execution costs and the task
generation overhead, and the simulation study leading
to the desirable design of a processor targeting a faster
execution of the task generation phase.

5. Conclusions

In this paper we have evaluated the performance of
Cell Superscalar applications in terms of their scala-
bility to next generation CBEA implementations in-
cluding more SPE processors. We observe that the fact
that the SPU must fit all of its working set on the
Local Store effectively limits the size of the tasks to
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be executed there, making the task generation over-
head the limiting factor for scalability with the num-
ber of processors. Our results show that highly op-
timized tasks, such as matrix multiply, take approxi-
mately 20 µs to run, while the task generation overhead
is close to 3 µs, limiting scalability to 6–7 processors.

Since task size can not be increased due to mem-
ory size limitations, we must reduce the task genera-
tion overhead, which currently runs on the PPE. The
PPE had to be very small, and run at a high frequency,
leading to a simple 2-way in-order superscalar design.
We have evaluated the impact of out-of-order execu-
tion, wider superscalar issue, better branch prediction,
and larger L1 and L2 caches.

Our results show that out-of-order execution has the
highest impact on the task management, increasing
performance by over 50%. Further analysis shows that
cache latency is also critical for the task generation
overhead, but it only has a significant impact when
coupled with out-of-order execution. We conclude that
the combination of a larger cache and the overlapping
of multiple cache misses due to out-of-order execution
are the key to lower overheads, and higher scalability.
Finally, a set of simulations using a local memory, pri-
vate to the task generation code, shows that there is a
high potential compared to relying on the conventional
cache hierarchy.

Given these results, a next generation CBEA im-
plementation should include either a more aggressive
PPE with out-of-order execution, or some other form
of task management accelerator coupled with a larger
local memory in order to be able to use all the available
on-chip processors.
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