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With respect to multicriteria supplier selection problems with interval 2-tuple linguistic information, a new decision making
approach that uses distance measures is proposed. Motivated by the ordered weighted distance (OWD) measures, in this paper,
we develop some interval 2-tuple linguistic distance operators such as the interval 2-tuple weighted distance (ITWD), the interval
2-tuple ordered weighted distance (ITOWD), and the interval 2-tuple hybrid weighted distance (ITHWD) operators. These
aggregation operators are very useful for the treatment of input data in the form of interval 2-tuple linguistic variables. We study
some desirable properties of the ITOWD operator and further generalize it by using the generalized and the quasi-arithmetic means.

Finally, the new approach is utilized to complete a supplier selection study for an actual hospital from the healthcare industry.

1. Introduction

The ordered weighted averaging (OWA) operator [1] is a
very well-known aggregation operator, providing a param-
eterized family of aggregation operators which includes the
maximum, the minimum, and the average. The prominent
characteristic of the OWA operator is the reordering step.
An interesting extension of the OWA is the use of distance
measures in the OWA operator. In this respect, Xu and
Chen [2] developed the ordered weighted distance (OWD)
measure, which is the generalization of a variety of well-
known distance measures, such as the normalized Hamming
distance, the normalized Euclidean distance, and the normal-
ized geometric distance. The prominent characteristic of the
OWD measure is that it can relieve (or intensify) the influence
of unduly large or unduly small deviations on the aggregation
results by assigning them low (or high) weights. Merigd and
Gil-Lafuente [3] proposed a technique for decision making
using the OWA operator to calculate Hamming distance
and introduced the ordered weighted averaging distance
(OWAD) operator. The main advantage of this operator is

that it can take into account the attitudinal character of a
decision maker in the aggregation process; thus the decision
maker is able to consider the decision problem more clearly
according to his or her interests. Merigd et al. [4] intro-
duced the probabilistic ordered weighted averaging distance
(POWAD) operator, which uses a unified model between the
probability and the OWA operator considering the degree of
importance that each concept has in the aggregation. Zeng
et al. [5] further extended the POWAD operator to deal with
uncertain environments represented in the form of interval
numbers and proposed the uncertain probabilistic ordered
weighted averaging distance (UPOWAD) operator. Merigo
et al. [6] studied the use of distance measures and heavy
aggregations in the OWA operator and presented the heavy
ordered weighted averaging distance (HOWAD) operator. It
is a new aggregation operator that provides a parameterized
family of aggregation operators between the minimum dis-
tance and the total distance operator.

In addition, Merig6é and Casanovas [7] introduced the
linguistic ordered weighted averaging distance (LOWAD)
operator for linguistic decision making. Zeng and Su [8] and



Zeng [9] considered the situations with intuitionistic fuzzy
and interval-valued intuitionistic information and developed
some intuitionistic fuzzy weighted distance measures. Xu [10]
developed some fuzzy ordered distance measures for group
decision making with linguistic, interval, triangular, or trape-
zoidal fuzzy preference information. Xian and Sun [11] devel-
oped the fuzzy linguistic induced Euclidean ordered weighted
averaging distance (FLIEOWAD) operator for group linguis-
tic decision making, in which the criteria values take the form
of fuzzy linguistic information. More recently, other different
types of distance measures have been proposed in the litera-
ture, like the uncertain induced heavy ordered weighted aver-
aging distance (UTHOWAD) operator [12], the continuous
intuitionistic fuzzy ordered weighted distance (C-IFOWD)
measure [13], the Pythagorean fuzzy ordered weighted aver-
aging weighted average distance (PFOWAWAD) operator
[14], the fuzzy linguistic induced ordered weighted averag-
ing Minkowski distance (FLIOWAMD) operator [15], the
generalized interval-valued 2-tuple linguistic weighted dis-
tance measures [16], the generalized hesitant fuzzy linguistic
weighted distance measures [17], and so on [18-21].

In many situations, however, the input arguments may
take the form of interval 2-tuple linguistic variables [25-
27] because of time pressure, lack of knowledge or data,
and decision makers’ limited attention and information pro-
cessing capabilities. Furthermore, decision makers may use
different linguistic term sets to express their evaluations on
the established selection criteria considering their personal
backgrounds, preferences, and different understanding levels
to the alternatives. Therefore, it is necessary to extend the
ordered weighted distance measures to accommodate the
interval 2-tuple linguistic environment [28-30], which is also
the focus of this paper. For doing so, we will develop some
interval 2-tuple linguistic distance operators such as interval
2-tuple weighted distance (ITWD), interval 2-tuple ordered
weighted distance (ITOWD), and interval 2-tuple hybrid
weighted distance (ITHWD) operators. These aggregation
operators are very effective to deal with situations where
the input data are expressed in interval 2-tuple linguistic
variables. We study some desirable properties of the ITOWD
operator and further generalize it by using the general-
ized and the quasi-arithmetic means obtaining the general-
ized interval 2-tuple ordered weighted distance (GITOWD)
and the quasi-arithmetic interval 2-tuple ordered weighted
distance (Quasi-ITOWD) operators. Finally, based on the
GITOWD operator, we develop an approach to group sup-
plier evaluation and selection with interval 2-tuple linguistic
information and illustrate it with a numerical example.

The remainder of this paper is set out as follows. In
Section 2, we introduce some basic concepts and operation
laws of interval 2-tuple linguistic variables. In Section 3, we
develop the ITWD, the ITOWD, and the ITHWD operators
and investigate some desirable properties of the ITOWD
operator. In Section 4, we present an approach based on the
developed interval 2-tuple linguistic distance operators to
multicriteria group supplier selection. A supplier selection
example is given in Section 5 to verify the proposed approach
and to demonstrate its feasibility and practicality. Finally,
conclusions and future directions are provided in Section 6.
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2. Preliminaries

2.1. 2-Tuple Linguistic Variables. The 2-tuple linguistic repre-
sentation model was firstly presented in [31] based on the con-
cept of symbolic translation. It is used to represent linguistic
information by means of a linguistic 2-tuple, (s, «), where s is
alinguistic term from the predefined linguistic term set S and
« is a numerical value representing the symbolic translation.
In the classical 2-tuple linguistic approach, the range of 8
is between 0 and g, which is relevant to the granularity of
a linguistic term set. Here, f is the result of an aggregation
of the indices of a set of labels assessed in the linguistic
term set S. To overcome this restriction, Tai and Chen
[32] proposed a generalized 2-tuple linguistic model and
translation functions.

Definition 1. LetS = {sy,s;,...,s,} bealinguistic term setand
let 3 € [0, 1] be a value representing the result of a symbolic
aggregation operation. Then the generalized translation func-
tion A used to obtain the 2-tuple linguistic variable equivalent
to f3 is defined as follows [32]:

A:[0,1] — Sx [—i,i>,
29 29
A(B) = (spax),
@
Si» i =round (B-g)
with i
a=p 7

where round(-) is the usual rounding operation, s; has the
closest index label to 8, and « is the value of the symbolic
translation.

Definition 2. Let S = {sy, ;5. .-
and let (s;, &) be a 2-tuple. There exists a function A™" which is
able to convert a 2-tuple linguistic variable into its equivalent

numerical value € [0,1]. The reverse function A7l s
defined as follows [32]:

»S4} be a linguistic term set

AT SX[—i,i)—qo,l],
29 29
()
A (spa) = —+a=

Particularly, it is necessary to point out that the conversion of
a linguistic term into a linguistic 2-tuple consists of adding a
value 0 as symbolic translation [31]:

s;€S= (s,,0). (3)

The comparison of linguistic information represented by
2-tuples is carried out according to an ordinary lexicographic
order.

Definition 3. Let (s, ;) and (s, «,) be two 2-tuples; then [31,
33]

(1) if k < I, then (s, «; ) is smaller than (s, ,);
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(2) if k = I, then one has the following:

(a) if ; = «,, then (s, ) is equal to (s, y);
(b) if &y < @y, then (s, «;) is smaller than (s;, &,);
(c) if &) > «,, then (s, «;) is bigger than (s;, ;).

2.2. Interval 2-Tuple Linguistic Variables. Motivated by Xu’s
uncertain linguistic variables [22] and based on the defi-
nitions of [32], Zhang [34] proposed the interval 2-tuple
linguistic representation model as generalization of the 2-
tuple linguistic variables. Due to its characteristics and advan-
tages, the interval 2-tuple linguistic representation model has
been widely applied for dealing with uncertainty in various
multicriteria decision making problems [35-38]. It can be
defined as follows.

Definition 4. Let S = {sy,s1,...,s,} be a linguistic term
set. An interval 2-tuple linguistic variable is composed of
two 2-tuples, denoted by [(s;, «;), (sj )], where (s;, ;) <
(sj,ocz), s;(s;), and «; («,) represent the linguistic label of S
and symbolic translation, respectively. The interval 2-tuple
that expresses the equivalent information to an interval value
(51> B2] (B1> B, € [0,1], By < f3,) is derived by the following
function [25, 34]:

A [:81:/32] = [(51’“1)’(5j>“2)]
Sps i =round (f; - g)

2 j=round(B;-g)

; 1 1 1
with <a1=[31—i, aIE[——,—>
g 29 2g

j 11
A(x2=[32—§, ®, € [——,—).

On the contrary, there is always a function A" such that
an interval 2-tuple can be converted into an interval value

[B1, Bo] (Bis By € [0,1], B, < B,) as follows:
A [(Si’“l)’(sj’“z)] = [é +“1)é +“2] = [Bi.B]. 5

In particular, if s; = s; and «; = a,, then the interval 2-tuple
linguistic variable reduces to a 2-tuple linguistic variable.

Note that the uncertain linguistic variable [32] is simpler
than the interval 2-tuple linguistic variable, which can also be
used for dealing with group decision making with uncertain
linguistic information. However, compared with the uncer-
tain linguistic variables, Zhang’s interval 2-tuple linguistic
variables have the following advantages [31, 34, 39]. (1) The
interval 2-tuple linguistic variable has exact characteristic in
linguistic information processing, which can effectively avoid
information distortion and loss in the linguistic information
processing. In contrast, the uncertain linguistic variable per-
forms the retranslation step as an approximation process to
express the results in the original expression domain (initial
discrete linguistic term set) provoking a lack of accuracy. (2)

In the process of aggregating uncertain linguistic informa-
tion, the operational laws of uncertain linguistic variables are
not closed. Let S = {s;,s;,...,5¢} be a linguistic term set;
we have [s,,5;] @ [s4,55] = [sg,55] and [s4, 551 ® [s5, 53] =
[sg> $15). Clearly, the results of operation exceed the range of
the linguistic term set S. This problem is solved by employing
the interval 2-tuple linguistic variables. (3) Decision makers
can express their preferences by the use of linguistic term
sets with different granularity of uncertainty and their judg-
ments can be better expressed with interval 2-tuples from
the preestablished linguistic term sets. But the uncertain
linguistic variables may lead to inflexibility for managing
the group decision making problem with multigranularity
linguistic information.

Based on the operations of uncertain linguistic variables
[22], Zhang [34] further gave some basic operational laws of
interval 2-tuples and proposed the interval 2-tuple weighted
average (ITWA) operator.

Definition 5. Consider any three interval 2-tuples, @ =

[(r,), (t,8)], a; = [(r, ), (k)] and @, = [(ry, ), (t5,
)], and let A € [0, 1]; then their operations are defined as
follows [34]:

€] a, ®a, = [(7’1,0‘1)3 (t1’51)] o [(Q»“z))(tz)ez)] =
A[A"l(rl, o)+ A"l(rz, a,), A_l(tl, &)+ A_l(tz, &)l

(2) Aa = M(r, ), (t,€)] = AI]AMAT (7, ), AATL(E, €)].

Definition 6. Let a; = [(r, ), (t;€)] (( = 1,2,...,n) bea
set of interval 2-tuples and let w = (w,, w,, ..., w,)" be their
associated weights, with w; € [0,1] and Y w; = 1. The
ITWA operator is defined as [34]

n

ITWA,, (@, a-..,4,) = P (wa,)
i=1

(6)
n . n -1
=A Zw,A (ria(xi)’zwiA (ti’si) N
i=1 i=1

Inspired by the distance measure in uncertain linguistic
environment [40], the distance between interval 2-tuples can
be defined below.

Definition 7. Leta, = [(r), o), (t,&)] and @, = [(r,, «,), (t5,
&,)] be any two interval 2-tuples; then

drrp (a’ E) =A [% (|A71 (roq) - A ("z’“z)|
(7)
+ 'A_l (te)-A" (t2’32)|)]

is called the interval 2-tuple distance between @ and b. Partic-
ularly, if the interval 2-tuples @, = [(r}, ), (t;,€)] and @, =
[(ry, &), (t,5, &,)] are degenerated to 2-tuples a = (r, ;) and

b = (r,,), then the interval 2-tuple distance will become
the 2-tuple distance [41].



3. Interval 2-Tuple Linguistic
Distance Operators

The ordered weighted averaging distance (OWAD) operator
[3] is an extension of the traditional Hamming distance by
using the OWA operator, which provides a parameterized
family of aggregation operators ranging from the minimum
to the maximum distance. For two real numbers sets A =
{a;,a,,...,a,} and B = {b,b,,...,b,}, the OWAD operator
is defined as follows.

Definition 8. An OWAD operator of dimension # is a map-
ping OWAD: R"x R" — R which has an associated weighting
vector w = (wy, w,, ... ,wn)T,Withwj € [0,1]and Z?:l w; =1,
such that

OWAD ({a,,b,),(a,,b,) ,..., (a,,b,)) = ijdj’ (8)
=1

where d; represents the jth largest of the individual distance
la; - b.

Further, Xu and Chen [2] developed an ordered weighted
distance (OWD) measure, which generalizes a variety of well-
known distance measures and aggregation operators.

Definition 9. An OWD measure of dimension 7 is a mapping
OWD: R"xR" — Rwhich has an associated weighting vector
w = (w0}, W, ..., w,)", with w; € [0,1] and Z;'l=1 w; = 1, such

that

OWD ({a,,b,),{a,,b,),...,{a,b,))

n 1/A (9)
j=1

where d; is the jth largest of the individual distance |a; —
bl. If A = 1, then the OWD measure is reduced to the
OWAD operator;if A = landw = (1/n,1/n,..., 1/n)7, then
the OWD measure is reduced to the normalized Hamming
distance.

3.1. Interval 2-Tuple Linguistic Distance Operators. The
OWAD and the OWD operators have only been used in the
situations in which the input arguments are exact values.
However, judgments of people depend on personal psycho-
logical aspects such as experience, learning, situation, and
state of mind. It is more suitable for decision makers to
provide their preferences by means of linguistic variables
rather than numerical ones.

For convenience, let S be the set of all interval 2-tuples,
let S be the set of all 2-tuples, and let A = {d@,,a,,...,4,} and
B = {b,,b,,...,b,} be two sets of interval 2-tuples. Based on
(7), we define an interval 2-tuple weighted distance (ITWD)
operator as follows.

Definition 10. An ITWD operator of dimension # is a map-
ping ITWD: §" x§" — S, which has an associated weight

Mathematical Problems in Engineering

vector w = (wl,wz,...,wn)T withw; € [0, 1] and Z?:1 w; =1,

such that

1TWD ((@,5,), (8,,5,) ..., (@,,5,))

= ZwidITD (apl;i) >

i=1

(10)

where dypp(@;, b;) is the interval 2-tuple distance between g,
and b,.

In particular, if w = (1/n,1/n, ..., 1/n)7, then the ITWD
becomes the interval 2-tuple normalized distance (ITND)
operator:

ITND ((@,,5,), (3,5, ..., (@,,5,))

n 11)
. 3 (
=) dirp (@1 b;).
2.0 (3:)
If the sets of interval 2-tuples A = {@,,a,,...,a,} and

B = {b,,b,,...,b,} are degenerated to the sets of 2-tuples
A = {a,,a,,...,a,} and B = {b,b,,...,b,}, then the TTWD
is reduced to the 2-tuple weighted distance (TWD) operator:

TWD ((@1,5,), (a,5,) -, (3,,,))

= ZwidTD (ai’ Ez) >
i=1

(12)

where d-p, (@, b;) is the 2-tuple distance between @, and b;.

Based on the OWA and the ITWD operators, we define
an interval 2-tuple ordered weighted distance (ITOWD)
operator as follows.

Definition 11. An ITOWD operator of dimension n is a
mapping ITOWD: §" x §" — S, which has an associated
weight vector 0 = (w,,w,,...,w,)", with w; € [0,1] and
Z;’:l w; = 1, such that

ITOWD ({(@y,b,),(ay.0,) »....(a,b,))
(13)

jdrrp (@o(jy o))

s

j=1

where d;p(a@ EU( j) is the jthlargest of the interval 2-tuple

o(j)
distance dypp (@;, ;).

Particularly, if there is a tie between drp(@;,b;) and
dITD(aj,Ej), then we replace each of dip(@,b;) and
dyrp(@;, b;) by their average (dp (@;, b)) + dipp(@;, b;))/2 in
the process of aggregation. If k items are tied, then we replace
these by k replicas of their average. If w = (1/n, 1/n, ..., 1/n)7,
then the ITOWD becomes the ITND; if the position
of dirp(@;,b;) is the same as the ordered position of
dITD(aa(j),EU( 7)> then the ITWD is obtained. Moreover, if

A and B are degenerated to A and B, then the ITOWD is
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reduced to the 2-tuple ordered weighted distance (TOWD)
operator:

TOWD ({@,,b,),{a.b,)....

dem( oG bati))»

(@b,))

(14)

where d (@
drp(@;,b;).
Similar to the OWAD operator, the ITOWD operator is
commutative, monotonic, idempotent, and bounded. These
properties can be shown with the following theorems.

(i) U( j) is the jthlargest of the 2-tuple distance

Theorem 12 (commutativity-OWA aggregation). Assume
that f is the ITOWD operator. If (@.by),(@\by),. ..,

(ﬁ;,g;)) is any permutation of the arguments ({d@,,b,), (d,,
b,),...,(@,b,)), then

(@B (B o ()
A CEORCRRNCAE

Theorem 13 (commutativity-distance measure). Assume that
[ is the ITOWD operator; then

IECRARCH AR Y
- F(Fom). (Bai) o ().

Theorem 14 (monotonicity). Assume that f is the ITOWD
operator. Ifdm)(al,b) > dITD(a b ), for all'i, then

f((@,0,),(ab,)....(a,b,))
> S @B (dB)).

Theorem 15 (idempotency). Assume that f is the ITOWD
operator. If dp(@;,b;) = d, for all i, then

f(<al’zl> , <52,Ez> oo

The proofs of the above theorems are straightforward and
thus are omitted.

(15)

(16)

17)

(a,,b,)) =d. (18)

Theorem 16 (bounded). Assume that f is the ITOWD opera-
tor; then

min {dITD (ﬁi,gi)}
< £ ({@,b,),{(ab,),...,

< max {dm) (ﬁi,gi)} .

(@,b,)) (19

Proof. Let max{d;;p(@;, b;)} = t,and let min{d; 1 (@;, b;)} = 73
then

(@8 (anb,) ... (a,b,))
JdITD (](1), a‘(])) Zwt—tZw =t
(<a1>b> (@,8,).....(@,5,))

jdrrp () b)) 2

Il
||'M=

(20)

1l

M=
W'M:
uM:

1

-
Il

Therefore,
min {dITD (5,, El)}
< £({@,,,),{(ab,),...,

< max {dITD (ﬁ,-,gi)} .

(@,,b,)) (1)

O

Another important issue is the determination of the
weighting vector associated with the ITOWD operator. In
the literature, various methods have been suggested for the
OWA weights generation, which can also be implemented for
the ITOWD operator, such as the normal distribution based
method [42], the maximum Bayesian entropy method [43],
and the least squares based method [44]. Inspired by [8, 45],
in the following, we give three ways to determine the ITOWD
weights.

(1) Let

o dirp (~a(])>Ea(j))
" X i (@ b))

j=1L2,...,m (22)

thenw;,; > w
1.

(2) Let

>0, j= 1,2,...,n—1,andZ}:1wj:

e_dITD( 5 (j)> bg(] )
© = i=1,2,....m (23
! Zj‘fl e_dl’l‘v(au(j)’bam)) J=h&e o (23)

then0 < w;,; <
1.

(3) Let

. 1
(Uj’ ] = 1>2"">n_1’andzj:1wj:

1o -
leD( (])’ba(j)) = ;ZldITD (aa(j)’ba(j))’
=

L (24)
d (dITD ( ]),b )) »drrp (ao(j)’ bo(j)))

= |drp (o Bo(y)) = diro (@i b))



then we define

l—a(leD( 5(1),5 ) dITD( (1)>b( ))

= = = > (25)
31 (1= (drrp (@2 b)) - dirp (o0 b))
j=L2,...,n,

from which we get w; 2 0, j = 1,2,...,n, and

1
2w =1

Note that the weight vector derived from (22) is a
monotonic decreasing sequence, the weight vector derived
from (23) is a monotonic increasing sequence, and the weight
vector derived from (25) combines the above two cases;
that is, the closer the value dip (g j),by(j)) to the mean

dITD(aJ( i EU( ) the larger the weight w..

Clearly, the fundamental characteristic of the ITWD
operator is that it considers the importance of each given
interval 2-tuple distance, whereas the fundamental charac-
teristic of the ITOWD operator is the reordering step, and
it weights all the ordered positions of the interval 2-tuple
distances instead of weighting the given interval 2-tuple
distances themselves. Motived by the idea of the linguistic
hybrid geometric averaging (LHGA) operator [42], in the
following, we develop an interval 2-tuple hybrid weighted
distance (ITHWD) operator that weights both the given
interval 2-tuple distances and their ordered positions.

Definition 17. An ITHWD operator of dimension n is a
mapping ITHWD: §" x§" — 3, which has an associated
weight vector 0 = (w;,w,,...,w,)", with w; € [0,1] and
Y w; = 1, such that

ITHWD ((@,,b, ) ,{db,) ...

2 leD( As(j)> .a(])>

(@b.))

(26)

where d1p (@ )) is the ]th largest of the weighted inter-

a(j) 0(1
val 2-tuple distance dITD(az,bz) (dITD(al,bl) = nw;dirp (@,
b), i = 1,2,...,n), w = (w,w,,...,w,)" is the weight
vector of dITD(ﬁi,l;i) (i =1,2,...,n), with w; € [0,1] and
Y, w; = 1, and n is the balancing coefficient.
In particular, if w = (1/n,1/n,..., 1/n)T, then the
ITHWD is reduced to the ITOWD operator; ifw = (1/n, 1/n,
.,1/m)T, then the ITHWD is reduced to the ITWD opera-
tor. Moreover, if A and B are degenerated to A and B, then the
ITHWD is reduced to the 2-tuple hybrid weighted distance
(THWD) operator:

THWD ((@,,6, ), (5,0, ) ...,

iw dTD( G (j)> 0(]))

(@0 b.))

(27)
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where dyp (@ s(j)) is the jth largest of the weighted 2-

0(1)’
tuple distance dTD(aJ,bJ) (dTD(aJ,bJ) = nw;dyp@;,b,), i =
L2,..,n), w = (w,w,...,w,)"

dTD(Ej,Ej) (i=12,...,n),withw; € [0,1]and Y w; = 1,
and n is the balancing coeflicient.

is the weight vector of

3.2. Generalizations of the ITOWD Operator. In what follows,
generalizations of the ITOWD operator are presented by
using the generalized and the quasi-arithmetic means.

Definition 18. A generalized interval 2-tuple ordered weight-
ed distance (GITOWD) operator of dimension # is a mapping
GITOWD: S"xS" — S, which has an associated weight vector
w = (@}, Wy, ..., w,)", with w; € [0,1] and Z;’zl w; = 1, such
that

GITOWD ((@,,b, ), {@,,0,) ...,

(@nb.))
(dem( oGP )>1M’ -

where d;p (@ )) is the jth largest of the interval 2-

o(j)° a( Jj
tuple distance dy;p(@;, b;) and A is a parameter such that A €
(—00, +00) — {0}.

Similar to the OWA and the GOWA operators [1, 46],
the GITOWD operator has many desirable properties, such
as commutativity, monotonicity, boundedness, and idempo-
tency. Particularly, if there are ties between interval 2-tuple
distances, as in the case of the ITOWD operator, we replace
each of the tied arguments by their generalized mean in the
process of aggregation. If A and B are degenerated to A and B,
then we can get the generalized 2-tuple ordered weighted dis-
tance (GTOWD) operator. The GITOWD operator provides
a parameterized family of aggregation operators. In order to
study this family, we can analyze the weighting vector w or
the parameter A. By choosing a different manifestation of the
weighting vector in the GITOWD operator, we are able to
obtain different types of distance operators:

(i) The interval 2-tuple maximum distance is found if
w; =landw; =0, forall j # 1.

(ii) The interval 2-tuple minimum distance is found if
w, =land w; =0, forall j # n.

(iii) The generalized interval 2-tuple normalized distance

(GITND) operator is formed when w; = 1/n, for all j.

(iv) The generalized interval 2-tuple weighted distance

(GITWD) operator is obtained when the position of

dirp(@;, b;) is the same as the ordered position of

dyrp(@y(j) by(j)-

Some special cases can also be obtained with the change
of the parameter A:

(i) If A = 1, then the GITOWD is reduced to the ITOWD
operator.
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(i) If A — 0, then the GITOWD is reduced to the
interval 2-tuple ordered weighted geometric distance
(ITOWGD) operator.

(iii) If A = -1, then the GITOWD is reduced to the
interval 2-tuple ordered weighted harmonic distance
(ITOWHD) operator.

(iv) If A = 2, then the GITOWD is reduced to the
interval 2-tuple ordered weighted Euclidean distance
(ITOWED) operator.

(v) If A = 3, then the GITOWD is reduced to the interval
2-tuple ordered weighted cubic distance ITOWCD)
operator.

Definition 19. A quasi-arithmetic interval 2-tuple ordered
weighted distance (Quasi-ITOWD) operator of dimension n
is a mapping Quasi-ITOWD: §" x 8" — §, which has an
associated weight vector @ = (w;,w,,...,w,)", with w; €
[0,1] and Z?zl w; = 1, such that

Quasi-ITOWD ((@y,b, ), (@5,0,) »..., (G, b,))

o o (29)
=g Zl“’jg(dITD (@i b)) |
=

where dip (@ EG( j) is the jthlargest of the interval 2-tuple

o(j)
distance d;pp(@;, b;) and g is a general continuous strictly
monotone function.

As we can see, the GITOWD operator is a particular
case of the Quasi-ITOWD operator when g(x) = O If
A and B are degenerated to A and B, then we can get the
quasi-arithmetic 2-tuple ordered weighted distance (Quasi-
TOWD) operator. Note that all properties and particular
cases commented in the GITOWD operator can also be dis-
cussed in this generalization.

4. The Proposed Multicriteria Group
Supplier Selection Method

In this section, we develop an approach based on the pro-
posed interval 2-tuple linguistic distance operators for solv-
ing multicriteria group supplier selection problems.

Suppose that a group supplier selection problem has /
decision makers DM, (k = 1,2,...,]), m alternatives A; (i =
1,2,...,m), and n decision criteria C; (j =1,2,...,n). Each
decision maker DM, is given a weight v, > 0 (k =1,2,...,])
satisfying 22:1 v, = 1 to reflect his/her relative importance

in the supplier selection process. Let D), = (dfj)mx,, be the
linguistic decision matrix of the kth decision maker, where
d:.‘j is the linguistic information provided by DM, on the
assessment of A; with respect to C;. In addition, decision
makers may use different linguistic term sets to express their
assessment values.

Next, we apply the ITWA and the GITOWD operators for
multicriteria group supplier selection under interval 2-tuple
linguistic environment.

Step 1. Convert the linguistic decision matrix D = (df.‘j)mxn

into the interval 2-tuple linguistic decision matrix R, =
—k

k k k L k
r;‘j)mxn = ([(rij’ 0)7 (ti]'$ 0)])m><n) Where rij’tij € S)S = {50’51’
k k
..»Sgtand ri; < b

Suppose that DM, provides his assessments in a set of five
linguistic terms S: § = {s, = very poor,s;, = poor,s, =
medium,s; = good,s, = very good}. The linguistic infor-
mation provided in the decision matrix D, can be converted
into corresponding interval 2-tuple linguistic assessments
according to the following ways:

(i) A certain grade such as poor, which can be written as
[(s1,0), (51,0)]

(ii) An interval such as poor-medium, which means
that the assessment of an alternative concerning the
criterion under consideration is between poor and
medium. This can be expressed as [(s;, 0), (s,, 0)].

Remark 20. In particular supplier selection problems, there
exist many situations where information may be unquantifi-
able due to its nature, or the precise quantitative information
may be unavailable or the cost for its computation is too high.
Thus, it is more reasonable and natural for decision makers
to make their judgments by using linguistic expressions.
Generally, three main methods have been introduced for
dealing with qualitative assessments [31, 39, 47]. The first
method is based on membership functions [48], which
converts linguistic information into fuzzy numbers by means
of a membership function. However, this method led to
a certain degree of information loss in the transformation
process. The second method is based on linguistic sym-
bols [49] that made computations on the subscripts of
linguistic terms and was easy to operate. However, this
approach may lead to inflexibility for different semantics.
The third method is based on linguistic 2-tuples [29], which
can avoid the information distortion and loss in linguistic
information processing and has been widely utilized for
managing linguistic MCDM problems. Therefore, to deal
with linguistic information more reasonably and accurately,
the decision maskers’ assessments on alternative suppliers
are first transformed into interval 2-tuples in the proposed
approach.

Step 2. Utilize the ITWA operator
7y = [(ryp ) (tijp85)] = ITWA (F}jifj,...,?ﬁj)

! i
=A ZVkA_l (rfj, 0) , kaA_l (tfj,o) , (30)
k=1 k=1

to aggregate all the interval 2-tuple linguistic decision matri-
ces R, (k = 1,2,...,]) into a collective interval 2-tuple lin-
guistic decision matrix R = (¥;;),xp-



Step 3. Determine the ideal level of each criterion in order
*  ~%

to characterize the collective ideal alternative 7* = (7},7,,
...,T,), where

7= 0fa) (58)] =12 Y

Step 4. Calculate the separation measure S; of each alterna-
tive from the ideal alternative by using the GITOWD opera-
tor:

S§ = GITOWD (7, 71 ) s (Fins P ) 5 s (Fijo 7))

"o A (32)
= ijdITD(riU(j),rU(j)) s i=1,2,...,m,

j=1

where d?TD Fio(y> To j)isthe jthlargest of the interval 2-tuple
distance dypp (?,-j,F;f); w = (0, ,,...,w,)" is the weighting
vector of the GITOWD operator such that w; € [0,1] and
Z;’zl w; = 1. Note that it is possible to consider a wide range
of GITOWD operators such as those described in Section 3.

Step 5. Rankall thealternatives A; (i = 1,2,...,m)and select
the best one(s) according to the increasing order of their
separation measures.

Step 6. End.

5. An Illustrative Example

5.1. Example Illustration. In this section, we develop an
illustrative example of the new approach in a group deci-
sion making problem of supplier selection. Suppose that a
tertiary care hospital desires to select the most appropriate
supplier for one of the key medical devices in the general
anesthesia process. After preliminary screening, six suppliers,
A; (i =1,2,...,6), have remained as alternatives for further
evaluation. In order to evaluate the alternative suppliers and
select the best one, an expert committee of three decision
makers, DM;, DM, and DM, has been formed. The selection
decision is made on the basis of one objective and five criteria
C; (j = 1,2,...,5). These criteria, which are critical for the
supplier selection, are defined as follows:

C,: technical capability
C,: delivery performance
C;: product quality

C,: flexibility

Cs: price/cost

The three decision makers employ different linguistic
term sets to assess the suitability of the suppliers with respect
to the above selection criteria. Specifically, DM, provides his
assessments by using the linguistic term set A; DM, provides
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his assessments using B; DM, provides her assessments using
C. These linguistic term sets are denoted as follows:

A = {a, = very poor (VP), a, = poor (P), a,
= medium (M), a; = good (G), g,
= very good (VG)},
B = {b, = very poor (VP), b, = poor (P), b,
= medium poor (MP), b; = medium (M), b,
= medium good (MG), b; = good (G), b
= very good (VG)}, &)

C = {¢ = extra poor (EP), ¢, = very poor (VP), ¢,

poor (P), ¢ = medium poor (MP), ¢,

medium (M), ¢; = medium good (MG), ¢

good (G), ¢, = very good (VG), ¢

extra good (EG)}.

The linguistic assessments of the six alternatives on each
criterion provided by the three decision makers are presented
in Table 1.

With this information, we can make an aggregation in
order to make a decision. First, we convert the linguistic
decision matrix shown in Table 1 into the interval 2-tuple lin-
guistic decision matrix R, = ([(rf‘j, 0), (tg., 0)]) « 5> which is
depicted in Table 2. Then, we aggregate the information of the
three experts to obtain a collective interval 2-tuple linguistic
decision matrix. We use the ITWA operator to obtain this
matrix while assuming that v = (0.3,0.4, 0.3)T. The results
are shown in Table 3.

According to their objectives, the group of experts estab-
lishes the collective ideal supplier shown in Table 4.

It is now possible to develop different methods based on
the GITOWD operator for the selection of the optimum sup-
plier. In this example, we consider the interval 2-tuple max-
imum distance, the interval 2-tuple minimum distance, the
ITND, the ITWD, the ITHWD, the ITOWD, the ITOWGD,
the ITOWHD, the ITOWED, and the ITOWCD operators.
For convenience, we assume the following weighting vector:
w = (0.112,0.236,0.304, 0.236,0.1 12)T, which is derived by
the normal distribution based method [42]. The aggregated
results are presented in Tables 5 and 6 and the rankings of
the alternative suppliers for each particular case are shown in
Table 7.

As we can see, depending on the distance operator used,
the ranking orders of the six suppliers are different. Due to
the fact that each particular type of the GITOWD operator
may lead to different results, the decision maker can select
for his decision the one that is in closest accordance with
his interests. However, in this example, it is clear that the
best choice is A ,, although in some exceptional situations the
alternative suppliers such as A}, A,, or A; could be optimal.
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TABLE 1: Linguistic assessments of the suppliers.

Decision makers Alternatives Criteria
C, G, C, C, Cs
A, G-VG M-G G M G
A, VG G VG M-G G
DM, A, M M P-M GVG M
A, G G-VG M G G-VG
As M VG G VG G
A, G M-G VG G M-G
A, VG M G-VG M G
A, MG VG G MG MG
DM, A, M-G MG M MG G
Ay G VG G MG-G M
A, M-G M G VG VG
Ag MG M-G G G VG
A, M-MG G MG G M
A, VG VG MG VG G
DM, A, VG M G MG VG
A, EG VG G G VG
A, G MG GVG G MG
A, M M-G G G MG
TABLE 2: Interval 2-tuple linguistic decision matrix.
Decision makers Alternatives Criteria
G G Gy Gy Cs
A, [(a;,0), (ay,0)] [(a,,0), (a5, 0)] [(a3,0), (a5,0)] [(a,,0), (a,,0)] [(a;,0), (a5, 0)]
A, [(ay,0), (ay,0)] [(a;,0), (a5, 0)] [(ay,0), (a4, 0)] [(a,,0), (a5, 0)] [(a;,0), (a5, 0)]
DM, Ay [(a,,0), (a,,0)] [(a,,0), (a,,0)] [(a,,0), (a,,0)] [(a3,0), (a5, 0)] [(a,,0), (a,,0)]
A,y [(a;,0), (a5, 0)] [(a;,0), (a,,0)] [(a,,0), (a,,0)] [(a5,0), (a3, 0)] [(a;,0), (a,,0)]
As [(az 0), (az 0)] [( ) (a4 0)] [(a3 0), (aa O)] [(04, 0), (014 0)] [(a3 0), (a3 )]
As [(as O) (a3 0)] [( ) (a3 )] [(a4 ) (a4 0)] [(aa> 0), (a3 0)] [(az: 0)> (as 0)]
A, [(&5,0), (b5, 0)] [(b5,0), (b3, 0)] [(&5,0), (bs, 0)] [(&5,0), (b5, 0)] [(&5,0), (b5,0)]
A, [(&5,0), (b5,0)] [(5s,0), (b5, 0)] [(55,0), (b5, 0)] [(&,,0), (b;,0)] [(&,,0), (b;,0)]
DM, Ay [(&5,0), (b5,0)] [(by, 0), (b, 0)] [(b5,0), (b5, 0)] [(by,0), (b, 0)] [(&5,0), (b5, 0)]
Ay [(65,0), (b5, 0)] [(bs, 0), (b5, 0)] [(b5,0), (bs5,0)] [(by,0), (b5, 0)] [(55,0), (bs,0)]
As [(65,0), (bs,0)] [(b5,0), (b5, 0)] [(b5,0), (b5, 0)] [(6s, 0), (bs, 0)] [(5s, 0), (b5, 0)]
Ag (b, 0), (b, 0)] [(b5,0), (b5, 0)] [(b5,0), (b5, 0)] [(6s5,0), (b5, 0)] [(6s, 0), (b5, 0)]
A, [(¢s,0), (c5,0)] [(c,0), (¢, 0)] [(c5,0), (c5,0)] [(c5, 0), (¢, 0)] [(¢s,0), (¢, 0)]
A, [(c;,0), (¢;, 0)] [(c;,0), (¢;,0)] [(c5, 0), (c5, 0)] [(¢;,0), (c;, 0)] [(cs, 0), (5, 0)]
DM, Ay [(c;,0), (¢;, 0)] [(c,0), (¢;, 0)] [(c5, 0), (¢, 0)] [(c5,0), (c5,0)] [(c;,0), (¢}, 0)]
A, [(,0), (cs, 0)] [(¢;,0),(c;, 0)] [(,0), (¢, 0)] [(cs, 0), (5, 0)] [(¢;,0), (c;, 0)]
As [(cs, 0), (¢, 0)] [(c5,0), (c5, 0)] [(cs, 0), (c;, 0)] [(cs, 0), (5, 0)] [(c5,0), (c5, 0)]
As [(cs,0), (¢, 0)] [(c;,0), (¢, 0)] [(c50), (65, 0)] [(¢,0), (¢, 0)] [(c5,0), (c5,0)]
TaBLE 3: Collective interval 2-tuple linguistic decision matrix.
G G, G G Gs
A, A[0.775,0.888] A[0.575,0.650] A[0.746,0.813] A[0.575,0.575] A[0.708,0.708]
A, A[0.896,0.896] A[0.888,0.888] A[0.821,0.821] A[0.679,0.754] A[0.717,0.717]
A, A[0.613,0.746] A[0.567,0.567] A[0.500,0.575] A[0.679,0.754] A[0.746,0.746]
A, A[0.858, 0.858] A[0.888, 0.963] A[0.708,0.708] A[0.717,0.783] A[0.688,0.763]
A A[0.575,0.708] A[0.688, 0.688] A[0.783,0.821] A[0.925,0.925] A[0.813,0.813]
Aq A[0.642,0.642] A[0.500, 0.783] A[0.858, 0.858] A[0.783,0.783] A[0.738,0.813]
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TABLE 4: Collective ideal supplier.
G G, Cs G, Cs
7 A[0.8,09] A[0.9,1] A[0.8,09] A[0.9,1] A[0.8,0.9]

TABLE 5: Aggregated results 1.

Max Min ITND ITWD ITHWD

A, A0.375]  A[0.019]  A[0.189]  A[0.208]  A[0.196]
A, A[0233]  A[0.050]  A[0.106]  A[0.106]  A[0.092]
A, A[0383]  A[0.104]  A[0.241]  A[0.271]  A[0.273]
A, A[0200]  A[0.025]  A[0.108]  A[0.116]  A[0.109]
A; A[0263]  A[0.048]  A[0.124]  A[0.117)  A[0.101]
A, A[0308]  A[0.050]  A[0.162]  A[0.159]  A[0.145]

TABLE 6: Aggregated results 2.

ITOWD ITOWGD ITOWHD ITOWED ITOWCD

A, A[0.184] A[0.131]  A[0.080]  A[0.224]  A[0.252]
A, A[0.094] A[0.080]  A[0.071]  A[0.111]  A[0.128]
A, A[0240] A[0.224]  A[0.208]  A[0.253]  A[0.265]
A, A[0.108]  A[0.091] A[0.072] A[0.121] A[0.130]
Ag A[0.111]  A[0.084] A[0.068] A[0.140] A[0.162]
Ag A[0.158]  A[0.136]  A[0.115]  A[0.176]  A[0.191]

5.2. Comparative Discussion. To further evaluate the pro-
posed interval 2-tuple linguistic method, we conduct a com-
parative analysis with some previous linguistic decision
making methods, which include the one based on the
uncertain linguistic weighted averaging (ULWA) and the
uncertain linguistic hybrid aggregation (ULHA) operators
[22], the one based on the uncertain linguistic weighted
geometric mean (ULWGM) and the uncertain linguistic
hybrid geometric mean (ULHGM) operators [23], and the
one based on the uncertain linguistic weighted harmonic
mean (ULWHM) and the uncertain linguistic hybrid har-
monic mean (ULHHM) operators [24]. The ranking results
of the six alternatives derived by using these methods are
presented in Table 8. Note that the linguistic term set § =
{sg>$1>--+>S¢} is used for evaluating the alternatives in the
compared methods.

From Table 8, it can be observed that the ranking orders of
the alternatives obtained by the methods of Xu [22] and Wei
[23] are exactly the same as those determined by proposed
approach when the ITND, the ITWD, the ITOWD, the
ITOWED, and the ITOWCD operators are applied. Further,
the ranking of Park et al’s [24] approach is in line with
the proposed method using the ITHWD operator. Thus,
the proposed supplier evaluation and selection method is
validated. However, compared with the listed methods, the
proposed approach using interval 2-tuple linguistic distance
operators is more reasonable and flexible for solving supplier
selection problems because of the following:
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(i) It has exact characteristic in linguistic information
processing and can effectively avoid the loss and
distortion of information in traditional linguistic
computational models.

(ii) The linguistic term sets with different granularity of
uncertainty can be used by decision makers for assess-
ing alternatives. This enables the decision makers to
express their judgments more realistically.

(iii) By using a wide range of distance operators, we can
take different potential situations into consideration
and provide a more complete picture for supplier
evaluation and selection. Thus, it is easier to select the
alternative that better fits the interests of the decision
maker.

6. Conclusions

In this paper, we have developed some interval 2-tuple
linguistic distance operators including the interval 2-tuple
weighted distance (ITWD), the interval 2-tuple ordered
weighted distance (ITOWD), and the interval 2-tuple hybrid
weighted distance ITHWD) operators. These distance oper-
ators are very suitable to deal with the decision information
represented in interval 2-tuple arguments under multigranu-
lar linguistic context. We have given three ways to determine
the associated weighting vectors and studied some desired
properties of the ITOWD operator. Moreover, further gen-
eralizations of the ITOWD operator have been presented by
using the generalized and the quasi-arithmetic means. The
results are the generalized interval 2-tuple ordered weighted
distance (GITOWD) and the quasi-arithmetic interval 2-
tuple ordered weighted distance (Quasi-ITOWD) operators.

The developed interval 2-tuple linguistic distance oper-
ators can be applied in many situations already considered
with the distance measures such as in statistics, economics,
soft computing, and fuzzy set theory. In this paper, we have
applied them to multicriteria group supplier selection with
interval 2-tuple linguistic information. In addition, a case
example from the healthcare industry has been given to verify
the developed method and to demonstrate its practicality and
effectiveness. The results showed that this approach provides
more complete information for decision making because it
can consider a wide range of future scenarios according to
the interests of the decision maker.

In the future, we expect to present further extensions to
the proposed approach by adding new characteristics such as
the use of inducing variables or probabilistic aggregations in
the decision process and consider the potential application of
the developed interval 2-tuple linguistic distance operator to
the problems in other fields.

Competing Interests
The authors declare that there are no competing interests.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (nos. 71402090 and 71671125), the



Mathematical Problems in Engineering

1

TABLE 7: Rankings of the alternative suppliers.
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