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This paper presents space-time kriging within a multi-Gaussian framework for time-series mapping of particulate matter less than
10 𝜇m in aerodynamic diameter (PM

10
) concentration. To account for the spatiotemporal autocorrelation structures of monitoring

data and to model the uncertainties attached to the prediction, conventional multi-Gaussian kriging is extended to the space-time
domain. Multi-Gaussian space-time kriging presented in this paper is based on decomposition of the PM

10
concentrations into

deterministic trend and stochastic residual components. The deterministic trend component is modelled and regionalized using
the temporal elementary functions. For the residual component which is the main target for space-time kriging, spatiotemporal
autocorrelation information is modeled and used for space-time mapping of the residual. The conditional cumulative distribution
functions (ccdfs) are constructed by using the trend and residual components and space-time kriging variance. Then, the PM

10

concentration estimate and conditional variance are empirically obtained from the ccdfs at all locations in the study area. A case
study using the monthly PM

10
concentrations from 2007 to 2011 in the Seoul metropolitan area, Korea, illustrates the applicability

of the presented method. The presented method generated time-series PM
10
concentration mapping results as well as supporting

information for interpretations, and led to better prediction performance, compared to conventional spatial kriging.

1. Introduction

Outdoor air pollution has been known as one of the risk
factors that affect human health directly and/or indirectly [1–
4]. InKorea, it is reported that long-term exposure to ambient
air pollution has a reasonable association with tuberculosis,
cardiovascular diseases, and preterm delivery [5–7]. Thus,
periodic monitoring and management of air pollution are
required for exposure assessment for effective healthmanage-
ment.

In Korea, several air pollutants including particulate mat-
ter less than 10 𝜇m in aerodynamic diameter (PM

10
), sulfur

dioxide (SO
2
), carbon monoxide (CO), nitrogen dioxide

(NO
2
), ozone (O

3
), and particulate matter less than 2.5 𝜇m

in aerodynamic diameter (PM
2.5
) have been periodically col-

lected at several monitoring stations. Based on this real-time
monitoring of air pollution, air quality levels are provided
to the public domain [8]. Due to the few stations, however,

it is very difficult to analyze the spatial characteristics and
spatiotemporal dynamics of air pollutants over a wide study
area during the predefined time interval [9]. To overcome
these difficulties, spatial interpolation or prediction is rou-
tinely applied to the sparse air pollutants observations to
obtain exhaustive concentration values over the study area.

Among various spatial interpolation methods, geostatis-
tical kriging has been widely applied to spatial interpolation
tasks, due to its ability to account for spatial autocorrelation
structures inherent to sample data and to integrate auxiliary
data [10, 11].When kriging is applied for spatial interpolation,
spatial autocorrelation structures are quantified by variogram
which denotes the spatial variability between samples as
a function of distance [10]. If only sparsely sampled data
are available, distinct spatial autocorrelation structures may
not be captured from the sample data. As a result, spa-
tial interpolation results would not show better prediction
performance, compared to other deterministic interpolation
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methods such as inverse distance weighting. If data are
collected at a limited number of locations but continu-
ously in a time domain such as air pollutants, temperature,
and precipitation, temporal autocorrelation informationmay
complement the lack of spatial autocorrelation information
and improve the prediction performance for spatial interpo-
lation tasks. Regarding the processing of this kind of space-
poor but time-rich data, conventional geostatistical kriging,
which was developed for considering spatial autocorrelation
information only, can be extended to space-time kriging
[12]. Space-time kriging or simulation has been applied
to time-series mapping of various environmental variables
such as air pollutants, temperature, and precipitation [13–16].
Despite its great potential for time-series mapping, however,
uncertainties attached to the interpolation have not been
fully accounted for. Most approaches have focused on the
generation and interpretation of spatiotemporal mapping
results. To the author’s knowledge, very few studies have
been conducted using stochastic simulation [14] and local
uncertainty assessment based on space-time kriging that does
not require heavy computational cost is not fully considered.
Recently, Park [17] presented amulti-Gaussian framework for
time-series mapping of environmental variables. As the case
study in [17] was carried out in the very small area, however,
its applicability should be thoroughly investigated.

The main objective of this paper is to present space-
time kriging capable of providing uncertainty assessment
information and time-series mapping of PM

10
concentra-

tions. Within a spatial time-series framework [14, 17], con-
ventional spatial multi-Gaussian kriging is extended to a
space-time domain and its potential is illustrated via a case
study of monthly PM

10
concentration mapping in the Seoul

metropolitan area, Korea.

2. Study Area and Data

A case study was conducted in the Seoul metropolitan area
of Korea which includes 66 provincial districts in Seoul
city, Incheon city, and Gyeonggi province (Figure 1). The
metropolitan area covers approximately 11.78% of the entire
land area of Korea and accounts for 49.07% of the entire
population of Korea, as of 2014 and 2010, respectively [7,
18]. The study area comprised various types of land-covers,
including the large urban areas of Seoul city and Incheon city
located in the central and western parts of the study area, and
the forests and agricultural lands (78.46% of the whole study
area) located in the northern and eastern parts of the study
area.

A monthly PM
10

concentration dataset collected at 94
monitoring stations in the study area from January 2007
to December 2011 (60 months) was downloaded from the
AirKorea website [8] and used for the case study. As shown in
Figure 1, each district in the Seoul metropolitan city includes
one station, but there are very few monitoring stations in
other districts in Gyeonggi province, which comprised nearly
half (47.74%) of the study area. This location information on
the monitoring stations implies that relatively large uncer-
tainties may be attached to the sparsely sampled locations.
Within the administrative boundaries, 500m interval grid

Korea

Gyeonggi province
Seoul city
Incheon city

Figure 1: Locations of the study area and PM
10
monitoring stations

(black dots) with administrative boundaries.
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Figure 2: Work flows for multi-Gaussian space-time kriging pre-
sented in this study.

pointswere generated andPM
10
concentrationsweremapped

at these points. It should be noted that the main purpose
of this case study is to exemplify the analytical procedures
and potential of the geostatistical approach presented in this
paper, not to reveal detailed local characteristics of PM

10

concentrations in the study area.

3. Method

Figure 2 illustrates the entire procedure for the multi-Gaus-
sian spatial time-series approach presented in this paper.

3.1. Multi-Gaussian Spatial Time-Series Approach. The time-
series PM

10
concentration at each observation station

was regarded as spatial time-series data and these spatial
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time-series datasets were modelled as spatially correlated
time-series random function models [14, 17]. Suppose that
{𝑍(u, 𝑡), 𝑡 ∈ 𝑇, u ∈ 𝑆} denotes the spatially indexed time-
series PM

10
concentrations within the discrete time domain

𝑇 and the continuous space domain 𝑆. In geostatistics, the
uncertainty at any unmonitored location is usually modeled
through the conditional cumulative distribution function
(ccdf) which states the probability that the unknown attribute
value does not exceed a certain threshold value 𝑧 [10]. If this
ccdf is extended to a space-time domain, the uncertainty at
a certain location u and time 𝑡 is modeled via the following
ccdf of 𝑍(u, 𝑡):

𝐹
𝑍
(u, 𝑡; 𝑧 | (info)) = Prob {𝑍 (u, 𝑡) ≤ 𝑧 | (info)} , (1)

where “| (info)” denotes conditioning to the local neighbor-
ing data both spatially and temporally.

In this study, multi-Gaussian space-time kriging was
adopted for ccdf modeling as a parametric approach. Under
the assumption that the ccdf at any location u follows a Gaus-
sian or normal distribution, the multi-Gaussian approach
aims to predict the mean and variance, which are the two
parameters that define the Gaussian ccdf [10]. To satisfy
the assumption of a Gaussian ccdf, all monitoring data are
transformed into aGaussian space by normal score transform
[11].Then, the transformed spatial time-series dataset (𝑌) will
follow a standard Gaussian distribution with a mean of 0 and
a standard deviation of 1, and its ccdf is expressed as

𝐹
𝑌
(u, 𝑡; 𝑦 | (info)) = 𝐺[

𝑦 − 𝐸 {𝑌 (u, 𝑡) | (info)}
√Var {𝑌 (u, 𝑡) | (info)}

] , (2)

where 𝐺[ ] is a standard Gaussian cumulative distribution
function. 𝐸{𝑌(u, 𝑡) | (info)} and Var{𝑌(u, 𝑡) | (info)} are
mean and variance values obtained by using the given neigh-
boring data, respectively. These two values, which are
required to define the Gaussian distribution, correspond to
the simple kriging estimate and simple kriging variance,
respectively.

To fully characterize the ccdf in (2), PM
10
concentrations

were modelled by decomposing the data into a deterministic
trend component and a stochastic residual component [14,
17, 19]. The trend component is related to overall PM

10
con-

centration patterns such as seasonal or regional variations.
Meanwhile, the residual component, which is regarded as
a second-order stationary random variable, includes local
variations of PM

10
concentration at a certain time and

location and is the main target of geostatistical analysis. Since
the multi-Gaussian approach was adopted in this study, this
decomposition was applied to the normal score transformed
dataset like

𝑌 (u, 𝑡) = 𝑚
𝐺
(u, 𝑡) + 𝑅

𝐺
(u, 𝑡) , (3)

where 𝑚
𝐺
(u, 𝑡) and 𝑅

𝐺
(u, 𝑡) denote the trend and residual

components in a Gaussian space, respectively.

3.2. Trend ComponentModeling. The trend component in (3)
was modelled by weighted linear combination of elementary

temporal profile functions presented in [14]. Suppose that
𝑌(u
𝛼
, 𝑡
𝛽
) is a normal score transformed PM

10
concentration

at a certain monitoring station during the time period of 60
months (𝛼 = 1, . . . , 94, 𝛽 = 1, . . . , 60). The trend component
at the 𝛼th monitoring station (𝑚

𝐺
(u
𝛼
, 𝑡
𝛽
)) is expressed as

a weighted sum of elementary temporal profile functions.
Many elementary temporal profile functions can be applied
for trendmodeling. For example, periodicity and linear trend
can be accounted for by combining linear and trigonometric
functions. In this study, a spatially averaged time-series set
computed from 94 monitoring stations [14] was used as the
elementary temporal profile function for its simplicity:

𝑚
𝐺
(u
𝛼
, 𝑡
𝛽
) = 𝑎0 (u𝛼) + 𝑎1 (u𝛼) [

1
94

94
∑

𝛼=1
𝑌 (u
𝛼
, 𝑡
𝛽
)] ,

𝛽 = 1, . . . , 60,

(4)

where 𝑎0 and 𝑎1 correspond to the intercept and slope, respec-
tively, in linear regression and are related to the similarity
between a normal score transformed time-series at a certain
monitoring station and the spatially averaged time-series set.

The above two regression coefficients are only available
at monitoring stations after linear regression. Thus, they
should be interpolated at all grid points in the study area
for all time intervals in order to obtain the trend component
distributions. If reasonable correlations are observed between
two coefficients, simple cokriging, which can account for
both the autocorrelation structures of the two coefficients and
the cross-correlation structure between them, can be applied
for spatial interpolation. Otherwise, univariate kriging or
another deterministic interpolationmethod is independently
applied to each coefficient. After regionalization or interpo-
lation of the two coefficients, a trend component over the
study area at each month was obtained by combining the
interpolated coefficients with the spatially averaged time-
series set.

3.3. Residual Component Modeling. The residual compo-
nents, which are regarded as the second-order stationary ran-
dom variable and subject to the main geostatistical analysis,
were modelled via space-time kriging.

Spatiotemporal correlation structures required for the
application of space-time kriging were first quantified via
variogram modeling. The experimental spatiotemporal var-
iogram is defined as

𝛾̂ (h
𝑠
, ℎ
𝑡
) =

1
2𝑁(h

𝑠
, ℎ
𝑡
)

⋅

𝑁(h
𝑠
,ℎ
𝑡
)

∑

𝛼=1
[𝑅 (𝑢
𝛼
, 𝑡
𝛼
) − 𝑅 (𝑢

𝛼
+ h
𝑠
, 𝑡
𝛼
+ ℎ
𝑡
)] ,

(5)

where h
𝑠
and ℎ

𝑡
denote spatial lag distance and temporal

interval, respectively, and 𝑁(h
𝑠
, ℎ
𝑡
) is the number of data

pairs within the class of spatiotemporal lags.
Among various spatiotemporal variogram models, a

product-sum variogram model in [20] was applied to model
the experimental spatiotemporal variogram. The product-
sum variogram model is expressed as the combination of
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marginal spatial and temporal variograms (i.e., purely spatial
variogram and purely temporal variogram) as [20]

𝛾 (h
𝑠
, ℎ
𝑡
) = (𝑘1𝐶𝑠 (0) + 𝑘3) 𝛾𝑡 (ℎ𝑡)

+ (𝑘1𝐶𝑡 (0) + 𝑘2) 𝛾𝑠 (h𝑠)

− 𝑘1𝛾𝑠 (h𝑠) 𝛾𝑡 (ℎ𝑡) ,

(6)

where 𝛾
𝑠
is themarginal spatial variogram and 𝛾

𝑡
themarginal

temporal variogram. 𝐶
𝑠
(0) and 𝐶

𝑡
(0) are the sill values of 𝛾

𝑠

and 𝛾
𝑡
, respectively.

Some parameters in (6) are also defined as [21]

𝑘1 =
[𝐶
𝑠
(0) + 𝐶

𝑡
(0) − 𝐶

𝑠𝑡
(0, 0)]

[𝐶
𝑠
(0) 𝐶
𝑡
(0)]

,

𝑘2 =
[𝐶
𝑠𝑡
(0, 0) − 𝐶

𝑡
(0)]

𝐶
𝑠
(0)

,

𝑘3 =
[𝐶
𝑠𝑡
(0, 0) − 𝐶

𝑠
(0)]

𝐶
𝑡
(0)

,

(7)

where 𝐶
𝑠𝑡
(0, 0) is a sill value of the spatiotemporal variogram

model.
After completion of the spatiotemporal variogram mod-

eling, the residual components at all grid points in the study
area for all time intervals were obtained by a linear combi-
nation of neighboring sample residual values within the pre-
defined spatiotemporal search window via simple space-time
kriging.The simple space-time kriging estimate (𝑟∗

𝐺
(u, 𝑡)) and

variance (𝜎2∗
𝐺
(u, 𝑡)) were computed as

𝑟
∗

𝐺
(u, 𝑡) =

𝑛(u,𝑡)
∑

𝛼=1
𝜆
𝛼
(u, 𝑡) 𝑟

𝐺
(u
𝛼
, 𝑡
𝛼
) ,

𝜎
2∗
𝐺
(u, 𝑡) = 𝐶

𝑠𝑡
(0, 0)

−

𝑛(u,𝑡)
∑

𝛼=1
𝜆
𝛼
(u, 𝑡) 𝐶

𝑠𝑡
(u
𝛼
−u, 𝑡
𝛼
− 𝑡) ,

(8)

where 𝜆
𝛼
(u, 𝑡) is a simple kriging weighting value assigned to

the neighboring sample residuals and 𝐶
𝑠𝑡
(u
𝛼
− 𝑢, 𝑡
𝛼
− 𝑡) is a

spatiotemporal covariance value between the estimation grid
and neighboring sample locations. Since the residuals have a
zero mean value, a constant mean value required for simple
kriging is set to 0 and does not appear in (8).

3.4. ccdf Modeling. The space-time kriging estimate and
variance for the residuals were used for fully characterizing
the ccdf in a Gaussian space in (2). More specifically, the
residual estimate at any grid point was added to the trend
component at the corresponding grid point and then used
as a mean value of the ccdf. Since the trend component was
assumed to be deterministic, the space-time kriging variance
was directly used as the variance value of the ccdf.

The ccdfs at all grid points in the study area were already
fully known after applying the normal score back-transform.
Then, certain statistics could be used as PM

10
concentration

estimates and uncertaintymeasures.The PM
10
concentration

value (𝑧∗(u, 𝑡)) was empirically estimated from the expected
value of the corresponding normal score back-transformed
quantiles in the original space after discretizing the ccdf
with many 𝑝 quantiles (𝑦

𝑝
(u, 𝑡)) in the Gaussian space, as

presented in [22, 23]

𝑧
∗
(u, 𝑡) = 1

100

100
∑

𝛼=1
𝐹
−1
[𝐺 (𝑦
𝑝
(u, 𝑡))] ,

with 𝑝 =
𝑘

100
−

0.5
100

,

(9)

where 𝐹
−1
[𝐺(𝑦
𝑝
(u, 𝑡))] denotes the normal score back-

transformed values of the 𝑝 quantiles in the Gaussian space.
Like the computation of the expected value of the ccdf,

conditional variance (𝜎2∗(u, 𝑡))was also computed using (10)
[23] and used as a measure of uncertainty:

𝜎
2∗
(u, 𝑡) = 1

100

100
∑

𝛼=1
[𝐹
−1
[𝐺 (𝑦
𝑝
(u, 𝑡))] − 𝑧∗ (u, 𝑡)]

2
,

with 𝑝 =
𝑘

100
−

0.5
100

.

(10)

Unlike kriging variance that provides only the proximity
from the sample data, conditional variance can provide
information on the spread of the conditional probability
distribution function or the steepness of the ccdf and thus
can be used as a quantitative measure of the uncertainty. The
larger the conditional variance, the greater the uncertainty
attached to the prediction.

In addition to the computation of PM
10

concentration
estimates and uncertainty measures from the ccdf, a prob-
ability of exceeding a certain critical concentration level
can be easily computed. Based on this probability and the
PM
10
concentration estimates, misclassification risks, which

are associated with the classification of the study areas into
hazardous and safe classes, can be computed and then used
for decision supporting information.

Two misclassification risks 𝛼 and 𝛽 were considered
in this study. Risk 𝛼, which is the probability of wrongly
classifying any location u as hazardous (i.e., false positive),
is defined as [10]

𝛼 (u, 𝑡) = Prob {𝑍 (u, 𝑡) ≤ 𝑧
𝑘
| 𝑧
∗
(u, 𝑡) > 𝑧

𝑘
}

= 𝐹
𝑍
(u, 𝑡; 𝑧

𝑘
| (info)) ,

(11)

where 𝑧
𝑘
is a critical PM

10
concentration level.

Risk 𝛽, which is a probability of wrongly classifying any
location u as safe (i.e., false negative), is given as [10]

𝛽 (u, 𝑡) = Prob {𝑍 (u, 𝑡) > 𝑧
𝑘
| 𝑧
∗
(u, 𝑡) ≤ 𝑧

𝑘
}

= 1−𝐹
𝑍
(u, 𝑡; 𝑧

𝑘
| (info)) .

(12)

3.5. Validation. The prediction performance of multi-Gaus-
sian space-time kriging was quantitatively evaluated by leave-
one-out cross validation since kriging is an exact interpolator.
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Figure 3: Spatially averaged time-series of normal score trans-
formed monthly PM

10
concentrations. Month 1 corresponds to

January 2007 and Month 60 to December, 2011.

After one monitoring station was temporarily eliminated,
kriging using the remaining stationswas conducted to predict
the PM

10
concentration at the eliminatedmonitoring station.

This procedure was repeated for all monitoring stations.Then
the prediction performance was quantified using the linear
correlation coefficient between the true PM

10
concentration

and the mean absolute error (MAE).

4. Results and Discussion

4.1. Trend ComponentModeling Result. After preparing time-
series PM

10
concentration datasets, normal score transform

was first applied using GSLIB [11]. Figure 3 shows a spatially
averaged time-series that was computed from normal score
transformedPM

10
concentrations and used as the elementary

temporal profile function. During the 5-year period from
2007 to 2011, a decreasing pattern was observed fromApril to
August, but the increase in PM

10
concentration commenced

in fall and continued to winter. However, the winter PM
10

concentration exhibited a different pattern each year. This
overall pattern may be related to yellow dust in spring
and meteorological factors such as wind, relative humidity,
and precipitation. In winter and spring, the relatively stable
atmospheric condition with high relative humidity and yel-
low dust contributes to the increase in PM

10
concentration,

respectively; meanwhile, the low PM
10

concentration in
summer is due to the washout effect by precipitation, as
reported in previous studies [24, 25].

Regression between the spatially averaged time-series
set and the time-series set at each monitoring station was
conducted and two regression coefficients are presented in
Figure 4. If the intercept and slope values approach zero and
one, respectively, the time-series at the monitoring station is
very similar to the spatially averaged time-series set. The dif-
ferent similarities at themonitoring stations led to differences
of trend components, and hence the residual components,
which are the main targets of space-time kriging, also varied
across the study area.
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Figure 4: Two coefficients of local temporal trend components at
monitoring stations: (a) intercept and (b) slope.

The next step for the regionalization or estimation of
trend components at unmonitored locations was to inter-
polate the intercept and slope values in Figure 4. The linear
correlation coefficient between the two coefficients at 94
monitoring stations was very low (−0.08), so an independent
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Figure 5: Marginal experimental variograms with the fitted model: (a) spatial variogram and (b) temporal variogram. Experimental
spatiotemporal variogram surface of the residuals is shown in (c).

univariate ordinary kriging was applied to the two coeffi-
cients. By combining the interpolated regression coefficients
with the spatially averaged time-series set in Figure 3, the
trend components during the considered time period were
retrieved and used for ccdf modeling.

4.2. Residual Component Modeling Result. After computing
trend components at each monitoring station, the resid-
ual components that could not be explained by the trend
components were computed at each monitoring station. The
modified Fortran routines of De Cesare et al. [21] were used
to compute the experimental spatiotemporal variogram. The
marginal spatial and temporal experimental variograms of
the residuals with the fitted models are given in Figures
5(a) and 5(b), respectively. The marginal spatial variogram

(Figure 5(a)) showed large relative nugget effects, but a rea-
sonable temporal autocorrelation structure with an effective
range of about 7 months was observed in the marginal
temporal variogram (Figure 5(b)). This result implies that
to account for temporal autocorrelation information during
the interpolation could improve prediction performance,
compared to the interpolation case with only spatial autocor-
relation information. Figure 5(c) presents the experimental
spatiotemporal variogram surface of the residuals. From this
figure, the spatiotemporal variogram model, which satisfies
the constraints in (8), was finally estimated and then used as
an input variogrammodel for space-time kriging. Space-time
kriging was applied to obtain the residuals at all grid points in
the study area by using the spatiotemporal variogram model
of the residuals. The Edinburgh space-time geostatistics
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Figure 6: PM
10
concentration for (a) April 2009 and (b) August 2009.

Fortran program [26] was used to implement space-time
kriging of the residuals.

4.3. PM
10

Concentration Mapping and Uncertainty Analy-
sis Results. The simple space-time kriging estimate of the
residuals was added to the interpolated trend components
and then used as a mean value for the Gaussian ccdf at all
locations. The simple space-time kriging variance was also
used as the variance of the Gaussian ccdf, as in (2). After
constructing ccdfs at all locations, the PM

10
concentration

estimate and conditional variance were computed using (9)
and (10), respectively. All postprocessing was implemented
by Fortran programming and ArcGIS was used for visualiza-
tion.

Only the PM
10

concentration mapping results for two
months in 2011 are given in Figure 6, due to space limitation.
The PM

10
concentration in April was much higher than

that in August due to less precipitation and yellow dust
transported to Korea by prevailing westerly winds in April. In
April, relatively high PM

10
concentrations were observed in

northern Incheon, Dongducheon, Pyeongtaek, and Gwangju
due to the large concentrations either at the monitoring
stations in those cities or at the nearby monitoring stations.
The PM

10
concentration in August was relatively high in the

northern Incheon,Gimpo,Dongducheon,Hwaseong, Seong-
nam, Gwangju, and northern Icheon. In both months, the
northern Incheon, Dongducheon, and Gwangju showed rel-
atively high concentrations, but low concentrations were
observed in Seoul city.

The spatial distribution of conditional variance that mea-
sures the uncertainty for prediction is given in Figure 7. A
large conditional variance was observed in some concentra-
tion areas (e.g., northern Incheon and Pyeongtaek in April
and Gimpo in August, resp.) where the PM

10
concentra-

tion values at monitoring stations fluctuated greatly both
temporally and spatially. Some areas with very few or even
no monitoring showed relatively large conditional variance
which is similar to conventional kriging variance.This uncer-
tainty statistic revealed that the conditional variance, which
provides information on both the sample variations and the
sample configuration, can be used as supporting information
to interpret the PM

10
concentration mapping result.

To generate misclassification risk maps, the probability
of exceeding a certain threshold value was first mapped.
The atmospheric environmental standard in Korea is defined
only for an annual average (25 𝜇m/m3) or a 24-hour average
(100 𝜇m/m3) [8]. Thus, it is not feasible to directly use the
atmospheric environmental stand value as the threshold,
since the monthly PM

10
concentration was considered in

this study. Since the ccdfs were established at all locations in
the study area, a variety of probability maps could easily be
generated by applying different threshold values. For an illus-
tration purpose, the PM

10
concentration of 80𝜇m/m3 was

used as the threshold. By combining the classification result
with the exceeding probability using a PM

10
concentration

of 80𝜇m/m3 as the critical threshold, the risk 𝛼 and risk 𝛽

maps were generated, as shown in Figure 8. By definition,
risk 𝛼 is only mapped where the PM

10
concentration exceeds
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Figure 7: Conditional variance for (a) April 2009 and (b) August 2009.

0 10 20 30 405

(km)N

126∘30󳰀0󳰀󳰀E 127∘0󳰀0󳰀󳰀E 127∘30󳰀0󳰀󳰀E

3
8
∘
0
󳰀 0

󳰀󳰀
N

3
7
∘
3
0
󳰀 0

󳰀󳰀
N

3
7
∘
0
󳰀 0

󳰀󳰀
N

0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6

0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

(a)

0 10 20 30 405

(km)N

126∘30󳰀0󳰀󳰀E 127∘0󳰀0󳰀󳰀E 127∘30󳰀0󳰀󳰀E

3
8
∘
0
󳰀 0

󳰀󳰀
N

3
7
∘
3
0
󳰀 0

󳰀󳰀
N

3
7
∘
0
󳰀 0

󳰀󳰀
N

0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6

0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

(b)

Figure 8: Risk associated with the classification of areas where the PM
10
concentration exceeds 80 𝜇g/m3 in April 2009: (a) risk 𝛼 and (b)

risk 𝛽.
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Figure 9: Scatter-plots with error statistics from leave-one-out cross validation: (a) spatial ordinary kriging and (b) space-time kriging.

the predefined threshold. On the contrary, risk 𝛽 is defined
where risk 𝛼 is not mapped. In the risk 𝛼map in Figure 8(a),
the false positive probability is relatively low (i.e., less than
0.3), but not negligible. The risk 𝛽 map in Figure 8(b) shows
very large variations of the false negative probability, which
is greater than 0.7 in the northern part of the study area
including Pocheon and Yeoncheon. A large misclassification
risk 𝛽 was also found around the areas that are classified
as hazardous (i.e., exceeding the PM

10
concentration of

80 𝜇m/m3). Although choosing proper probability thresholds
is difficult or subjective, these misclassification risk maps,
which cannot be provided by deterministic interpolation
methods or kriging algorithmswithout ccdfmodeling, can be
useful information for further decision-making or interpre-
tations. For example, the areas showing highmisclassification
risk values can be considered as candidates for further
monitoring or in-depth investigations.

4.4. Validation Results. To quantitatively evaluate the predic-
tion performance of space-time kriging, leave-one-out cross
validation was carried out and error statistics such as the
linear correlation coefficient with the true values and MAE
were computed. Spatial ordinary kriging, which considers
only spatial autocorrelation information, was also applied for
comparison purpose.

Figure 9 presents the scatter-plots with error statistics
computed from leave-one-out cross validation. Although the
underestimation of high values and overestimation of low
values were observed in both results, this mismatch arising
from the smoothing effects of krigingwas relativelyweakened
in the validation result of space-time kriging. The linear
correlation coefficients for space-time kriging and spatial
ordinary kriging were 0.92 and 0.87, respectively. Space-time
kriging also showed an improvement of 13.23% in MAE,
compared to that of spatial ordinary kriging. Similar to
the previous case study result in Park [17], these quantita-
tive evaluation results confirmed that the incorporation of
temporal autocorrelation information via space-time kriging
improved the prediction performance and generated reliable
mapping results for space-poor and time-rich data such as
PM
10
concentrations.

5. Conclusions

A geostatistical approach based on spatiotemporal multi-
Gaussian kriging was presented for time-series mapping
of PM

10
concentrations. Unlike conventional space-time

kriging and spatial kriging, which provide the estimate and
kriging variance only, the presented approach generated rich
interpretable by-products as well as the PM

10
estimates.

From a case study in the Seoul metropolitan area of Korea,
multi-Gaussian space-time kriging accounted for temporal
autocorrelation information as well as spatial autocorrelation
information and generated reliable mapping results that out-
performed those of conventional spatial kriging. In addition,
the presented approach produced uncertainty measures and
misclassification risks from the ccdf modeling that are useful
for interpretation or decision-making.

To strengthen the major findings of this study, several
outstanding issues should be addressed in future work. First,
several auxiliary variables such as the proximity to major
roads and weather data will be integrated within the frame-
work of the present study in order to generate much more
reliable PM

10
concentration mapping results. In relation to

uncertainty modeling, the multi-Gaussian approach adopted
herein may not be appropriate for datasets with a strong
positively skewed distribution which may be often observed
in air pollutant concentrations. Thus, the extension of the
conventional spatial indicator approach [10, 11] to the space-
time domain and the comparison with the multi-Gaussian
approach presented herein will also be included in future
work.
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