
Editorial
Mathematical Aspects of Meshless Methods

Yumin Cheng,1 Wenqing Wang,2 Miaojuan Peng,3 and Zan Zhang4

1 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
2Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
3Department of Civil Engineering, Shanghai University, Shanghai 200072, China
4 School of Science, East China University of Science and Technology, Shanghai 200237, China

Correspondence should be addressed to Yumin Cheng; ymcheng@shu.edu.cn

Received 28 May 2014; Accepted 28 May 2014; Published 5 June 2014

Copyright © 2014 Yumin Cheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different from the conventional numerical methods, such as
finite element method (FEM) and boundary element method
(BEM), the meshless method is an approximation based on
the nodes in the domain and it does not require a mesh to
connect nodes for the solution of a problem. The meshless
method can be applied to solvemany complicated science and
engineering problems, such as extremely large deformation
and crack growth problems, which are not suitable to be
solved by the conventional numerical methods [1].

The meshless method has been developed rapidly in
recent 20 years. The development yields different types of
meshless method, such as smoothed particle hydrodynamics
(SPH) method [2], diffuse element method (DEM) [3],
element-free Galerkin (EFG) method [4, 5], reproducing
kernel particle method (RKPM) [6, 7], radial basis function
(RBF) method [8, 9], finite point method (FPM) [10], mesh-
less local Petrov-Galerkin (MLPG) method [11], complex
variable element-free Galerkin (CVEFG) method [12–14],
meshless manifold method [15, 16], mesh-free reproducing
kernel particle Ritz method [17], boundary element-free
method (BEFM) [18–20], local boundary integral equation
(LBIE) method [21, 22], boundary node method (BNM) [23],
and some others may not be mentioned here.

For a numerical method, the corresponding mathemati-
cal theory is very important. Without a decent mathematical
theory background, the numerical method cannot be devel-
oped further. Formanymeshlessmethods, the corresponding
mathematical theories are more complicated than that of

the FEM and BEM due to its complicated shape functions.
Except the radial basis function method, a few papers are
published for the mathematical theories of other meshless
methods, especially the EFG method, the RKPM, and the
MLPGmethod, which have been studied and applied inmany
fields of science and engineering.

Levin obtained the error estimates of the moving least-
squares (MLS) approximation in the uniform norm of a
regular function in high dimensions [24]. Under appropriate
hypotheses on the weight function and the distribution of
nodes, Armentano obtained the error estimates of the MLS
approximation in one-dimensional case [25]. Zuppa also
obtained error estimates for the MLS approximation and its
derivatives by introducing condition numbers of the star of
nodes in the normal equation [26]. R. Cheng and Y. Cheng
studied the error estimates of the MLS approximation in
multiple dimensions of Sobolev space [27]. And Li and Zhu
also studied the error estimates of the MLS approximation
for one-dimensional problems in Sobolev space [28]. Ren
et al. discussed the complex variable interpolating moving
least-squares method and the interpolating property [29].
Gavete et al. [30] and Rossi and Alves [31] studied the error
estimates of the EFG method based on the MLS approxima-
tion. Moreover, R.-J. Cheng and Y.-M. Cheng discussed the
error estimates of the EFGmethod for potential and elasticity
problems [32, 33].

This special issue particularly takes an interest in
manuscripts that report relevance of meshless methods in
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theory and applications. The special issue is published to
summarize the most recent developments in meshless meth-
ods within the last five years, and it especially focuses on
new methods and their corresponding mathematical theo-
ries. Moreover, the articles on the applications of meshless
methods for solving complicated engineering problems are
also included. Topics that have been addressed in this special
issue cover

(i) mathematical theories of meshless methods,
(ii) approximation function of new meshless methods,
(iii) improvements of meshless methods,
(iv) simulations for complicated engineering problems.

About 20 manuscripts were submitted to this special
issue for review, in which 14 manuscripts were accepted for
publication, 5manuscripts were rejected, and onemanuscript
was withdrawn by the corresponding author because of some
mistakes found by the author himself.

In the article titled “The error estimates of the interpolating
element-free Galerkin method for two-point boundary value
problems” by J. F. Wang et al., a simpler formula of the shape
function of the interpolating moving least-squares (IMLS)
method is obtained.Then based on the IMLSmethod and the
Galerkin weak form, an interpolating element-free Galerkin
(IEFG) method for two-point boundary value problems is
presented. And the IEFG method has high computing speed
and precision.The error analysis of the IEFGmethod for two-
point boundary value problems is given.And the convergence
rates of the numerical solution and its derivatives of the IEFG
method are discussed.

In the article titled “The interpolating boundary element-
free method for unilateral problems arising in variational
inequalities” by F. Li and X. Li, the interpolating boundary
element-free method (IBEFM) is developed for boundary-
only analysis of unilateral problems. The IBEFM is a
direct boundary-only meshless method that combines the
improved IMLS method with boundary integral equations
(BIE) [34]. And the convergence of the IBEFM is discussed
mathematically.

The article titled “A modified SPH method for dynamic
failure simulation of heterogeneous material” by G. W. Ma
et al. is the application of the modified SPH method. An
elastoplastic damage model based on an extension form of
the unified twin shear strength criterion is adopted; poly-
crystalline modeling is introduced to generate the artificial
microstructure of specimen for the dynamic simulation of
Brazilian splitting test and uniaxial compression test, and
the strain rate effect on the predicted dynamic tensile and
compressive strength is discussed. The final failure patterns
and the dynamic strength increments demonstrate good
agreements with experimental results.

The article titled “Stress intensity factor for interface
cracks in bimaterials using complex variable meshless manifold
method” by H. Gao and G. Wei is the application of the
complex variable meshless manifold method (CVMMM)
to interface cracks between dissimilar materials. A discon-
tinuous function and the near-tip asymptotic displacement
functions are introduced into the complex variable moving

least-squares (CVMLS) approximation, which is used to
obtain the shape function. Numerical examples of bimaterial
interfacial cracks are solved with the CVMMM to obtain the
complex stress intensity factors.

In the article titled “Particle discrete method based on
manifold cover for crack propagation of jointed rock mass”
by Y. Ping et al., based on the particle contact model and
the concept of manifold cover, the manifold particle discrete
(MPD) method is presented. The MPD method can easily
simulate the crack generation, propagation, and coalescence
of jointed rock mass.

In the article titled “The incremental hybrid natural
element method for elastoplasticity problems” by Y. Ma et
al., an incremental hybrid natural element method (HNEM)
is proposed. By introducing the concept of the hybrid
stress element into the natural element method and using
the incremental Hellinger-Reissner variational principle to
obtain the system equations, the corresponding formulae of
the HNEM for elastoplasticity problems are obtained. In the
HNEM, the stress and displacement at each node can be
obtained directly. Numerical examples are given to show that
the solutions of the HNEM for the elastoplastic problems
have higher precision than those of the NEM.

In the article titled “Geometric nonlinear meshless analysis
of ribbed rectangular plates based on the FSDT and the moving
least-squares approximation” by L. X. Peng et al., the plate
and the ribs are considered separately, the approximation
functions of the displacement, the stress and strain of the plate
and the ribs are obtained using the MLS approximation, the
virtual strain energy formulation of the plate and the ribs are
derived separately, and the nonlinear equilibrium equation of
the entire ribbed plate is given by the virtual work principle.

In the article titled “Analysis of the boundary knot method
for 3D Helmholtz-type equation” by F. Z. Wang and K. H.
Zheng, the regularization techniques and the effective con-
dition number are introduced into boundary knot method
(BKM) for the 3D Helmholtz-type problems to obtain the
stable and convergent solutions. Numerical examples con-
sidering noisy and noise-free boundary conditions are given
to show that the BKM in this article can obtain the stable
numerical solutions.

In the article titled “The application of mesh-free method
in the numerical simulation of beams with the size effect”
by Y. Tian et al., the MLS approximation is used to con-
struct the shape function, the intrinsic bulk length and the
directional surface length components are introduced into
the constitutive relationship to describe the size effect, and
the variation of the total potential is provided to obtain the
system equations. In the meshless method, the higher-order
strains are directly approximated with the nodal components
due to the higher-order continuity of the shape function.The
convergence of the method is illustrated, and the effects of
the intrinsic bulk length and the directional surface length
components are studied.

In the article titled “The interpolating element-free Gal-
erkin method for 2D transient heat conduction problems” by
N. Zhao and H. Ren, the shape function is constructed by
the IMLS method, and Galerkin weak form is used to obtain
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the system equations, and then the interpolating element-
free Galerkin (IEFG) method for transient heat conduction
problems is presented. The advantage of the IEFG method is
that the essential boundary conditions can be applied directly.

In the article titled “The improved moving least-square
Ritz method for the one-dimensional sine-Gordon equation”
by Q. Wei and R. Cheng, the improved moving least-square
approximation is employed to obtain the shape function of
the 1D displacement field. The discrete system equations are
obtained with the Ritz minimization procedure. Numerical
examples of the sine-Gordon equation are solved to show the
effectiveness and accuracy of the method in this article.

In the article titled “An improved interpolating element-
free Galerkin method based on nonsingular weight functions”
by F. X. Sun et al., an improved interpolating moving
least-squares (IIMLS) method based on nonsingular weight
functions is discussed first. In the IIMLS method, the shape
function satisfies the property of Kronecker 𝛿 function.
Using the IIMLS method to obtain the shape function,
an improved interpolating element-free Galerkin (IIEFG)
method is presented for two-dimensional potential problems.
In the IIEFG method, the essential boundary conditions are
applied directly, and the number of unknown coefficients
in the trial function of the IIMLS method is less than that
of the MLS approximation, and then, under the same node
distribution, the IIEFG method has higher computational
precision than the EFG method and the IEFG method based
on the singular weight functions.

In the article titled “A highly accurate regular domain col-
location method for solving potential problems in the irregular
doubly connected domains” by Z.-Q. Wang et al., a highly
accurate regular domain collocationmethod is proposed.The
formulae of the method are constructed by using barycentric
Lagrange interpolation collocation method in the regular
domain in polar coordinate system. Some numerical exam-
ples are given to demonstrate the effectiveness and accuracy
of the method in this article.

The article titled “Eigenstrain boundary integral equations
with local Eshelby matrix for stress analysis of ellipsoidal
particles” by H. Ma et al. is for the large scale numerical
simulation of particle reinforced materials. The concept of
local Eshelby matrix is introduced into the computational
model of the eigenstrain BIE to solve the problem of interac-
tions among particles. Three-dimensional stress analyses are
carried out for some ellipsoidal particles with various Young’s
modulus ratios and different shapes to verify the feasibility
and efficiency of the improved eigenstrain BIE algorithm.

Acknowledgments

We thank all authors for their new research work submitted
to this special issue ofmathematical problems in engineering.
And we are also very grateful to the reviewers for their
professional comments for the manuscripts.

Yumin Cheng
Wenqing Wang
Miaojuan Peng

Zan Zhang

References

[1] D. M. Li, K. M. Liew, and Y. M. Cheng, “An improved complex
variable element-free Galerkin method for two-dimensional
large deformation elastoplasticity problems,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 269, pp. 72–86,
2014.

[2] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrody-
namics: theory and allocation to non-spherical stars,” Monthly
Notices of the Royal Astronomical Society, vol. 181, pp. 375–389,
1977.

[3] B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite
element method: diffuse approximation and diffuse elements,”
Computational Mechanics, vol. 10, no. 5, pp. 307–318, 1992.

[4] T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin
methods,” International Journal for Numerical Methods in Engi-
neering, vol. 37, no. 2, pp. 229–256, 1994.

[5] Z. Zhang, J. Wang, Y. Cheng, and K. M. Liew, “The improved
element-free Galerkin method for three-dimensional transient
heat conduction problems,” Science China Physics, Mechanics
and Astronomy, vol. 56, no. 8, pp. 1568–1580, 2013.

[6] W. K. Liu, S. Jun, and Y. F. Zhang, “Reproducing kernel
particle methods,” International Journal for Numerical Metheds
in Engineering, vol. 20, no. 8-9, pp. 1081–1106, 1995.

[7] L. Chen and Y. M. Cheng, “The complex variable reproducing
kernel particle method for elasto-plasticity problems,” Science
China Physics, Mechanics and Astronomy, vol. 53, no. 5, pp. 954–
965, 2010.

[8] Z.-M. Wu and R. Schaback, “Local error estimates for radial
basis function interpolation of scattered data,” IMA Journal of
Numerical Analysis, vol. 13, no. 1, pp. 13–27, 1993.

[9] B.-D. Dai and Y.-M. Cheng, “Local boundary integral equation
method based on radial basis functions for potential problems,”
Acta Physica Sinica, vol. 56, no. 2, pp. 597–603, 2007.
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