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For displaying high-dynamic-range images acquired by thermal camera systems, 14-bit raw infrared data shouldmap into 8-bit gray
values. This paper presents a new method for detail enhancement of infrared images to display the image with a relatively satisfied
contrast and brightness, rich detail information, and no artifacts caused by the image processing.We first adopt a propagated image
filter to smooth the input image and separate the image into the base layer and the detail layer.Then, we refine the base layer by using
modified histogram projection for compressing. Meanwhile, the adaptive weights derived from the layer decomposition processing
are used as the strict gain control for the detail layer. The final display result is obtained by recombining the two modified layers.
Experimental results on both cooled and uncooled infrared data verify that the proposed method outperforms the method based
on log-power histogram modification and bilateral filter-based detail enhancement in both detail enhancement and visual effect.

1. Introduction

For producing raw infrared data with a wide dynamic
range, the high-quality infrared cameras accommodate the
temperature range about 50K, and the thermal detector used
can catch the temperature difference within 0.01 K. Normally,
the uncooled infrared detector acquires 14-bit data, while a
human observer can distinguish only about 128 levels of gray
in an image [1]. In addition, the display device can present an
image with only 256 levels of gray (8 bits). Consequently, data
compression and enhancement lead to infrared image display.
Considering the fact that a fine infrared image should trade
off between high contrast for human observers and rich detail
without artifacts, diverse methods on contrast enhancement
while keeping some constraints are presented in some related
literature [2–5].

From the point of range mapping, infrared image con-
trast enhancement is a process of high-dynamic-range com-
pressing, and the mapping function determines the final
image display performance via contrast/brightness adjust-
ment. Recently, plenty of work is devoted to designing the
mapping function directly or indirectly. However, most of the
work is devoted to refining the contrast of the gray image
which is converted from 14-bit data to 8-bit data [6–10]. In

their work, the performance is presented by using only two
infrared data examples which is not persuasive due to the
complex distribution of the raw infrared data. The first step
in their work is the process of min-max mapping (linear
mapping the minimum to 0 and the maximum to 255) that
leads to great trouble which is analyzed in Section 3.

As for infrared image enhancement, automatic gain
control- (AGC-) and histogram equalization- (HE-) based
methods [11–14] are the representatives of linearmapping and
nonlinear mapping. AGC method removes extreme values
(e.g., 2% minimum and maximum of the total pixel number)
and linearly maps the middle range of values onto an 8-
bit domain for display. Histogram equalization normalizes
the intensity distribution by using its cumulative distribution
function to make the output image tend to have a uniform
distribution of intensity. AGC method is more likely to be
data-compressing and keep the differences of the pixel values
while HE-based methods increase the contrast obviously by
stretching the background and compressing the detail. As
for visible optical images, He-based methods increase the
contrast out of control that may make the image loss detail
or other artifacts [11]. The same thing happens to infrared
image. To overcome this disadvantage, plateau histogram
equalization (pHE) [12] has been proposed to display infrared

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 9410368, 12 pages
http://dx.doi.org/10.1155/2016/9410368



2 Mathematical Problems in Engineering

Decomposition

Base layer

Weight control

Detail layer

Histogram projection

Rearrange

Figure 1: Flow chart of the proposed method on detail enhancement for infrared image.

images by modifying the histogram with a plateau threshold
value to suppress the enhancement of background. Both
AGC and (p)HE mentioned treat the pixels of the image
globally. For detail enhancement or contrast enhancement
locally, adaptive histogram equalization (AHE) [13] adopts
the neighbors’ information of a given pixel to determine
the mapping for that pixel. The satisfied performance for
AHE is ensured by using linear interpolation. Then, a
generalization of AHE, contrast limited AHE (CLAHE)
[14], refines the performance of modified histogram by
computing the clipping level of the histogram. In addi-
tion, linear transformed histogrammodification outperforms
the HE-based methods for infrared image enhancement
[15].

From the point of effeteness for operating on the hard-
ware and display performance,HE-basedmethods stretch the
raw infrared data more strongly than AGC, and pHE refines
the performance more than HE in some scenes; however the
plateau value is difficult to determine and the adaptive plateau
value in some work cannot solve this problem effectively. In
addition, these HE-based methods only adopt the histogram
to determine the mapping function, and histogram itself is
an information-loss feature description. As for the local HE-
based methods, there are two drawbacks. On the one hand,
modified histogram is hand-designed and equalization also
introduces noise; on the other hand, refinement relies on
linear interpolation between one window and another, and
this is awkward for hardware implementation.

Recently, infrared image enhancement turns the attention
to the detail information enrichment for image display.
Bilateral filter and dynamic range partitioning (BF&DRP)
proposed by Branchitta et al. [16] outperforms the traditional
contrast enhancement for infrared image display. In BF&DRP
method, bilateral filter is adopted to separate the detail layer
from the base layer, and then the two layers are handled,
respectively. At last, the two layers are recombined for the
final display. However, it sometimes produces severe gradient
reversal artifacts and highlights the noise in flat regions. To
refine the performance, Zuo et al. [17] present a new method
on detail enhancement for high-dynamic-range compressing.
In Zuo’s work, bilateral filter is also adopted to decompose the
raw data into two layers. With the two layers, it compresses
the base layer and adds the adaptive weighted detail layer
and rearranges to the 8-bit domain for display. Compared
with Branchitta’s work [16], the great contribution of Zuo’s
work [17] is removal of gradient reversal artifacts by using the
Gaussian filter.

Compared with the BF&DRP method, Zuo’s work
decreases the gradient reversal artifacts by blurring the
base layer obtained via bilateral filtering. Totally, Zuo’s work
decomposes the image into two layers; though it refines the
base layer for removing artifacts, the base layer derived by
BF may lead to cross-region mixing (discussed in the next
section) and degrade the detail layer. In this work, a new
image filter is adopted to generate the base layer and detail
layer. Different from the BF used layer decomposition, no
cross-region mixing happens to the detail layer. In addition,
the gain control for the detail layer depends on the weight
computed in the filtering process, and the propagated image
filter [18] used in this work outperforms BF used in RBF-
based method on detail enhancement. Experiment on raw
infrared data captured in different scenes verifies the pro-
posedmethod.Theproposedmethod is visualized in Figure 1.

This work is organized as follows: the implementation
of the proposed method is presented in Section 2. Section 3
presents the experiment on the infrared data and discusses
the experiment results to show the performance of the
proposed method. Section 4 is the conclusion.

2. Implementation of the Proposed Method

As for the related work on detail enhancement for infrared
image, the normal procedure is decomposing the raw infrared
data into two layers, the base layer and detail layer, by using
an edge-preserving filter [19]:

𝐼 = 𝐵 + 𝐷

s.t. 𝑓 (𝐼) = 𝐵.
(1)

For obtaining the two layers, we can filter the raw data
𝐼 and compute the difference between the raw data 𝐼 and the
base layer𝐵. Hence, the detail-enhanced image can be derived
from the mixed data 𝐼󸀠:

𝐼
󸀠
= 𝐵
󸀠
+ 𝑔 ∗ 𝐷

󸀠
, (2)

where 𝐵󸀠 and𝐷󸀠 are the refined layers and 𝑔 is the gain factor
to control the degree of the detail enhancement; the bigger
the value of 𝑔 is, the stronger the detail presence in the final
image is. The following subsections present the details of the
proposed method.

2.1. Propagated Image Filtering for Base Layer. As discussed
above, the base layer can be acquired by filtering the raw data.
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In the related work, bilateral filter (BF) [20] is used as the
default filtering to smooth the raw data, while preserving the
edge well. BF computes the value for pixel 𝑠 as follows:

𝐼
󸀠

𝑠
=

1

𝑍
𝑠

∑

𝑡∈Ω
𝑠

𝐺 (𝑏𝑓 (𝑠, 𝑡) ; 𝜎
𝑠
) ⋅ 𝐺 (𝑏𝑓 (𝐼

𝑠
, 𝐼
𝑡
) ; 𝜎
𝑟
) ⋅ 𝐼
𝑡
. (3)

In the formulation above, 𝐼󸀠
𝑠
is the output of the pixel 𝑠,

𝑍
𝑠
is the normalization term, 𝑡 ∈ Ω

𝑠
is the neighborhood of

the pixel 𝑠, 𝐺(𝑋; 𝜎) is the Gaussian probability with variance
𝜎
2, and 𝑏𝑓(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ is the distance metric, where
𝑏𝑓(𝑠, 𝑡) is the spatial distance and 𝑏𝑓(𝐼

𝑠
, 𝐼
𝑡
) is the photometric

distance. Most of the filters like BF finish the filtering task
by computing the weights for the pixels. As for BF, the term
𝐺(𝑏𝑓(𝑠, 𝑡); 𝜎

𝑠
) ⋅ 𝐺(𝑏𝑓(𝐼

𝑠
, 𝐼
𝑡
); 𝜎
𝑟
) is the weight of the pixel 𝑡 to

reconstruct the value of 𝑠.
Combining the spatial information and intensity rela-

tionship, BF is always used as an effective filtering tool
for edge preservation. However, cross-region mixing is a
typical problem for existing filters when performing image
processing tasks like denoising or smoothing. For instance,
although bilateral filter involves the photometric distances
between pixels into generating the filter weights, their use
of explicit spatial filtering kernels would inevitably assign
weights to pixels across image regions.

Based on the observation above, the propagated image
filtering is presented in [18] to solve the cross-region mixing
problem. In this paper, for obtaining a smooth base layer
without texture mixing, we adopt the propagated image filter
which does not use the explicit spatial kernel information.We
first briefly introduce the propagated image filter and then
refine it for computation in this work. Then we turn back to
the filtering formulation:

𝐼
󸀠

𝑠
= ∑𝑤

𝑠,𝑡
⋅ 𝐼
𝑡
. (4)

In (4), 𝑤
𝑠,𝑡

is the weight of the pixel 𝑡 for reconstructing
the pixel 𝑠. As presented in [18], the weight is computed by

𝑤
𝑠,𝑡
= 𝑤
𝑠,𝑡−1

∗ 𝐷 (𝑡 − 1, 𝑡) ∗ 𝑅 (𝑠, 𝑡) , (5)

where 𝐷(𝑥, 𝑦) is denoted as the adjacent photometric rela-
tionship between pixels 𝑡 and 𝑠; suppose that the probability
value of the two adjacent pixels is photometric related and
proportional to the value of a Gaussian function of their pixel
value difference. In the same way, 𝑅(𝑠, 𝑡) is measured as the
adjacent photometric relationship between 𝑠 and 𝑡:

𝐷(𝑥, 𝑦) = 𝑒
−‖𝐼
𝑥
−𝐼
𝑦
‖
2

/2𝜎
2

,

𝑅 (𝑥, 𝑦) = 𝑒
−‖𝐼
𝑥
−𝐼
𝑦
‖
2

/2𝜎
2

.

(6)

Intuitively, the weight is determined by each pixel in the
connected path; if one pixel is little related to the central
pixel, the pixel in the end of the path is also little related to
the central pixel. This constraint ensures that two different
texture regions do not mix with each other. In a window, the
real pixels which are taken into account for constructing the
central pixel form a path tree.

Hence, this work adopts the propagated image filter for
generating the base layer. But the original propagated image
filter calculates the weights across each pixel in the neighbor
region. This work generates the weight from the central
pixel to the surroundings alternatively for time saving. The
detail of the weight computation will be discussed in the
later subsection. So far, we can obtain the detail layer by
subtracting the base layer from the raw data by

𝐷 = 𝐼 − 𝐼pf, (7)

where 𝐼pf is the filtered image by using the propagated image
filter.

2.2. Compressing the Base Layer by Using Histogram Projec-
tion. Normally, the base layer determines the contrast of
the final image performance. In Zuo’s work [17], parameter-
based histogram projection is adopted to compress the base
layer for increasing the contrast of the base layer since it
consists of high-dynamic-range pixels. Hence, a plateau-like
threshold changes to the original by setting the plateau as 1
for the traditional histogram projection. In this section, we
first present the traditional histogram projection and refine it
as to satisfy the application, which is also different from the
modification in [17].

Histogram projection [12] is a typical case of the gen-
eralized histogram equalization. Given the histogram of an
image, if the value of the bin is bigger than zero, modify it
as 1, otherwise 0. Hence, the modified histogram is a binary
vector, and the sum of the elements for the vector denotes the
image gray information:

𝑛hist [𝑖] =
{

{

{

1, hist [𝑖] > 0

0, otherwise.
(8)

In (8), the histogram is modified by clipping the value of
the bins with a threshold 1; hence, the traditional histogram
projection is a pHE-basedmethodwith𝑝 = 1. In the family of
HE-based methods, histogram projection leads to the lowest
contrast while keeping the most information. In the contrast,
traditional HE loses much detail information. Reference
[17] handles the high-dynamic-range data, for obtaining a
relatively great contrast, and it replaces 1 with 𝑇, which is
bigger than 1 and sets it as 0.1% of the total number of pixels
in [17]. Figure 2 shows the mapping change by using pHE-
based methods with respect to different thresholds on the
famous testing image named lena. We can see that the real
gray bins of the processed image decrease with turning the
threshold𝑝 up.Meanwhile, themapping curve turns a greater
slope. The blue lines denote the setting 𝑝 = 1, and if the
image data has a compact distribution, the blue setting is just
linear mapping. Intuitively, pHE-based methods modify the
original histogram via changing the value of the parameter
(plateau value) 𝑝 ∈ (0,max(𝑛hist(:))], where max(𝑛hist(:)) is
themaximumvalue of 𝑛hist and corresponding to the peak of
the histogram. Typically, when𝑝 = max(𝑛hist(:)), pHE-based
method is the classical histogram equalizationmethod.Many
works are devoted to selecting a satisfactory 𝑝 that trades off
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Figure 2: (a) Modified histogram based on pHEmethods with different values of 𝑝. (b) Visualized mapping function based on pHEmethods
with different values of 𝑝.
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Figure 3: Example of filtering process.

between histogram projection performance and histogram
equalization performance.

In addition, Zuo’s work computes the range of the
mapping. If the number 𝑁 of the bins whose statistic value

is bigger than 𝑇 is less than the device displaying range
(e.g., 255), it rearranges the base layer between 0 and 𝑁

for decreasing the overenhancement phenomenon. However,
this is limited to the data used in Zuo’s work. For example,
the narrow range of the raw data leads to a low-intensity
image according to the computation of 𝑁. In addition, the
nonadaptive threshold 𝑇 will also make the video display
great difference between the two frames on both brightness
and contrast. The rule used in Zuo’s work is too sensitive to
the range of the raw data to handle the complex scene.

Considering the disadvantage discussed above, this work
presents a reasonable solution to the problem of compressing
the base layer. Given an image and the corresponding his-
togram,wefirst order it by the value of the bins and then select
the 𝑇th value as the threshold. Meanwhile, if the number of
the bins whose statistic value is bigger than the threshold is
less than the device displaying range, we not only limit the
mapping range but also drop the data in the middle range.
This rule is formulated as

𝑦 =

{{

{{

{

gray size ∗HE (𝑥) , arange (𝑥) >= gray size
1

𝑟
(gray size − arange (𝑥)) + arange (𝑥) ∗HE (𝑥) , otherwise.

(9)

In (9), 𝑥 and 𝑦 are the input data and output data,
respectively. We define the active range of the input data as
the number of the bins whose statistic value is in the list
of Top 𝑇, arange(𝑥) = #(hist[𝑖] ∈ Top(𝑇)). In addition,
gray size is the output range, typically set as 255, 𝑟 is the
adjusted parameter to control the brightness of the output
if arange(𝑥) is smaller than the value of gray size, and

HE(⋅) is the modified histogram equalization and output
the data in the range [0, 1]. Since the human vision system
only can distinguish the gray level of 128, for the high
dynamic data, the information loss due to strong com-
pressing by using Top 𝑇 policy does not affect the display
performance while it can keep a stable contrast for diverse
scenes.
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(a) Visualized image of the raw cooled infrared data
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(b) The distribution of the raw cooled infrared data

(c) Visualized image of the raw uncooled infrared data
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Figure 4: The infrared data used in the experiment.
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Figure 5: Scene of building by (a) AGC, (b) HE, (c) DPL, (d) CLAHE, (e) Zuo’s work, and (f) ours.

2.3. Strict Gain Control of Detail Layer. In the subsections
above, the base layer and its compressed output for the display
device are obtained. In this subsection, we refine the gain
control of the detail layer. As for the high-dynamic-range
data, we compress the base layer and then add the detail layer
tomake the output have a presentation of detail enhancement
since the base layer is compressed while the detail layer is not
[21]. However, the detail layer consists of noise which should
be suppressed, especially in the flat region. Hence, if the pixel
in the filtering process owns a relatively big weight, it is more
likely to appear in the flat region. Otherwise, it is close to the
edge. Based on this observation, the pixel in the flat region
is suppressed in the process of detail enhancement. Simply
define the gain of the pixel of the detail layer:

𝑔 = 𝑎(1 −
𝑤

‖𝑤‖
) + 𝑏, (10)

where 𝑎 and 𝑏 are the parameters to control the range of
the gain factor and 𝑤 is the weight generated in the filtering
process. In this work, we set 𝑎 as 2.5 and 𝑏 as 1.0.

The gain computed in (10) is the regular design and
is adopted in many related works. However, the weight
generated in this work is stricter than that generated by using
other common filters. Propagated image filter designs the
weight without spatial information for preventing from the
cross-region mixing. This takes an advantage of generating a
relative disconnected detail and makes the detail layer have a
sense of hierarchy.
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Figure 6: Scene of park by (a) AGC, (b) HE, (c) DPL, (d) CLAHE, (e) Zuo’s work, and (f) ours.

As discussed above, theweights of the pixels’ contribution
to the central pixel in the window determine whether the
central pixel stays in a flat region or not.The bilateral filtering,
designing the weight by involving spatial relationship, com-
putes the weight between each pixel in the neighborhoods
and the central pixel. However, the propagated image filtering
measures the weight by considering all the pixels in the
connected path from the current pixel to the central pixel. As
shown in Figure 3, 𝑥 is the central pixel of the window with
size of 5 × 5.

In the process of filtering, the weight of each pixel in the
window is measured. Bilateral filtering computes the weight
between 𝑥 and 𝑡 directly as marked in blue curve. Propagated
image filtering refines the weight not only by using themetric

between 𝑥 and 𝑡 but also by consulting the pixels on the path
between them. Hence, the propagated image filter has a strict
weight computation. If 𝑡

𝑖
(𝑖 = 1, 2, 3) in the path is far from

the central pixel with a metric, 𝑡 will have a small value of
weight even if it is close to the central pixel with the same
metric. By using the strict weight, only limited pixels in the
window participate in the filtering process for ensuring that
no cross-region mixing happens.

3. Experiment Results

3.1. Database Used in This Work. For verifying the perfor-
mance of the proposed method, two kinds of raw data pro-
duced by the cooled infrared camera and uncooled infrared
camera are used. Normally, uncooled raw data has a relatively
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(e) (f)

Figure 7: Scene of house by (a) AGC, (b) HE, (c) DPL, (d) CLAHE, (e) Zuo’s work, and (f) ours.

narrow range compared to cooled one. For one thing,
uncooled data is generated by mixing a degree of noise. For
another, the discriminative ability of the uncooled infrared
detector, left alone, is weaker than that of cooled infrared
detector. Uncooled data makes a challenge of high-dynamic-
range data compressingwith noise problem. Figure 4 presents
the used infrared data visualized by min-max AGC and
the corresponding raw range. Figures 4(a) and 4(b) are the
cooled infrared data, and Figures 4(c) and 4(d) are the
uncooled infrared data. In addition, the resolution of the
cooled infrared image is 256 × 320, and the uncooled one is
288 × 384.

In order to display the histogram information directly, we
subtract the minimum value of the image while computing
the histogram of the image. From Figure 4, we can see that
the cooled infrared data has a relatively wide range, especially
the first cooled infrared data with hot objects in the scene.We

name the first scene as building and the second one as park
for ease of exposition. In the meanwhile, we capture two big
scenes of the uncooled infrared data. The uncooled infrared
scene includes relativelymore objects. Particularly the second
scene consists of tree, sunshade, bike, road, people, and
machines in operation, such as sedan and bus. In addition,
we name the first scene as house, and the second one as bus
stop. Since the visualized image is obtained by using the min-
max AGC method which is a totally linear mapping to the
raw data, the gray image may does not present the noise
obviously.

3.2. Compared Methods and Performance Measurement. In
this section, we compare the proposed method with the four
classical methods on infrared image contrast enhancement:
AGC, HE method, CLAHE, and the recently proposed DPL
[15]. Meanwhile, we also compare the proposed method
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(a) (b)
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(e) (f)

Figure 8: Scene of bus stop by (a) AGC, (b) HE, (c) DPL, (d) CLAHE, (e) Zuo’s work, and (f) ours.

with the work [17] for detail enhancement. As for AGC
method, we disregard the extreme 2% of the number of
the pixels and then linearly map the rest into the 8-bit
image. CLAHE is performed using the standard MATLAB
adapthisteq function, dividing the images into 8 × 8 tiles and
limiting contrast stretching to 0.05. DPL is carried out by
setting 𝛽 = 6. For a fair of comparison, we set the same
parameters with the work [17], such as the same window size
and standard deviation.

As for the performancemeasurement, no reference image
quality assessment metrics, including contour-volume (CV
[22]), uniform intensity distribution (UID [22]), and root-
mean-square contrast (RMSC [23]), are adopted to measure
the enhancement effect.

The three metrics are introduced as follows:
(I) CV can reflect edge power and is obtained by sum-

ming the absolute value of the edge map which

is generated by filtering the image with a Laplace
filtering:

CV =
1

𝑀 ×𝑁

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨𝐺 (𝑖, 𝑗)
󵄨󵄨󵄨󵄨 ,

where 𝐺 = 𝐼 ∗ 𝐻, 𝐻 =
[
[

[

−1 −1 −1

−1 8 −1

−1 −1 −1

]
]

]

,

(11)

where 𝑋 ∗ 𝑌 denotes convolution operation on 𝑋

with the sliding window 𝑌 and 𝐼 is the image of size
𝑀×𝑁 pixels. Bigger value of CV indicates more edge
information.

(II) UID is derived from the information theory that the
image includes more information if the distribution
of pixels is more uniform. Hence, we have
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Table 1: RRMSC, CV, and UID values for each of the six methods.

Metrics Methods Building Park House Bus stop Mean (16 scenes)

RMSC (%)

AGC 69.68 61.84 92.85 57.74 70.53
HE 58.50 58.60 58.60 74.81 62.63

CLAHE 40.12 54.93 56.03 43.85 48.73
PLD 58.41 55.54 56.65 74.63 61.31
Zuo’s 46.53 45.60 50.27 46.44 47.21
Ours 43.29 45.33 52.25 48.35 47.31

CV

AGC 52.44 27.31 35.71 48.87 41.08
HE 64.40 35.89 61.56 66.7 57.14

CLAHE 66.48 15.90 60.66 51.9 48.74
PLD 64.47 34.38 62.29 66.12 56.82
Zuo’s 117.04 118.28 107.14 98.35 110.20
Ours 143.65 149.20 109.90 147.03 137.45

UID (%)

AGC 55.76 21.85 72.14 39.47 47.31
HE 30.46 19.84 30.20 27.68 27.05

CLAHE 95.19 62.24 96.69 86.76 85.22
PLD 54.98 23.04 50.67 38.55 41.81
Zuo’s 89.82 94.92 84.90 91.91 90.39
Ours 89.99 94.70 85.59 93.31 90.90

UID =
∑
𝐿−1

𝑘=0
log (𝑛

𝑘
+ 1)

𝐿 ⋅ log (∑𝐿−1
𝑘=0

𝑛
𝑘
/𝐿 + 1)

, (12)

where 𝐿 is the gray level (e.g., 256) and 𝑛
𝑘
is the

number of pixels belonging to the 𝑘th gray level. The
same is with CV; bigger value of UID is preferred too.

(III) RMSC is the basic index to determine the contrast
effect. It is derived by calculating the average of the
square of difference between the image and its average
pixel value:

RMSC = √
1

𝑀 ×𝑁

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨𝐼 (𝑖, 𝑗) − avg (𝐼)󵄨󵄨󵄨󵄨
2

, (13)

where avg(𝐼) represents the average of all pixel values
in the image 𝐼 of size𝑀×𝑁 pixels. RMSC measures
the degree of the difference of the pixel.

In addition, all of the metrics may be influenced by
different cases. We present them to compare the methods
in some point. Among the methods, AGC, HE, CLAHE,
and DPL concern infrared contrast enhancement, while
Zuo’s work and ours concern infrared detail enhance-
ment. Here, the metrics also reflect the different aspects of
emphasis.

The results of the three metrics are presented in Table 1.
The last column presents the mean index values of 16 scenes.
From Table 1, we can see that the upper part of the table
(corresponding to the four contrast enhancement methods)
has relatively bigger value of RMSC than the two detail
enhancement methods except CLAHE. This is just because
detail enhancement prefers to boost the detail information
while compressing the flat parts, leading to a low RMSC.
Moreover, AGC has a relatively bigger value of RMSC, and

this is because the raw data has a wide range with a large
inner variance. As for the detail enhancement methods, ours
has a bigger value of RMSC than that of Zuo’s work. As
for CV metric, the two detail enhancement methods have
slightly big value compared with the contrast enhancement
methods. Typically, ours is significantly larger than Zuo’s.
The same thing happens to UID metric. Totally, the four
contrast enhancement methods refine the contrast obviously,
while overlooking the detail information which can improve
the visual performance. During the contrast enhancement
processing, more or less detail information is missing by
the gray level merger. In contrast, the detail enhancement
compresses the base layer to some degree and enhances the
detail layer for stunning visual effect.

3.3. Experimental Results and Analysis. Figures 5 and 6 show
the cooled infrared data processing result. AGC method
presents the gray image with a reasonable linear compressing
and keeps the original temperature relationship. However, as
a disadvantage of the infrared data, low spatial discrimination
turns up in the gray image. Hence, the edge is blurred and the
texture information is poor. HE method stretches the data
nonlinearly and increases the contrast. Due to the contrast
enhancement to some degree, the edge seems stronger than
that of AGC. But for (b), the lines of the image are still coarse
and blurred and some regions are overflat without detail.
The blue rectangle shows the detail missing caused by the
HE method. As the method of histogram modification, (c)
and (d) outperform AGC on contrast and (b) on reducing
washout effect. In addition, both (e) and (f) have a good
performance on detail enhancement. Even so, (f) presents a
better contrast and detail than (e). As shown in red tangles,
(f) turns up a sense of hierarchy. This is because bilateral
filter computes the weight considering the whole pixels in the
window and makes a high spatial relationship. So (e) seems
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more flat than (f), and (f) presents a realistic scene, such as
the branch and leaves of the trees. In addition, (f) seems better
than (e) on the brightness and contrast, and (e) seems dim.

Figures 7 and 8 present the performance of different
methods on the uncooled infrared data. With the same
parameter setting, the blue rectangle in (b) points out the
detail missing caused by HE method. Obviously, (c) and (d)
outperform AGC on contrast and (b) on reducing washout
effect. As for (e) and (f), we only select one region which
is marked as the red rectangle. Both (e) and (f) perform
a detail enhancement for the house infrared data; strictly
speaking, (f) also outperforms (e) on contrast. The bus stop
infrared data is a big scene including many objects with
diverse temperatures. Compared with (e) in the scene of bus
stop, (f) seems relatively soft. Some of the regions amplify the
noise and make the image degrade.

4. Conclusion

This work presents a new detail enhancement for the infrared
image. The raw infrared data is decomposed into the base
layer and detail layer by using the novel propagated image
filter which prevents the cross-regionmixing.Meanwhile, the
strict gain control generated in the filtering process guides a
reasonable detail enhancement. Experiment on both cooled
and uncooled infrared data compared with other classical
methods proves the performance of the proposed method on
detail enhancement and contrast/brightness refinement.
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