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A novel ranging technique based on received signal strength (RSS) and suitable to indoor scenarios is illustrated. In the proposed
technique, multiple power measurements, associated with the signals radiated by a cluster of nodes surrounding a given target,
are jointly processed to improve the quality of RSS-based estimation of the distance between the target and an anchor. Specific
algorithms for the generation of a cluster and for the acquisition of power measurements are described. Simulation results show
that, when used in indoor positioning systems, the proposed ranging technique is substantially more accurate than noncooperative
strategies. In addition, it allows to concentrate significant processing tasks in a limited number of fixed anchors, so reducing
maintenance costs and making it possible to adopt cheap and simple portable wireless nodes.

1. Introduction

Wireless sensor networks for accurate localization of people
and objects in indoor environments represent a fundamental
tool for the provisioning of high-level services in the fields
of management and logistics. Despite this, currently the
pervasive diffusion of such networks is prevented by their
large complexity and maintenance costs. This is mainly due
to the fact that, in indoor scenarios, accurate localization in
the presence of severe multipath fading usually requires a
large number of fixed sensing nodes (called anchors) with
a known location [1] and the use of complicated signal
processing algorithms for distributed distance estimation
[2]. It is also important to note that localization algorithms
are often designed under the assumption that accurate point-
to-point distance measurements between the target node
(i.e., that whose location needs to be identified) and a set
of anchors are available [3–7]. Unluckily, the first hypothesis
can be deemed realistic only when there is a line of sight
(LOS) path between the given target node and the anchors
involved in distance measurements, so that the first echo (i.e.,
the one with the shortest time of arrival) can be separated
from all the following ones, originating from nonline of
sight (NLOS) paths, via proper signal processing algorithms

[8]. However, the accuracy achievable in such measurements
reduces noticeably in indoor environments, since, generally
speaking, they are characterized by significant obstacles to
signal propagation and, frequently, by NLOS links [9].

Recently, an increasing attention has been paid to the
use of ultrawide band (UWB) transmission techniques [10]
for radio localization in indoor scenarios. This interest is
motivated by the appreciable time resolution originating
from the extremely wide bandwidth of UWB signalling
formats [11]. This means that multiple echoes of UWB
signals can be accurately resolved by sensing nodes, so
that, in principle, the quality of ranging estimation can be
substantially improved.

In this work, a new solution to indoor localization
based on a UWB wireless sensor network is illustrated.
The derivation of the proposed technique relies on the use
of low complexity ranging estimation methods based on
received signal strength (RSS) [2, 12], on some considerations
about the statistical properties of UWB channels, and the
use of multiple (i.e., of a cluster of) transmitting nodes,
placed in different points of the considered environment, to
refine the distance measurement of a target from a given
anchor. These design choices can be motivated as follows:
(1) measuring RSS is simple and can be easily accomplished
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even by receivers which have not been explicitly designed
to perform distance estimation (so avoiding the additional
costs of deploying ad hoc hardware); (2) recent studies about
statistical modeling of indoor UWB channels (e.g., see [13–
15]) provide accurate information about the power decay
model and the distribution of multipath components; (3)
RSS indirectly exploits the very wide bandwidth of UWB
signals, since such signals exhibit little small scale fading
when compared to narrowband signals [16]; and (4) the use
of multiple low-cost transmitting nodes allows to mitigate
the effects of fading, resulting in improved accuracy. As far
as the last point is concerned, it is important to note that the
adopted solution exploits a sort of cooperative diversity, since,
in the range measurement procedure, spatially separated
nodes cooperate, emitting localization signals, which travel,
however, through distinct wireless channels. It is also worth
pointing out that, as far as we know, until now statistical
modeling of UWB channels has been exploited to improve
the overall performance of localization (e.g., see [4, 17]), but
not the quality of ranging measurements.

The remaining part of the paper is organized as follow.
The use of a cluster of nodes for improving ranging
measurements is motivated in detail in Section 2, whereas
algorithms for ranging estimation based on RSS and on
the use of a cluster of nodes, and methods for cluster
generation are derived in Section 3. In Section 4, the problem
of acquiring independent RSS measurements is tackled,
whereas in Section 5 some simulation results evidencing
the enhancement in ranging accuracy provided by the
proposed algorithms are analyzed. Finally, Section 6 offers
some conclusions.

2. Cooperative Ranging Based on
a Cluster of Nodes

In a wireless sensor network for indoor localization, the
scope of each anchor is estimating its distance from a given
target node on the basis of the RSS associated with the digital
signal radiated by the node itself. In a static scenario affected
by multipath fading, the average power R associated with the
useful component of the signal received at a given anchor can
be expressed as [18]

R = P0 − (PL + LSF + SSF), (1)

where P0 is a reference power level, and PL, LSF, and SSF
denote the exponential path loss, the large scale fading, and
the small scale fading (all expressed in dBm) affecting the
communication channel, respectively. In the following an
NLOS condition is assumed for signal propagation, so that
LSF and SSF can be represented as zero mean random
parameters. In particular, LSF is modelled as a zero mean
Gaussian random variable whose variance is described, in
turn, by a Gaussian distribution characterized by known
parameters; such parameters depend on the characteristics
of the building, in which signal propagation occurs [14].
In addition, the statistical behavior of SSF is described
by a Nakagami distribution with an m-factor m ≥ 1/2
[15]. As far as the path loss PL is concerned, following

[14, 15], an exponential power decay is considered; its
path gain exponent, however, is modeled as a Gaussian
random variable having constant variance and known mean,
both depending on the macroscopic characteristics of the
considered indoor environment.

In the absence of fading, we have that SFF = LSF = 0
in (1); then, the distance of the target node from a selected
anchor can be perfectly estimated from R if the power level P0

and the mathematical model of the PL are completely known.
Unluckily, the presence of fading introduces an uncertainty
in ranging measurements based on (1). To mitigate fading
effects, we propose to exploit, in distance estimation, all the
RSSs associated with the digital signals radiated by a spatial
cluster of nodes, as illustrated in Figure 1. This cluster has
the following properties: (a) it consists of a subset of N
radiating nodes selected in a pool of NT nodes; (b) it includes
the target node; (c) the signals transmitted by its nodes, as
well as the signals transmitted by all the other nodes in the
network, are mutually orthogonal in a specific domain (e.g.,
in the time or in the frequency domain) and can be separated
perfectly by the anchor. Then, if an denotes the nth node of
a given cluster C (i.e., C is the set {an,n = 1, 2, . . . ,N}), the
average power Rav captured by the anchor is given by (see (1))

Rav � 1
N

N∑

n=1

Rn

= P0 −
⎛
⎝ 1
N

N∑

n=1

PLn +
1
N

N∑

n=1

LSFn +
1
N

N∑

n=1

SSFn

⎞
⎠,

(2)

where Rn denotes the average power received from an,
whereas PLn, LSFn, and SSFn are the exponential path loss,
the large scale fading, and the small scale fading affecting
the communication channel between the anchor and an. The
path loss PLn can be expressed as

PLn = PLmean + ΔPLn, (3)

for n = 1, 2, . . . ,N , where PLmean represents the average path
loss affecting the cluster nodes, whereas ΔPLn denotes the
offset of PLn from PLmean. Intuitively, PLmean accounts for the
loss associated with the separation between the cluster and
the anchor, whereas ΔPLn can be related to the displacement
of the nodes within the cluster, as shown in Figure 2. It is
also worth noting that, generally speaking, the value of the
path loss exponent depends on the propagation link [14, 15],
so that, in principle, it can take on different values for
distinct nodes of the same cluster; however, modelling errors
concerning this parameter in the evaluation of path loss can
be incorporated in the {ΔPLn} terms.

Given (3), (2) can be rewritten as

Rav = P0 −
⎛
⎝PLmean + ΔPL +

1
N

N∑

n=1

LSFn +
1
N

N∑

n=1

SSFn

⎞
⎠,

(4)

where

ΔPL � 1
N

N∑

n=1

ΔPL(n). (5)
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Figure 1: Set-up of the analysed system.

If ranging estimation of the selected anchor is based on the
quantity Rav (2) instead of R (1), a larger accuracy can be
achieved thanks to the fading mitigation effect originating
from the use of multiple contributions. This can be easily
proved if the indoor scenario is characterized by a rich
scattering, so that the channels between distinct nodes and
the selected anchor can be deemed statistically independent.
Then, the random variables {LSFn} and {SSFn} are mutually
independent and, if the radiating nodes are identical and
the associated channels are statistically equivalent, can be
considered identically distributed. Since the variance of the
fading terms {LSFn} and {SSFn} is finite, ifN is large enough,
the central limit theorem [19] can be applied, and each of
the terms

∑N
n=1 LSFn and

∑N
n=1 SSFn in (4) can be modelled

as zero mean Gaussian random variable with a variance
tending to 0 as N increases; in other words, the ranging error
component due to multipath fading can be substantially
reduced if the number N of (cooperating) cluster nodes is
large enough. Note, however, that the achievable accuracy
can be limited by the term ΔPL (5), representing the residual
error due to the spatial spread of the selected cluster. For
instance, if the nodes of the cluster are placed in a regular
fashion along a circumference and the anchor is placed in
its center, the term ΔPL will be equal to zero, independently
of the distance between the nodes and the anchor, even if
this increases to infinity (see the example of Sestion 5.1 for a
deeper insight). This means that, in principle, the term ΔPL
is not minimized if a spatially dense cluster is selected, but
if the nodes forming the cluster are enrolled according to a
clever strategy.

It is also important to point out that the approach we
propose for improving the quality of ranging measurements
can provide various practical advantages; some of them are
listed below.

(i) If the proposed method can achieve a better accuracy
in NLOS conditions then that offered by classic RSS-
based ranging techniques, the application level can be
simplified, since most of the computational burden is
concentrated at lower system layers.

(ii) The employed radio nodes can be extremely simple
(and, hence, cheap), since most of signal processing
for localization is accomplished by a small number of
fixed anchors. In fact, As pointed out in the following,

a1

Anchor

a3

a2

PLmean

ΔPL1
ΔPL2

ΔPL3

Figure 2: Decomposition of the path loss terms of a cluster of nodes
in a common cluster distance-related term (PLmean) and a set of
distance errors (ΔPLn).

each node is only expected to respond to a query with
a certain (and precise) power level.

(iii) System performance can be improved putting
dummy nodes in the environment; these have the only
scope of increasing node density.

The adoption of the proposed solution, however, raises
some important technical issues that need to be carefully
addressed. In particular, we note that

(i) a proper strategy for the generation of a cluster
is needed to identify the nodes optimising perfor-
mance, that is, the overall ranging accuracy,

(ii) the impact of node density over the system perfor-
mance should be analyzed. In fact, on the one hand,
if the cluster covers a small area, the residual error
ΔPL is negligible with respect to the mean distance
(which can be identified as the target distance)
associated with PLmean; however, it is likely that in this
situation the fading affecting distinct nodes exhibits
a substantial correlation, so that the effectiveness of
the proposed strategy can be appreciably affected. On
the other hand, if the cluster size is significant, it
is not difficult to show that the ranging error due
to the fading terms {LSFn} and {SSFn} decreases as
1/N2 only; the estimation accuracy, however, can get
worse because of ΔPL, that is, of the spread in node
locations with respect to cluster center.

The first problem can be solved using proper algorithms,
as illustrated in Section 3. Unluckily, the second problem
does not lend itself to a simple mathematical analysis. For
this reason, its relevance has been assessed via computer
simulations; some results are illustrated and commented in
Section 5.

3. Cluster Selection Strategies

In this Section, two different strategies for the selection of
the wireless nodes forming a cluster for a given target node
in a static indoor scenario are proposed. Then, the problem
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of distance estimation based on a set of data acquired from a
cluster of nodes is analyzed.

Before analysing the proposed strategies in detail, it is
worth noting that any strategy for cluster selection should
aim at identifying a group of nodes (in the pool of available
ones) in a way that the fading effects in the measurement
of Rav (4) are mitigated and that, at the same time, the
amplitude of the term ΔPL (5) is not enhanced. For this
reason, the problem of selecting an optimal cluster Ĉ could
be formulated as

Ĉ = arg min
C̃,NC̃

∣∣∣Rav

(
C̃,NC̃

)
−
(
P0 − PLmean

(
C̃,NC̃

))∣∣∣,

(6)

where the dependence of Rav and PLmean on the trial cluster
C̃ and on its size N = NC̃ is explicitly indicated. Note that

(i) the cluster optimization procedure expressed by (6)
involves not only the selection of a specific set of
nodes C̃, but also that of its size NC̃ . If NC̃ is large,
fading is mitigated, but the effects of the offset ΔPL
become significant,

(ii) if NT denotes the overall number of nodes in the
environment managed by the anchor, the number of
unordered collections of NC̃ nodes extracted from a

set of NT nodes is given by
(
NT
NC̃

)
= NT !/(NC̃!(NT −

NC̃)!); this quantity (and, consequently, the computa-
tional complexity of the problem (6)) grows quickly
as NC̃ increases.

The last comment motivates the investigation of sub-
optimal strategies leading to a good accuracy in distance
estimation at the price of a reasonable complexity. In the
following, Paragraphs we show that such strategies can be
developed adopting a heuristic approach to the problem
of cluster selection. Our strategies operate in a centralized
fashion, since cluster selection is accomplished at the anchor.
For this reason, in the cluster selection procedure, each
involved node is only expected to generate a signature signal
in response to a radio frequency query from the anchor. In
the following, however, we do not tackle the problems of
identifying each node (and, in particular, of looking for the
target node in the cluster) and of managing the access to
a shared radio medium. In fact, we simply assume that the
anchor is able to identify each node, exploiting, for instance,
an unambiguous identification code wired in the hardware
of each node, like in RFID tags [20]. Moreover, the response
signal is expected to be transmitted at a certain (and precise)
power level, so that active RFIDs [20] could represent a good
technical choice in a low-cost node design.

Finally, we note that, as already mentioned in the
previous Paragraph, the identification of the optimal cluster
Ĉ relies on the availability of several independent RSS
measurements for each node of the trial clusters C̃; two
different strategies for the acquisition of such data are
illustrated in Section 4. Here we consider a static scenario,
in other wongs we assume that negligible changes occur in

the measurement scenario during the interval in which RSS
data are acquired. If such an interval is very short, then the
solutions we propose can be adopted for portable indoor
applications.

3.1. Cluster Selection Based on the Minimization of a Power
Spread. The first procedure for cluster selection evolves
through the following steps:

(1) NP independent power measurements {Rn(m), m =
1, 2, . . . ,NP} are acquired for the node an (with n = 1,
2, . . ., NT) reached by a query signal from the anchor;

(2) a trial cluster C̃, having fixed size D and including the
target node, is selected;

(3) for m = 1, 2, . . . ,NP the mean power

RC̃(m) = 1
D

∑

n∈ΛC̃

Rn(m) (7)

associated with C̃ is computed (here the set ΛC̃
consists of the D values of n that identify the subset
of nodes {an} forming C̃);

(4) the “spread” σC̃ of the set of powers {RC̃(m), m =
1, 2, . . . ,NP} is evaluated as

σC̃(m) �

√√√√√ 1
NP

NP∑

m=1

(
RC̃(m)− μC̃

)2
, (8)

where

μC̃ � 1
NP

NP∑

m=1

RC̃(m); (9)

(5) the steps 2–4 are repeated for any possible trial
cluster C̃; at the end of this exhaustive procedure,
the cluster Ĉ minimizing σC̃ (8) is selected; in
other words, the cluster selection strategy, dubbed
spread minimization (SM) in the following, can be
summarized as

Ĉ = arg min
C̃
σC̃. (10)

The rationale behind this technique is to search for a
cluster such that the power measurements for its nodes
exhibit the minimum spread, that is, the smallest sensitivity
to fading; in fact, a small spread indicates that the (determin-
istic and distance-dependent) path loss term prevails over
(stochastic) fading terms in the model expressed by (2).

The main drawbacks of the SM strategy are represented

by (a) the need of evaluating of a set of
(
NT
D

)
distinct

metrics σC̃ (8), where
(
NT
D

)
= NT !/(D!(NT − D)!) indicates

the number of unordered collections of D distinct elements
extracted from a set of NT ; (b) the exhaustive search for the
minimum over this set. In fact, these tasks entail a substantial
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computational burden at the anchor. It is important to
point out, however, that the task of cluster selection can be
carried out without strict real-time constraints (hence, off
line) at the anchor, once the whole measurement process
has been completed. Moreover, the anchor can be a fixed
device connected to the power network, so that, since it is
not limited in the energy and/or size, it can be very powerful.

Finally, it is worth noting that

(i) in principle, the size D of the cluster could be
optimized considering progressively larger clusters in
our search (10), so that the optimal cluster size N
could be identified; however, this approach would
make the problem computationally unmanageable
for large values of NT ;

(ii) a conceptually similar approach has been adopted
in [4, 9] to discriminate between LOS and NLOS
conditions in a wireless link;

(iii) the performance of the SM strategy is not affected by
the presence of correlated shadowing. In fact, in this
case, adopting the representation of (3) for the PL,
the term (1/N)

∑N
n=1 LSFn in (4) can be rewritten as

LSFmean + (1/N)
∑N

n=1 ΔLSFn, where LSFmean denotes
a bias due to the above-mentioned phenomenon.
Then, it can be shown that the variability of the
right hand side of (7) as well as the spread evaluated
according to (8) undergo a reduction with respect to
the case of uncorrelated LSF terms. For this reason,
the nodes affected by correlated shadowing are likely
to be included in the cluster, and, since such nodes
are also spatially close, the weight of the terms ΔPL
and SSF can be appreciably reduced.

3.2. Cluster Selection Based on the Estimation of a Coarse
Distance. The second procedure for cluster selection is based
on the idea of grouping nodes whose distance from the
anchor appears to be close to that evaluated for the target
node. This strategy consists of the following steps:

(1) NP independent power measurements {Rn(m), m =
1, 2, . . . ,NP} are acquired by the anchor for the node
an (with n = 1, 2, . . . ,NT) reached by a query signal
from the anchor;

(2) the anchor processes Rn(m), with m = 1, 2, . . . ,NP ,
to estimate its distance dn(m) from the node an, with
n = 1, 2, . . . ,NT (the adopted estimation technique is
illustrated in Sestion 3.3);

(3) the average distance dn of the anchor from an, with
n = 1, 2, . . . ,NT , is evaluated as

dn = 1
NP

NP∑

m=1

dn(m); (11)

(4) the anchor accomplishes an exhaustive search to
identify, in the set of nodes, the D elements whose

distance is closer to the average distance dtg measured
for the target node; formally, this strategy for the
selection of the optimal cluster Ĉ can be expressed,
in analogy to (10), as

Ĉ = arg min
C̃

∑

n∈ΛC̃

∣∣∣dn − dtg

∣∣∣. (12)

Note, however, that this strategy, called distance
estimation (DE) in the following, is substantially
simpler than that expressed by (10), since it involves
a search over a set of NT nodes, instead of the family
of all possible clusters of D nodes.

Finally, it is important to point out that this algorithm
does not search for the set of D nodes spatially closer to the
target node, but identifies the nodes whose distance is closer
to that of the target node dtg. In other words, it selects the
nodes closer to a circumference having radius dtg and the
anchor in its center.

3.3. Target Distance Estimation in the Presence of a Cluster of
Nodes. It is well known that, in free space propagation, the
average power Rx(d) (in dBm) captured by a receiver placed
at a distance d from a transmitter can be expressed as [15, 18]

Rx(d) = P0 − 10ξ log
(
d

d0

)
, (13)

where P0 represents the power level (in dBm) measured at
the so-called reference distance d0, whereas ξ is the path loss
exponent. Note that this expression cannot be exploited as
it is for accurately estimating the distance d from a single
measurement of average received power, since, as already
mentioned in Section 2, the path loss exponent ξ is a random
variable. To remove this uncertainty in (13), ξ is replaced by
its mean value ξ of this parameter in the following. Then, if
Rx(d) is known, the distance d can be roughly estimated as

d = k · 10−Rx(d)/(10ξ), (14)

where k � d0 · 10−(P0/10ξ).
The expression (14) can be certainly exploited for the

same target even in the presence of a cluster of nodes. In fact,
an estimate dcoop of the distance of the target node from the
anchor can be computed as

dcoop = k · 10−Pav/(10ξ), (15)

where

Pav � 1
NNP

N∑

n=1

NP∑

m=1

Rn(m) (16)

regardless the adopted cluster selection strategy.
The proposed distance estimation algorithm benefits

from spatial diversity [21] and multiuser diversity [22],
since NP independent power measurements are acquired for
each node of a cluster Ĉ, consisting of N distinct nodes



6 International Journal of Navigation and Observation

(i.e., users). It is also worth pointing out that the number NP

of independent measurements that can be acquired from a
single node is limited by the availability of independent chan-
nel realizations and, consequently, by the characteristics of
the considered environment [23]; in addition, the selection
of a large value for the cluster size N can lead to a significant
residual error ΔPL (see (4)). The joint exploitation of the
two forms of diversity allows to mitigate the problem of
correlated fading [23] and to improve the overall accuracy
of the system.

4. Methods to Acquire Independent
RSS Measurements

Both the SM and DE algorithms for cluster selection rely
on the availability of NP independent data for each node. In
this Section, we illustrate how such data can be acquired. In
particular, two methods are proposed below; one is based on
the use of an oscillating beam pattern at a fixed anchor, the
other one is based on the use of a frequency sweep.

4.1. Oscillating Beam. The use of an oscillating beam pattern
has been adopted in [23, 24] to generate a sort of “artificial”
time diversity in mobile wireless channels. In our scenario,
the implementation of this solution requires the anchor to
be equipped with an antenna array fed by phase-controlled
signals, so that the main lobe of the radiation pattern
can be properly steered. Note that, in a rich scattering
environment, different transmission lobes can lead to inde-
pendent multipath propagation and, hence, to independent
channel realizations. In particular, [23, 24] evidence that
this technique offers the availability of a large number (say,
one hundred) of independent channels between two wireless
terminals in a static scenario. In our simulations, however,
an oscillating beam with 10 distinct angular steps only has
been assumed for the reasons illustrated in Section 4.3; this
still provides good spatial diversity and, at the same time,
does not restrict the significance of the acquired results to
a specific propagation environment. Note that (a) when
an oscillating beam is used, the index m of Rn(m) (see
Sestions 3.1 and 3.2) uniquely identifies the orientation of the
radiation beam; (b) the use of an oscillating beam increases
the complexity of the fixed anchor, but does not affect that of
the mobile devices.

4.2. Frequency Sweep. An alternative method to extract
independent channel realizations in a static scenario consists
of exploiting frequency diversity; in fact, power measure-
ments can be deemed independent if they are collected
at multiple frequencies, such that the spacing between
adjacent frequencies exceeds the coherence bandwidth of the
communication channel [25]. Note that, in this scenario, the
index m of Rn(m) uniquely identifies the frequency at which
the mth power measurement is acquired.

Unluckily, this approach is substantially more compli-
cated than the previous one, since it requires the implemen-
tation of mobile nodes with a wideband RF front end.

4.3. Remarks. Even if the methods described above can pro-
vide a large number of independent power measurements,
only a limited number of such measurements are required by
the proposed ranging techniques in a rich scattering indoor
environment. For instance, in such a scenario, if the angular
step of the beam steering is large, the electromagnetic signals
captured along different directions are expected to have
travelled along paths characterized by different distances;
generally speaking, this does not help to improve the
accuracy of our ranging procedure. For this reason, it is
recommended to acquire a limited number of independent
measurements limiting the deviation of the beam steering,
so that small scale fading can be averaged out without
appreciably influencing the path loss. Similar considerations
apply to the case in which the step size in a frequency sweep
is large.

5. Numerical Results

This section is organized as follows. First, we comment on
the relationship between the distribution of cluster nodes
and the achievable accuracy in cluster-based ranging. Then,
we analyse various numerical results about the ranging
accuracy achieved by the proposed strategies in two different
scenarios.

5.1. Spatial Distribution of Cluster Nodes and Ranging
Accuracy. When the distances between distinct nodes of a
given cluster are not appreciably smaller than the distance
between the cluster center and the fixed anchor, the “spread”
error ΔPL is expected to seriously limit the ranging accuracy
achievable by a localization system. To understand the
relevance of this problem, let us consider a specific cluster C,
collecting 5 nodes whose structure is illustrated in Figure 3.
In this case, it is assumed that the target is the central node
and that, for the sake of simplicity, the distance between
the nodes a(1) and a(2) (a(3) and a(4)) and the anchor is
r1 = r2 = r0 − ε (r3 = r4 = r0 + ε), where r0 is the
distance between the target node and the anchor. If the path
loss model (1) characterized by an exponential decay [18] is
adopted, the power R received by a transmitter located at a
distance d from the anchor is given by

R(d) = P0 − 10ξlog10(d) + K , (17)

where K represents the sum of the LSF and SSF contribu-
tions. Then, for the nth node (with n = 0, 1, . . . , 4) and
considering the availability of a single power measurement
for each node (i.e., NP = 1) for the sake of simplicity, the
anchor exploits the power measurement

Rn = P0 − 10ξlog10(rn) + Kn (18)

to compute the mean received power

Rav = 1
5

4∑

n=0

Rn = P0 − PLmean +
1
5

4∑

n=0

Kn, (19)

where

PLmean =
10ξlog10(r0) + 20ξlog10(r1) + 20ξlog10(r3)

5
. (20)
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Figure 3: Possible spatial distribution of 5 radiating nodes.

In the last expression, the contribution of the terms {Kn}
accounts for the fading affecting the nodes; moreover, the
path loss PLmean, depending on the distance between the
cluster center and the anchor, can be rewritten as

PLmean = 10ξlog10

(
r0 · r2

1 · r2
3

)1/5

= 10ξlog10

(
r0 · (r0 − ε)2 · (r0 + ε)2

)1/5

= 10ξlog10

(
r5

0 − 2r3
0ε2 + r0ε4)1/5

,

(21)

to evidence its dependence on the term ε. In any application,
we have that ε /= 0 (since the nodes belonging to the cluster
associated with a given target cluster do not coincide with the
target itself), so that a systematic source of error (i.e., a bias)
is found in ranging estimation based on node cooperation.
Unfortunately, a theoretical analysis of this problem appears
unfeasible, since the nodes of a given cluster are not expected
to follow a regular distribution in any indoor application.
For this reason, the relevance of the irreducible residual error
ΔPL (related to the presence of ε in the above-mentioned
example) is assessed via computer simulation only in the
following.

The problem of the effects, on the achievable perfor-
mance, of the spatial distribution of the nodes forming a
cluster around a given target deserves also the following
comments. As stated in Section 2, the aim of the anchor
in cluster generation according to the proposed algorithms
is to search for the nodes that can minimize the ranging
error and not for those forming a dense set. Unluckily, in an
indoor scenario characterized by rich scattering, an anchor
looking for nodes close to a given target tends to discard all
those nodes whose transmission is affected by severe fading,
since they appear far from the target location. This explains
why the proposed techniques for the generation of clusters
take advantage of cooperating nodes which are not close to
the target node; this is evidenced by Figure 4, illustrating a
possible spatial distribution of a node population and of the
cluster nodes selected for a given target.
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Cluster nodes

Other nodes

Target node

Figure 4: Example of spatial node distribution and of a cluster of
nodes selected for ranging.

5.2. Ranging Accuracy. The performance offered by the
proposed ranging technique has been assessed resorting
to computer simulations. In all the simulations, the UWB
indoor channel model adopted in [14, 15] has been used.
This model is characterized by (a) an exponential path loss
(see [14, equation (12)]) with a Gaussian distributed path
gain exponent; (b) a lognormal large-scale fading (see [14,
equation (14)]) with zero mean and random variance (a
Gaussian distribution is adopted); (c) a Nakagami small-
scale fading with the m-factor equal to 1/2 (see [15, equa-
tion (19)]). All the parameters characterizing this channel
model are summarized in [14, Table II]; note that in our
simulations, NLOS channel models have been used, when
not differently stated.

Two different bidimensional scenarios have been con-
sidered for the cluster structure. The first scenario (dubbed
scenario #1 in the following) is characterized by a uniform
distribution of nodes and aims at modelling a rich scattering
environment in an indoor industrial/commercial open space.
In this case, the anchor is placed at a fixed distance of 20 m
from the centre of an area having a square shape with a
side S ranging from 3 cm to 12 m; 20 nodes are uniformly
distributed in such an area, and one is randomly selected
as the target. The second scenario (called scenario #2 in
the following) is more suitable to modelling a residential
indoor environment (e.g., an office or an hospital) and is
characterized by (a) an anchor placed at a fixed distance
of 20 m from the centre of a square region having fixed
side equal to 12 m; (b) 20 nodes divided in 3 groups (for
instance, each group could consist of the nodes located in a
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Figure 5: Comparison between the MRE provided by the proposed
ranging techniques and by a traditional RSS-based technique in the
presence of uniformly distributed nodes and NLOS propagation.

different room of the same floor in an indoor environment);
(c) the centre of each group is randomly placed within the
square region of fixed side and the coordinates of the group
nodes are Gaussian distributed around it (the variance of this
distribution is properly adjusted to ensure that the side G of
the square area containing the group ranges from about 2 cm
to 6 m). The target is selected randomly among the nodes.
Note that, for both the scenarios, the anchor is always out of
the area over which the nodes are distributed.

System performance is assessed in terms of mean ranging
error (MRE), defined as the difference between the estimated
distance of the target from the anchor and the true distance
of the target from the anchor averaged over 500 distinct
trials of the ranging procedure. In addition, in the following
simulation results, when not differently stated, it is assumed
that 10 independent channel realizations are available for
each node; we deem this hypothesis realistic, independently
of the specific scenario (see Sestion 4.1).

Figure 5 compares the MRE, versus the spatial size S of
the area in which the nodes are distributed, of the proposed
strategy (using DE or SM for the generation of clusters) with
that of a standard single node RSS technique for ranging [12]
in scenario #1. These results show that the former strategy
substantially outperforms the latter one, characterized by an
MRE comparable to the distance of the target node. The
improvement offered by an increase in the number of nodes
forming the cluster is evidenced by Figure 6, referring to

0 2 4 6

S (m)

8 10 12

4

6

8

M
R

E

10
DE

SM

12

SM, N = 2
N = 6
N = 10
N = 18

DE, N = 2
N = 6
N = 10
N = 18

Figure 6: MRE provided by the SM and the DE algorithms in the
presence of uniformly distributed nodes and NLOS propagation.

the case of the DE and SM techniques only. For instance,
if the DE method is adopted, the MRE is limited to about
9 m, 8 m, and 7 m with clusters made of N = 2, 6, and
10 nodes, respectively, note that, when a cluster includes
more than 10 nodes, the residual error ΔPL can lead to a
slight performance degradation. The SM algorithm allows
to achieve even better accuracies than the DE; in fact, when
N = 2 nodes form the cluster, the MRE is approximately
equal to 4.5 m, whereas the minimum error is reduced to
about 4 m if N is increased to 6. These results also evidence
that SM technique is more sensitive to node density than the
DE, which does not appreciably depend on the size of the
environment. In fact, if the scenario is densely populated, the
SM method outperforms the DE one, whereas the accuracy
is comparable when the node distribution is more sparse
or even worse when N > 6. This result can be related to
the different rationales behind these two techniques and, in
particular, to the fact that the SM aims at mitigating fading
effects independently of the residual errors {ΔPLn}, whereas
the DE minimizes the differences in distance measurements,
so coping with all the sources of error (residual errors
{ΔPLn} and fading) indistinctly.

Similar comments can be expressed for the results
shown in Figure 7, referring to scenario #2. Note that,
despite the substantial difference between the test scenarios,
the performance enhancement provided by the proposed
techniques is similar to that achieved in scenario #1.

Our methods have been also tested in the presence
of quasi-LOS propagation conditions, assuming the node
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Figure 7: Comparison between the MRE provided by the proposed
ranging techniques and by a traditional RSS-based technique in the
presence of a clustered node distribution and NLOS propagation.

arrangement of scenario #1. Some numerical results are
illustrated in Figure 8 and show that the performance of the
SM algorithm is slightly better than that of the DE (even if the
gap is smaller than that of the NLOS scenario), and that the
performance gain offered by DE algorithm over standard RSS
techniques is similar in quasi-LOS and NLOS conditions.
This is due to the fact that in quasi-LOS channels, the MRE
is mainly due to the terms {ΔPLn} (rather than to fading),
whose effects are not accounted for by the SM algorithm.

The sensitivity of the MRE with respect to NP (i.e., to
the number of available independent power measurements
for each node) is evidenced by Figure 9, whose results have
been obtained for NP = 5. Note that, on the one hand, the
reduction in the available diversity appreciably worsens the
performance of the DE algorithm (the MRE can increase
up to 2-3 m for a small cluster). On the other hand, the
performance of the SM algorithm, relying on both spatial
and multiuser diversity, is not substantially affected.

Finally, it is important to point out that

(i) the proposed strategies outperform the standard
single node ranging techniques because they can rely
on the RSS measurements of all the nodes populating
the environment. In fact, clusterization can be viewed
as the selection of the “most convenient data” to
perform ranging for a given node,
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Figure 8: Comparison between the MRE offered by the proposed
ranging techniques and by a traditional RSS-based technique
in the presence of uniformly distributed nodes and quasi-LOS
propagation.

(ii) the ranging accuracy provided by the SM and the DE
algorithms depends on the overall number of nodes
in the environment rather than on their density;
in fact these algorithms cooperatively exploit nodes
which can be placed far away from the target node, as
already discussed in the previous Paragraph,

(iii) further simulations, whose results are not presented
here for space limitations, have been run to assess
the achievable performance when the generation
of clusters is based on a distributed procedure,
carried out by the nodes themselves. Our results
have evidenced that, since severe fading can lead to
uncorrelated channels among the nodes and between
the nodes and the anchor, distributed node selection
does not provide a substantial improvement, even
with the respect to the case of nodes randomly
selected by an anchor.

6. Conclusions

In this paper, a novel ranging technique based on RSS and
suitable to indoor scenarios affected by severe multipath
fading has been presented. The technique improves the
quality of RSS-based estimation: (a) exploiting the signals
radiated by a cluster of nodes; (b) averaging over multiple
independent power measurements for each node of the
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Figure 9: Comparison between the MRE offered by the proposed
ranging techniques and by a traditional RSS-based technique in the
presence of uniformly distributed nodes and NLOS propagation;
NP = 5 independent channel realizations are assumed for each
node.

cluster. Specific algorithms for the generation of clusters
and for the acquisition of power measurements have been
illustrated.

Numerical results have evidenced that the proposed
ranging technique is substantially more accurate than tra-
ditional strategies in specific scenarios. In addition, thanks
to the centralized nature of the algorithms for cluster
generation, it allows to move the complexity of an indoor
positioning system to a limited number of fixed anchors,
so reducing its maintenance costs and making possible to
adopt cheap and simple portable wireless nodes. Finally, it
is worth mentioning that in poorly populated areas, good
performance results can be still achieved if the node density
is artificially increased using multiple dummy devices in the
environment.
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