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This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output
feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying
time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and
unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the
ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with
the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while
keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results.

1. Introduction

Aswell known that the presence of time delay has a significant
effect on system performance, it often causes deterioration
of control system performance and may induce instability,
oscillation, and poor performance in a large number of
important physical, industrial, and engineering problems
involving [1] networked control systems, information, or
energy transportation. Therefore, the study of time delay
systems has important practical significance and has received
much attention in recent years [1–18]. Generally speaking,
control design methods for time delay systems can be
classified into two categories: delay-dependent [2–4, 11] and
delay-independent [5–10].

From the survey on the problems of delayed systems in
[19], there still have been many research issues coming up
in the control problems of delayed systems. In this paper,
we are concerned with the practical tracking for a more
general class of uncertain nonlinear systems in the following
form. (The following notations will be used throughout this
paper. R denotes the set of all real numbers. R+ denotes
the set of all nonnegative real numbers. R𝑛 denotes the real
𝑛-dimensional space. For a given vector or matrix 𝑋, 𝑋𝑇

denotes its transpose; for any 𝑥 ∈ R𝑛, ‖𝑥‖
1
denotes the 1-

norm; that is, ‖𝑥‖
1
= |𝑥
1
|+⋅ ⋅ ⋅+|𝑥

𝑛
|; ‖𝑥‖ denotes the Euclidean

(or 2-) norm of vector 𝑥, and for the matrix 𝑃, we use ‖𝑃‖ to
denote its norm induced by the 2-norm of the corresponding
vector; for any 𝑥 ∈ R𝑛, there always holds ‖𝑥‖

1
≤ √𝑛‖𝑥‖.)

Consider

̇𝜂
𝑖
= 𝜂
𝑖+1

+ 𝜓
𝑖
(𝑡, 𝜂) + 𝜑

𝑖
(𝑡 − 𝑑 (𝑡) , 𝜂 (𝑡 − 𝑑 (𝑡))) ,

𝑖 = 1, . . . , 𝑛 − 1,

̇𝜂
𝑛
= 𝑢 + 𝜓

𝑛
(𝑡, 𝜂) + 𝜑

𝑛
(𝑡 − 𝑑 (𝑡) , 𝜂 (𝑡 − 𝑑 (𝑡))) ,

𝑦 = 𝜂
1
− 𝑦
𝑟
,

(1)

where 𝜂 = [𝜂
1
, . . . , 𝜂

𝑛
]
𝑇

∈ R𝑛 is the system state vector with
the initial value 𝜂

0
= 𝜂(0); 𝑢 ∈ R, 𝑦 ∈ R, and 𝑡 → 𝑦

𝑟
(𝑡), 𝑡 ∈

R+, are the control input, system output, and reference signal,
respectively; 𝑑(𝑡) : 𝑅 → [0, 𝑑] is the time-varying time
delay satisfying ̇

𝑑(𝑡) ≤ 𝛾 < 1 for a known constant 𝛾; and
𝜓
𝑖
: R+ × R𝑛 → R, 𝜑

𝑖
: R+ × R𝑛 → R, 𝑖 = 1, . . . , 𝑛, are

unknown functions but continuous in the first argument and
locally Lipschitz in the second one. In what follows, suppose
only the system output is measurable.
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The objective of the paper is to design an adaptive
controller such that the resulting closed-loop system is well-
defined and globally bounded on R+, and furthermore,
for any prescribed tracking precision 𝑙 > 0 and every
initial condition, there is a finite time 𝑇

𝜆
> 0 such that

sup
𝑡≥𝑇𝜆

|𝑦(𝑡)| = sup
𝑡≥𝑇𝜆

|𝜂
1
(𝑡)−𝑦
𝑟
(𝑡)| ≤ 𝑙 (as described in [20]).

Tomake this possible, the following assumptions are imposed
on system (1) and reference signal 𝑦

𝑟
.

Assumption 1. There exists an unknown constant 𝜃
1
≥ 0 such

that





𝜓
𝑖
(𝑡, 𝜂)





≤ 𝜃
1
(




𝜂
1





+ ⋅ ⋅ ⋅ +





𝜂
𝑖





) + 𝜃
1
, 𝑖 = 1, . . . , 𝑛. (2)

Assumption 2. There exists an unknown constant 𝜃
2
≥ 0 such

that





𝜑
𝑖
(𝑡 − 𝑑 (𝑡) , 𝜂 (𝑡 − 𝑑 (𝑡)))






≤ 𝜃
2
(




𝜂
1
(𝑡 − 𝑑 (𝑡))





+ ⋅ ⋅ ⋅ +





𝜂
𝑖
(𝑡 − 𝑑 (𝑡))





) + 𝜃
2
,

𝑖 = 1, . . . , 𝑛.

(3)

Assumption 3. The reference signal 𝑦
𝑟
is continuously differ-

entiable, and moreover, there is an unknown constant𝑀 ≥ 0

such that

sup
𝑡≥0

(




𝑦
𝑟
(𝑡)




+




̇𝑦
𝑟
(𝑡)




) ≤ 𝑀. (4)

From Assumptions 1–3, it can be seen that the system
investigated is substantially different from those of closely
related tracking work [4, 10, 20] since the system considered
in this paper contains not only the time delay term but
also the unmeasured state dependent growth. In fact, [4, 10]
consider the state feedback tracking problem, and in both of
those papers, the assumption on reference signal is stronger
than Assumption 3 in the paper. Although [20] studies global
practical tracking problem by output feedback, it does not
include the time delay.

2. Global Practical Tracking Control via
Output Feedback

In the section, we design an adaptive output-feedback track-
ing controller for system (1) satisfying Assumptions 1–3 and
prove that, with unknown time-varying time delay 𝑑(𝑡) and
unknown growth rate 𝜃 in Assumption 1 and without know-
ing the bound of the reference signal 𝑦

𝑟
and its derivation ̇𝑦

𝑟

in Assumption 3, the global practical tracking for the systems
(1) can also be achieved.

First, with the help of the coordinates transformation𝑥
1
=

𝑦, 𝑥
𝑖
= 𝜂
𝑖
, 𝑖 = 2, . . . , 𝑛, system (1) becomes

�̇�
1
= 𝑥
2
+ 𝜙
1
(𝑡, 𝑥, 𝑦

𝑟
, ̇𝑦
𝑟
)

+ 𝜑
1
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡))) ,

�̇�
𝑖
= 𝑥
𝑖+1

+ 𝜙
𝑖
(𝑡, 𝑥, 𝑦

𝑟
)

+ 𝜑
𝑖
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡))) ,

𝑖 = 2, . . . , 𝑛 − 1,

�̇�
𝑛
= 𝑢 + 𝜙

𝑛
(𝑡, 𝑥, 𝑦

𝑟
)

+ 𝜑
𝑛
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡))) ,

(5)

where 𝜙
1
(⋅) = 𝜓

1
(𝑡, 𝑥
1
+ 𝑦
𝑟
, 𝑥
2
, . . . , 𝑥

𝑛
) − ̇𝑦
𝑟
, 𝜙
𝑖
(⋅) = 𝜓

𝑖
(𝑡, 𝑥
1
+

𝑦
𝑟
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑖 = 2, . . . , 𝑛.

By Assumptions 1 and 2, for 𝑖 = 1, . . . , 𝑛, it is easy to get
the following inequalities:





𝜙
𝑖





≤ 𝜃
1
(




𝑥
1





+




𝑥
2





+ ⋅ ⋅ ⋅ +





𝑥
𝑖





) + 𝜃
3
, (6)





𝜑
𝑖
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡)))






≤ 𝜃
2
(




𝑥
1
(𝑡 − 𝑑 (𝑡))





+




𝑥
2
(𝑡 − 𝑑 (𝑡))






+ ⋅ ⋅ ⋅ +




𝑥
𝑖
(𝑡 − 𝑑 (𝑡))





) + 𝜃
4
,

(7)

where 𝜃
3
= 𝜃
1
(𝑀 + 1) + 𝑀 > 0 and 𝜃

4
= 𝜃
2
(𝑀 + 1) > 0 are

unknown constants.
Then, motivated by [20], for any pregiven 𝑙 > 0, we

still construct the following adaptive tracking controller for
system (5):

̇
�̂�
𝑖
= 𝑥
𝑖+1

+ 𝐿
𝑖

𝑎
𝑖
(𝑦 − 𝑥

1
) , 𝑖 = 1, . . . , 𝑛 − 1,

̇
�̂�
𝑛
= 𝑢 + 𝐿

𝑛

𝑎
𝑛
(𝑦 − 𝑥

1
) ,

�̇� = max{
2(𝑦 − 𝑥

1
)
2

+ 2𝑥
2

1
− (𝜆
2
/2)

𝐿
2

, 0} with 𝐿 (0) = 1,

(8)

𝑢 = − (𝐿
𝑛

𝑘
1
𝑥
1
+ 𝐿
𝑛−1

𝑘
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝐿𝑘

𝑛
𝑥
𝑛
) , (9)

where 𝑎
𝑖
> 0 and 𝑘

𝑖
> 0, 𝑖 = 1, . . . , 𝑛, are design parameters

to be determined.
Similar to [20], before proving the claims of the theorem

below, we first provide three fundamental propositions. The
proof of Proposition 4 can be referred to Proposition 1 of
[20]. The last two propositions are rigorously proven in
Appendices A and B. Besides, by Proposition 4, it is not
difficult to verify that the right-hand side of the resulting
closed-loop system is continuous and locally Lipschitz in
(𝑡, 𝑥, 𝐿) in an open neighborhood of the initial condition, and
hence the closed-loop systemhas a unique solution on a small
interval [0, 𝑡

𝑠
) (seeTheorem 3.1, page 18 of [21]). Let [0, 𝑡

𝑓
) be

its maximal interval on which a unique solution exists, where
0 < 𝑡
𝑓
< +∞ (see Theorem 2.1, page 17 of [21]).
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Proposition 4. The gain 𝐿 determined by (8) is monotone
nondecreasing on its existence interval, and its dynamics are
locally Lipschitz in (𝑦, 𝑥

1
, 𝐿).

Proposition 5. Define 𝑒
𝑖
= 𝑥
𝑖
− 𝑥
𝑖
, 𝜀
𝑖
= 𝑒
𝑖
/𝐿
𝑖, and 𝑧

𝑖
= 𝑥
𝑖
/𝐿
𝑖,

𝑖 = 1, . . . , 𝑛, and denote 𝜀 = [𝜀
1
, . . . , 𝜀

𝑛
]
𝑇, 𝑧 = [𝑧

1
, . . . , 𝑧

𝑛
]
𝑇.

Then, by choosing the suitable Lyapunov-Krasovskii functional
𝑉(𝑡, 𝜀, 𝑧, 𝐿), there holds on [0, 𝑡

𝑓
)

�̇� ≤ − (𝐿 − Θ) (‖𝜀‖
2

+ ‖𝑧‖
2

) +

Θ

𝐿
2
, (10)

where Θ is a positive constant.

Proposition 6. For the resulting closed-loop system, if 𝐿 is
bounded on [0, 𝑡

𝑓
), then 𝑧 and 𝜀 are bounded on [0, 𝑡

𝑓
) as well.

Remark 7. Definitions of 𝜀, 𝑧 in Proposition 5 inspired by [20]
are given the same as those in [20]. In fact, such definitions
make it possible to offset the time delay term induced by
the nonlinear time delay term 𝜑

𝑖
(⋅) by skilly choosing a

Lyapunov-Krasovskii functional and thereby still can obtain
the similar result (inequality (10)), which plays a key role in
the proof of the theorem below. In addition, since Lyapunov-
Krasovskii functional method can provide less conservative
and delay-independent results than Razumikhin theorem
approach, we use Lyapunov-Krasovskii functional method to
design the controller of system (1) in this paper.

Now, we are in a position to state the following theorem,
to summarize the main results of the paper. For the proof of
the theorem, the reader is referred toTheorem 1 in [20].

Theorem 8. Under Assumptions 1–3, the global practical
output-feedback tracking problem of system (1) can be solved by
the dynamic output-feedback controller of forms (8) and (9).

3. An Illustrative Example

This section gives a numerical example to illustrate the
effectiveness of Theorem 8.

Example 1. Consider the following uncertain nonlinear sys-
tem:

̇𝜂
1
= 𝜂
2
+ 𝜃
2
𝜂
1
(𝑡 − 𝑑 (𝑡)) ,

̇𝜂
2
= 𝑢 − 𝜃

1
sign (𝜂

2
) (1 +





𝜂
2





) ,

𝑦 = 𝜂
1
− 𝑦
𝑟
,

(11)

where 𝑑(𝑡) = (1/2)(1 + sin(𝑡)) and sign(⋅) denotes the signal
function; that is, sign(𝑥) = 1(= −1) when 𝑥 > 0(< 0) and
sign(𝑥) = 0 when 𝑥 = 0; suppose 𝜃 = 0.5, 𝑦

𝑟
= sin(𝑡).

Then a direct application of our proposed methodology
yields a suitable adaptive output-feedback controller. Choose
design parameters 𝑎

1
= 1, 𝑎

2
= 10, 𝑘

1
= 12, and 𝑘

2
= 1. Let

the tracking accuracy be 𝜆 = 0.1, and let initial conditions
be 𝜂
1
(0) = 0, 𝜂

2
(0) = 1, 𝑥

1
(0) = 2, and 𝑥

2
(0) = −3;

we obtain Figures 1, 2, 3, 4, and 5 by numerical simulation.
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Figure 1: The trajectory of the tracking error 𝑦.
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Figure 2: The trajectories of the system states 𝜂
1
and 𝜂

2
.

From these figures, all the signals in the closed-loop system
are bounded. From Figure 1, it can be seen that although the
system contains time-varying time delay, after about seven
seconds, the tracking error satisfies |𝑦| = |𝜂

1
−𝑦
𝑟
| ≤ 0.1, which

means that the prescribed tracking performance is achieved.

4. Conclusions

In this paper we extend the result in [20] to solve the global
practical tracking problem for a class of nonlinear time delay
systems by output feedback. Unlike most of the existing
results, we allow the existence of unmeasurable states and
time-varying time delay in the nonlinear growth. A stability
analysis has been established based on the new Lyapunov-
Krasovskii functional. The proposed controller independent
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Figure 3: The trajectories of the observer states 𝑥
1
and 𝑥

2
.
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Figure 4: The trajectory of 𝑢.

of the derivative of time delay can make the tracking
error arbitrarily small. Our future research is to extend the
proposed framework for more general uncertain nonlinear
systems, such as the systems with unknown control coeffi-
cients. Since the adopted controller in this paper is delay-
independent, another topic of future work is to explore new
delay-dependent, less conservative control design method.

Appendices

Appendices A and B provide the rigorous proofs of funda-
mental Propositions 5 and 6, which are collected here for the
sake of compactness.
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Figure 5: The trajectory of high-gain 𝐿.

A. The Proof of Proposition 5

With the aid of the definitions of 𝑒
𝑖
’s, 𝜀
𝑖
’s, and 𝑧

𝑖
’s and by (5)

and (8), one has

̇𝑒
𝑖
= 𝑒
𝑖+1

− 𝐿
𝑖

𝑎
𝑖
𝑒
1
+ 𝜙
𝑖
(⋅) + 𝜑

𝑖
(⋅) , 𝑖 = 1, . . . , 𝑛 − 1,

̇𝑒
𝑛
= −𝐿
𝑛

𝑎
𝑛
𝑒
1
+ 𝜙
𝑛
(⋅) + 𝜑

𝑛
(⋅) ,

(A.1)

̇𝜀 = 𝐿𝐴𝜀 + Φ (𝑡, 𝑥, 𝑦
𝑟
, ̇𝑦
𝑟
, 𝐿)

+ Ψ (𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) −

�̇�

𝐿

𝐷𝜀,

�̇� = 𝐿𝐵𝑧 + 𝐿𝑎𝜀
1
−

�̇�

𝐿

𝐷𝑧,

(A.2)

where 𝑥 = [𝑥
1
, . . . , 𝑥

𝑛
]
𝑇, 𝑎 = [𝑎

1
, . . . , 𝑎

𝑛
]
𝑇, and 𝐷 =

diag{1, 2, . . . , 𝑛},

Φ = [

1

𝐿

𝜙
1
(⋅),

1

𝐿
2
𝜙
2
(⋅), . . . ,

1

𝐿
𝑛
𝜙
𝑛
(⋅)]

𝑇

,

Ψ = [

1

𝐿

𝜑
1
(⋅),

1

𝐿
2
𝜑
2
(⋅), . . . ,

1

𝐿
𝑛
𝜑
𝑛
(⋅)]

𝑇

,

𝐴 =

[

[

[

[

[

[

[

−𝑎
1

1 ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

−𝑎
𝑛−1

0 ⋅ ⋅ ⋅ 1

−𝑎
𝑛

0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

∈ R𝑛×𝑛,

𝐵 =

[

[

[

[

[

[

[

0 1 ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 1

−𝑘
1
−𝑘
2
⋅ ⋅ ⋅ −𝑘

𝑛

]

]

]

]

]

]

]

∈ R𝑛×𝑛.

(A.3)
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In terms of Lemma 1 in [22], suitable constants 𝑎
𝑖
’s and 𝑘

𝑖
’s

can be chosen such that the matrices 𝐴, 𝐵 are Hurwitz ones
and there exist 𝑃 = 𝑃

𝑇
> 0 and 𝑄 = 𝑄

𝑇
> 0 satisfying

𝐴
𝑇

𝑃 + 𝑃𝐴 ≤ −𝐼, 𝐷𝑃 + 𝑃𝐷 ≥ 0,

𝐵
𝑇

𝑄 + 𝑄𝐵 ≤ −2𝐼, 𝐷𝑄 + 𝑄𝐷 ≥ 0.

(A.4)

Keeping this in mind, choose the Lyapunov-Krasovskii func-
tional 𝑉 : R𝑛 × R𝑛 × R+ → R+

𝑉 (𝑡, 𝜀, 𝑧, 𝐿) = 𝑚𝑉
1
(𝜀) + 𝑉

2
(𝑧) + 𝑉

3
(𝑡, 𝐿) (A.5)

for system (A.2), where 𝑚 = ‖𝑄𝑎‖
2

+ 1 and 𝑉
𝑖
, 𝑖 = 1, 2, 3,

defined by

𝑉
1
(𝜀) = 𝜀

𝑇

𝑃𝜀,

𝑉
2
(𝑧) = 𝑧

𝑇

𝑄𝑧,

𝑉
3
(𝑡, 𝐿) =

𝑚 ‖𝑃‖

1 − 𝛾

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝑑(𝑡)

1

𝐿
2𝑖
(𝑠)

𝜑
2

𝑖
(𝑠, 𝑥 (𝑠) , 𝑦

𝑟
(𝑠)) d𝑠.

(A.6)

Then, on the interval [0, 𝑡
𝑓
), along the solutions of (A.2), the

derivative of 𝑉 satisfies

�̇� = −𝐿𝑚‖𝜀‖
2

− 𝑚

�̇�

𝐿

𝜀
𝑇

(𝐷𝑃 + 𝑃𝐷) 𝜀 − 2𝐿‖𝑧‖
2

−

�̇�

𝐿

𝑧
𝑇

(𝐷𝑄 + 𝑄𝐷) 𝑧 + 2𝑚𝜀
𝑇

𝑃Φ + 2𝑚𝜀
𝑇

𝑃Ψ

+ 2𝐿𝜀
1
𝑧
𝑇

𝑄𝑎 +

𝑚 ‖𝑃‖

1 − 𝛾

×

𝑛

∑

𝑖=1

(

1

𝐿
2𝑖
𝜑
2

𝑖
−

1

𝐿
2𝑖
(𝑡 − 𝑑 (𝑡))

⋅ 𝜑
2

𝑖
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡)))

× (1 −
̇

𝑑 (𝑡)) ) .

(A.7)

By supposition, 𝑑(𝑡) ∈ [0, 𝑑], ̇
𝑑(𝑡) ≤ 𝛾 < 1, and noticing

that𝐿(𝑡) is nondecreasingwith𝐿 ≥ 1, the following inequality
holds:

−

𝑚 ‖𝑃‖

1 − 𝛾

1

𝐿
2𝑖
(𝑡 − 𝑑 (𝑡))

𝜑
2

𝑖

× (𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) (1 −

̇
𝑑 (𝑡))

≤ −𝑚 ‖𝑃‖

1

𝐿
2𝑖
(𝑡)

𝜑
2

𝑖

× (𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) , ∀𝑡 ∈ [0, 𝑡

𝑓
) .

(A.8)

This, together with (A.4) and the fact that �̇� ≥ 0, 𝐿 ≥ 1 on
[0, 𝑡
𝑓
), leads to

�̇� ≤ −𝐿𝑚‖𝜀‖
2

− 2𝐿‖𝑧‖
2

+ 2𝑚𝜀
𝑇

𝑃Φ

+ 2𝑚𝜀
𝑇

𝑃Ψ + 2𝐿𝜀
1
𝑧
𝑇

𝑄𝑎 +

𝑚 ‖𝑃‖

1 − 𝛾

𝑛

∑

𝑖=1

1

𝐿
2𝑖
𝜑
2

𝑖

− 𝑚 ‖𝑃‖

𝑛

∑

𝑖=1

1

𝐿
2𝑖
𝜑
2

𝑖
(𝑡, 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡))) .

(A.9)

By the method of completing square, we have






2𝑚𝜀
𝑇

𝑃Φ






≤ 6𝜃𝑚𝑛 ‖𝑃‖ (‖𝜀‖

2

+ ‖𝑧‖
2

) +

4𝜃
2

1
𝑚‖𝑃‖

𝜃𝐿
2

,

𝑚 ‖𝑃‖

1 − 𝛾

𝑛

∑

𝑖=1

1

𝐿
2𝑖
𝜑
2

𝑖
≤

4𝜃
2

2
𝑚𝑛
2

‖𝑃‖

1 − 𝛾

(‖𝜀‖
2

+ ‖𝑧‖
2

) +

2𝜃
2

4
𝑚𝑛 ‖𝑃‖

(1 − 𝛾) 𝐿
2
,






2𝑚𝜀
𝑇

𝑃Ψ






≤ 𝑚 ‖𝑃‖ (‖𝜀‖

2

+ ‖𝑧‖
2

)

+ 𝑚 ‖𝑃‖

𝑛

∑

𝑖=1

1

𝐿
2𝑖
𝜑
2

𝑖

× (𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) ,

2𝐿𝜀
1
𝑧
𝑇

𝑄𝑎 ≤ 𝐿‖𝑧‖
2

+ 𝐿‖𝑄𝑎‖
2

‖𝜀‖
2

.

(A.10)

Thus, setting Θ = max{(6𝜃𝑛 + 1)𝑚‖𝑃‖ + (4𝜃
2

2
𝑚𝑛
2
‖𝑃‖/(1 −

𝛾)), (4𝜃
2

1
𝑚‖𝑃‖/𝜃) + (2𝜃

2

4
𝑚𝑛‖𝑃‖/(1 − 𝛾))}, from these inequal-

ities and (A.9), it follows that (10) holds on [0, 𝑡
𝑓
), and this

completes the proof of Proposition 5.

B. The Proof of Proposition 6

Notice that 𝐿(𝑡
𝑓
) = sup

0≤𝑡<𝑡𝑓
𝐿(𝑡) since 𝐿 is monotone

nondecreasing, continuous, and bounded on [0, 𝑡
𝑓
). Along

the same line as A2 of [20], the boundedness of 𝑧 on [0, 𝑡
𝑓
)

is easily obtained. Then, let us show that 𝜀 is bounded on
[0, 𝑡
𝑓
). To this end, we introduce the change of coordinates

𝜉
𝑖
= 𝑒
𝑖
/(𝐿
∗
)
𝑖, 𝑖 = 1, . . . , 𝑛, where 𝐿∗ is a constant satisfying

𝐿
∗

≥ max{𝐿 (𝑡
𝑓
) , (6𝜃

1
𝑛 + 1) ‖𝑃‖ +

4𝜃
2

2
𝑛
2

‖𝑃‖

1 − 𝛾

+ 3} .

(B.1)

Then, the error dynamics (A.1) is transformed into

̇
𝜉 = 𝐿
∗

𝐴𝜉 + 𝐿
∗

𝑎𝜉
1
− 𝐿Γ𝑎𝜉

1
+ Φ
∗

(𝑡, 𝑥, 𝑦
𝑟
, ̇𝑦
𝑟
)

+ Ψ
∗

(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) ,

(B.2)

where Γ = diag{1, 𝐿/𝐿∗, . . . , (𝐿/𝐿∗)𝑛−1}, Φ∗ = [𝜙
1
/𝐿
∗
,

𝜙
2
/(𝐿
∗
)
2

, . . . , 𝜙
𝑛
/(𝐿
∗
)
𝑛

]

𝑇, and Ψ
∗

= [𝜑
1
/𝐿
∗
, 𝜑
2
/(𝐿
∗
)
2

, . . . ,

𝜑
𝑛
/(𝐿
∗
)
𝑛

]
𝑇.
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For system (B.2), we choose

𝑉
4
(𝑡, 𝜉)

= 𝜉
𝑇

𝑃𝜉 +

‖𝑃‖

1 − 𝛾

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝑑(𝑡)

1

(𝐿
∗
)
2𝑖
𝜑
2

𝑖
(𝑠, 𝑥 (𝑠) , 𝑦

𝑟
(𝑠)) d𝑠.

(B.3)

Similar to (A.8), one readily gets

−

‖𝑃‖

𝛾 − 1

1

(𝐿
∗
)
2𝑖
𝜑
2

𝑖
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡)))

× (1 −
̇

𝑑 (𝑡))

≤ − ‖𝑃‖

1

(𝐿
∗
)
2𝑖
𝜑
2

𝑖
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦

𝑟
(𝑡 − 𝑑 (𝑡))) ,

∀𝑡 ∈ [0, 𝑡
𝑓
) ,

(B.4)

and then, on [0, 𝑡
𝑓
), differentiating function 𝑉

4
yields that

�̇�
4
≤ −𝐿
∗



𝜉





2

+ 2𝜉
1
𝐿
∗

𝑎
𝑇

𝑃𝜉 − 2𝜉
1
𝐿𝑎
𝑇

Γ𝑃𝜉

+ 2Φ
∗𝑇

𝑃𝜉 + 2Ψ
∗𝑇

𝑃𝜉 +

‖𝑃‖

1 − 𝛾

𝑛

∑

𝑖=1

1

(𝐿
∗
)
2𝑖
𝜑
2

𝑖

− ‖𝑃‖

𝑛

∑

𝑖=1

1

(𝐿
∗
)
2𝑖
𝜑
2

𝑖

× (𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) .

(B.5)

With the definitions of 𝜀
𝑖
and 𝜉
𝑖
, using (6), (7), and (B.1), by

the method of completing the square, we obtain





2𝜉
1
𝐿
∗

𝑎
𝑇

𝑃𝜉






≤ 𝐿
∗2



𝑎
𝑇

𝑃







2

𝜉
2

1
+




𝜉





2

,






2𝜉
1
𝐿𝑎
𝑇

Γ𝑃𝜉






≤ 𝐿
2



𝑎
𝑇

Γ𝑃







2

𝜉
2

1
+




𝜉





2

,






2Ψ
∗𝑇

𝑃𝜉






≤ ‖𝑃‖





𝜉





2

+ ‖𝑃‖

×

𝑛

∑

𝑖=1

1

(𝐿
∗
)
2𝑖
𝜑
2

𝑖
(𝑡 − 𝑑 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑦
𝑟
(𝑡 − 𝑑 (𝑡))) ,






2Φ
∗𝑇

𝑃𝜉






≤ 6𝜃
1
𝑛 ‖𝑃‖ (





𝜉





2

+ ‖𝑧‖
2

) +

4 ‖𝑃‖ 𝜃
2

3

𝜃
1

,

‖𝑃‖

1 − 𝛾

𝑛

∑

𝑖=1

1

𝐿
2𝑖
𝜑
2

𝑖
≤

4𝜃
2

2
𝑛
2

‖𝑃‖

1 − 𝛾

(




𝜉





2

+ ‖𝑧‖
2

) +

2𝜃
2

4
𝑛 ‖𝑃‖

1 − 𝛾

,

(B.6)

which, together with (B.1), means that, on [0, 𝑡
𝑓
),

�̇�
4
≤ −

1

𝜆max (𝑃)
𝑉
4
+ 𝜃
5
�̇� + 𝜃
5
( sup
0≤𝑡<𝑡𝑓

‖𝑧 (𝑡)‖)

2

+ 𝜃
5
𝜆
2

+ 𝜃
5
,

(B.7)

where 𝜃
5
> 0 is a constant. From this, one easily gets that 𝜉

is bounded on [0, 𝑡
𝑓
). Moreover, by the definitions of 𝜀

𝑖
and

𝜉
𝑖
and the boundedness of 𝑧 (just proved), 𝜀 is bounded on

[0, 𝑡
𝑓
).
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