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Abstract In the present study we search for a new stel-
lar model with spherically symmetric matter and a charged
distribution in a general relativistic framework. The model
represents a compact star of embedding class 1. The solu-
tions obtained here are general in nature, having the follow-
ing two features: first of all, the metric becomes flat and also
the expressions for the pressure, energy density, and electric
charge become zero in all the cases if we consider the con-
stant A = 0, which shows that our solutions represent the
so-called ‘electromagnetic mass model’ [17], and, secondly,
the metric function ν(r), for the limit n tending to infinity,
converts to ν(r) = Cr2 + ln B, which is the same as con-
sidered by Maurya et al. [11]. We have investigated several
physical aspects of the model and find that all the features
are acceptable within the requirements of contemporary the-
oretical studies and observational evidence.

1 Introduction

Generally in astrophysics compact stars, formed due to grad-
ual gravitational collapse, are considered to fall into three
different categories: white dwarfs, neutron stars, and black
holes. This classification is based on the internal structure
and composition of the stars where the former contain matter
in one of the densest forms found in the universe. Accord-
ing to the strange matter hypothesis strange quark matter
could be more stable than nuclear matter and thus neutron
stars should largely be composed of pure quark matter. Pos-

a e-mail: sunil@unizwa.edu.om
b e-mail: kumar001947@gmail.com
c e-mail: saibal@associates.iucaa.in
d e-mail: d.deb32@gmail.com

sible observational signatures associated with the theoreti-
cally proposed states of matter inside the compact stars there-
fore have remained an active research arena in astrophysics,
different types of mathematical modeling of such compact
objects being considered.

The idea that the usual 4-dimensional spacetime is embed-
ded in higher-dimensional flat space was conceived earlier by
Eddington [1]. In some recent studies [2,3] one can notice the
revival of this idea in different aspects of the research arena.
Randall and Sundrum [2] proposed a new higher-dimensional
mechanism for solving the hierarchy problem where an expo-
nential hierarchy arises from the background metric (which
is a slice of AdS5 spacetime). On the other hand, Anchor-
doqui and Bergliaffa [3] have shown that the 5-dimensional
model introduced by Randall and Sundrum [2] is (one-half
of) a wormhole and thus present a simple model of brane-
world cosmology in which the background is a static anti-de
Sitter manifold with two 3-branes.

In this connection we would like to highlight here specific
characteristics of n-dimensional manifold through Vn , which
can always be embedded in m[= n(n + 1)/2]-dimensional
pseudo-Euclidean space. It can easily be shown that the
embedding class turns out to be 6 as the relativistic spacetime
is 4-dimensional, whereas the class of spherically symmetric
and plane symmetric spacetime, respectively, are 2 and 3.
Therefore, a classification scheme may be presented as fol-
lows: (i) the standard model of modern cosmology, i.e. the
Friedmann–Lemaître–Robertson–Walker spacetime [4–7] is
of class 1, (ii) the Schwarzschild [8] exterior and interior solu-
tions are of class 2 and class 1 respectively, and (iii) the Kerr
metric is of class 5 [9]. However, in the present investigation
our discussion is limited to the static spherically symmetric
metric in curvature coordinates which is embeddable in 5D
pseudo-Euclidean space and hence is of embedding class 1
metric. A detailed discussion of different aspect of the class
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1 metric as well as application can be obtained in some of
our previous work [10–16].

In the present investigation we would like to utilize
the aforementioned embedding class 1 metric to construct
electromagnetic mass models by obtaining charged perfect
fluid distributions. Historically, the concept of electromag-
netic mass model (EMMM) with vanishing charge density
along with other physical parameters was first proposed by
Lorentz [17] and later on by several other authors [18–37]. It
can be observed that in all these electromagnetic mass models
the fluid has a negative pressure and hence we have repulsive
gravity in the form of the equation of state (EOS) ρ + p = 0,
due to vacuum polarization, where ρ and p represent the
density and the pressure, respectively. The experimental evi-
dence that the electron’s diameter is not larger than 10−16 cm
leads to the conclusion that the classical model of the elec-
tron must correspond to a region of negative density [30]. It
is argued by Ray et al. [29] that it can also be combined with
a Weyl-type character of the field.

However, it is worth to mention here that even without the
application of the aforesaid EOS one can construct EMMM
by adopting an algorithm developed by Maurya et al. [10].
Maurya et al. [11–16] have successfully applied the method
along with the EOS having the general form p = ωρ, where
ω is the EOS parameter and which for ω = −1 provides
the above stated EOS. It is very crucial to point out that in
applying this EOS in the case of compact stars one has to
keep in mind the internal structure of the spherical configu-
ration. We shall later on show that depending on the internal
structure of the compact star under consideration the EOS
parameter differs from case to case and therefore requires a
specific EOS applicable to neutron stars as well as strange
stars. This interesting point has been demonstrated in Fig. 8
of our present investigation.

Against the above conceptual background in this work we
consider the metric ν = n ln

(
1 + Ar2

) + ln (B) for n ≥ 2.
The choice of constraint on n is due to the following reasons:
(i) for n = 0, ν has no meaning here in the present context as
the spacetime via ν becomes flat, (ii) for n = 1, this reduces
to the same as the Kohlar–Chao solution [38], and (iii) for
n < 2 the term (1 + Ar2)(n−2) in the expression of λ occurs
in the denominator. We have calculated the data for n = 3.3
to 1000 and wanted to see what would happen in the result
for very high values of n. So, one can see in Table 2 that if
n is large enough i.e. n = 100, 1000, and even more, then
nA becomes approximately a constant, say nA = C . This
means that, if we take the limit as n tends to infinity, then the
metric ν will convert to the following form: ν = Cr2 + ln B,
which is the same as the metric considered for the solution
of EMMM, (ν = 2 Ar2 + ln B) [11].

In the present work we shall try to form a model for the
charged fluid of class 1 by assuming specific metric poten-
tial(s) of the class 1 metric such that they do not form a subset

of the metric potentials of the conformally flat Schwarzschild
interior metric (considering the de Sitter and Einstein uni-
verses as particular cases) [8] and the non-conformally flat
Kohler–Chao metric [38]. Now, if the charge can be made
zero in the charged fluid so obtained, the metric will turn out
to be flat by virtue of the class 1 structure of the metric.

The outline of the present investigation is as follows:
in Sect. 2 the field equations and some specific results are
provided for the Einstein–Maxwell spacetime, whereas we
obtain a new class of solutions in Sect. 3. The matching con-
ditions are discussed in Sect. 4 and physical properties of the
model are explored in Sect. 5. We pass some comments in
Sect. 6.

2 The field equations and the results

2.1 The Einstein–Maxwell spacetime

Let us consider the static spherically symmetric metric in the
form

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2θdφ2) + eν(r)dt2. (1)

The Einstein–Maxwell field equations can be given as

Gi
j = Ri

j − 1

2
Rgi j = κ(T i

j + Ei
j ), (2)

where G = 1 = c in relativistic geometric unit and κ = 8π

is the Einstein constant. The matter in the star is expected
to be a locally perfect fluid. However, T i

j and Ei
j are the

energy-momentum tensor of the fluid distribution and the
electromagnetic field, respectively, and they can be defined
as

T i
j = [(ρ + p)vi v j − p δi j ], (3)

Ei
j = 1

4π

(
−Fim Fjm + 1

4
δi j F

mnFmn

)
, (4)

where ρ is the energy density, p is the pressure, and vi is the
four-velocity defined as e−ν(r)/2vi = δi 4.

2.2 The embedding class 1 spacetime

The metric (1) may represent a spacetime of embedding class
1, if it satisfies the condition of Karmarkar [39],

R1414 R2323 = R1212R3434 + R1224R1334, (5)

where R2323 �= 0 [40].
The above condition with reference to (1) yields the fol-

lowing differential equation:

λ′ eλ

1 − eλ
= −2 ν′′

ν′ − ν′. (6)
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The solution of the differential equation (6)

λ = ln
(

4 + Kν′2eν
)

− 2 ln 2, (7)

ν′ (r) �= 0, eλ(0) = 1, (8)

and

ν′ (0) = 0, (9)

where K is an arbitrary non-zero integration constant.
Using the spherically symmetric metric (1) and Eq. (7),

the Einstein–Maxwell field equations can be written as the
following set of equations [11]:

8π p = ν′

r2

[
4 r − Kν′ eν

4 + Kν′2 eν

]
+ q2

r4 , (10)

8 π p =
4

(
2 ν′ + 2 rν′′ − Kν′ ν′′eν + rν′2

)

r
(
4 + Kν′2eν

)2

−q2

r4 , (11)

8 π ρ = 8 r Kν′ ν′′eν +4 r Kν′3eν +4 Kν′2eν +K 2ν′4e2 ν

r
(

4+Kν′2eν
)2

−q2

r4 ,

(12)

where the differential with respect to r is denoted by a prime.

3 A new class of solutions

To determine the expression for the electric charge, we use
the pressure isotropy condition. Therefore, from Eqs. (10)
and (11), we get

q2

r4 =
[
Kν′eν

2r
− 1

]
⎡

⎢
⎣

ν′ (4 + K ν′2eν) − 2 r (2 ν′′ + ν′2)

r
(

4 + Kν′2eν
)2

⎤

⎥
⎦ .

(13)

As a consequence of Eq. (13) we conclude that if the
charge vanishes in a charged fluid of embedding class 1 then
for the Schwarzschild interior solution [8] (or special cases
like the de Sitter universe or the Einstein universe) or the
Kohler–Chao solution [38] there will only survive a neutral
counterpart unless either the surviving spacetime metric is
flat or the charge cannot be zero. Obviously, in the absence
of charge either of the two factors on the right hand side of
(13) has to be zero. It can be verified that the vanishing of
the first factor of (13) gives rise to the Kohlar–Chao solu-
tion. However, the vanishing of the second factor ultimately
provides the Schwarzschild interior solution.

Let us consider m(r) to be the mass function for an elec-
trically charged fluid sphere, given as

m(r) = r

2

[
1 − e−λ(r) + q2

r2

]
. (14)

By plugging Eqs. (7) and (13) into Eq. (14), eventually we
get

m (r) =
[

K r eν ν′2

2 (4 + Kν′2eν)

+ r
(
Kν′eν − 2 r

) [ ν′ (4 + K ν′2eν) − 2 r (2 ν′′ + ν′2)]
4

(
4 + Kν′2eν

)2

]

.

(15)

We observe that the expressions for the pressure (p), den-
sity (ρ), electric charge (q), and mass (m) are dependent on
the metric function ν. As a consequence we consider the met-
ric function ν to find the spherically symmetric charged fluid
solutions in the following form:

ν(r) = n ln
(

1 + Ar2
)

+ ln B, (16)

where n is a positive number and A is a constant such that
n ≥ 2 and A > 0.

The above form of the metric potential ν(r) represents the
same 2�(r) as considered by Lake [41] in his Eq. (9) for
A = 1/α and B = 1. Therefore, the explanations of Eq.
(17) are mostly the same as in Ref. [41]. The function ν(r)
is monotone increasing with a regular minimum at r = 0.
If we look at the mass function m(r) in Eq. (15), then it is
clear that by using this source function of Eq. (16), the mass
function can easily be evaluated exactly for any n. Thus, the
metric function ν will generate a ‘class’ of solutions having
the physical properties which are expected to be quite distinct
for each value of n. It is noted that previously the solutions
for either n = 1, . . . , 5 [42] or n ≥ 5 [43] solutions were
known. With n = 1, . . . , 5, they constitute half of all the pre-
viously known physically interesting solutions in curvature
coordinates [42] whereas for N ≥ 5 the solutions are accept-
able on physical grounds and even exhibit a monotonically
decreasing subluminal adiabatic sound speed [43]. It will also
be interesting to note that the above form of ν(r) is quite dif-
ferent from the function of Schwarzschild or Kohlar–Chao
as hinted at by Eq. (13). Thus, in the present study we expect
that each source function ν(r) which is a monotone increas-
ing function with a regular minimum at r = 0 necessarily
provides, via the mass function in Eq. (15), a static spheri-
cally symmetric perfect fluid solution of Einstein’s equations
which is regular at r = 0.

On the other hand, the metric potential λ(r) can be
obtained from Eq. (7) as

λ(r) = ln
[
1 + K A B n2(Ar2)(1 + Ar2)n−2

]
, (17)
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Fig. 1 Variation of the metric potentials eν (left panel) and eλ (right panel) with respect to the fractional radial coordinate r/R for n = 3.3. For
plotting this figure the values of the arbitrary constants A, B, and K are used from Table 1

Fig. 2 Variation of the effective pressure, p̃ = (8π/A)p, and the effective energy density, ρ̃ = (8π/A)ρ, with respect to the fractional radial
coordinate r/R for n = 3.3. For plotting this figure the values of the arbitrary constants A, B, and K are used from Table 1

where n ≥ 2 and A, B are positive constants. In Fig. 1 the
profiles of ν(r) and λ(r) are shown, which exhibit regular
behavior.

The expressions of the electromagnetic mass and the elec-
tric charge are then given by
2m (r)

r
= Ar2

×
⎡

⎣ n f 2 Ar2(n − 2) + Df n [−2 n f Ar2 + (2 + 4 A2r4 + 6 Ar2 + 3 DAr2 f n )]
2
(
1 + A2r4 + 2 Ar2 + DAr2 f n

)2

⎤

⎦ ,

(18)

E2 = A2r2

[
n f 2 Ar2(n − 2) + Df n[2 (1 − n) f + 3 Df n]

2
(

1 + A2r4 + 2 r2 + DAr2 f n
)2

]

,

(19)

where f = (
1 + Ar2

)
, E = q

r2 , and D = A B n2K .
Similarly, the expression for the pressure and the energy

density are given by (profiles are shown in Fig. 2)

8 π p = A

[
n2Ar2 f 2 − D f n ( 2 + 2 Ar2 + DAr2 f n ) + 2 n(1 + Ar2) p1

2
(
1 + A2r4 + 2 Ar2 + DAr2 f n

)2

]

,

(20)

8 π ρ = A

[
−n2Ar2 f 2 + 2nAr2 f 2(1 + 3D f n−1) + Df n ρ1

2(1 + A2r4 + 2 Ar2 + DAr2 f n)2

]

,

(21)

where p1 = [2 + A2r4 + 3 Ar2 + DAr2 f n], ρ1 = [6 −
4A2r4 + 2Ar2 + DAr2 f n].

The expressions for the pressure gradients (by taking x =
Ar2) are given by

dp

dr
= −2A2r

8π

[
P1 + P2 + P3

2(1 + 2 Ar2 + A2r4 + DAr2 f n)3

]

, (22)

dρ

dr
= −2A2r

8π

[
ρ1 + ρ2 + ρ3

2(1 + 2 Ar2 + A2r4 + DAr2 f n)3

]

, (23)

where

P1 = 2 Dn3x2 f n+1 − n2(1 + 2 x − 2 x3 − x4)

+ Dn2x f n(7 + 8 x + x2 + 2 Dx f n), (24)
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Table 1 Values of the model
parameters D, A, B, and K for
different charged compact stars
for n = 3.3

Compact star candidates D A(cm−2) B K (cm2)

Her X-1 5.8164 2.2296 × 10−13 0.4403 5.4406×1012

RXJ 1856-37 5.7794 2.8960 × 10−13 0.4274 4.2877×1012

SAX J1808.4-3658 (SS1) 5.1682 3.5583 × 10−13 0.2725 4.8944×1012

SAX J1808.4-3658 (SS2) 5.0772 4.7255 × 10−13 0.2560 3.8540×1012

P2 = 2 n f (3 + 7 x + x3 + 5 x2)

+ 2 nD f n+1(4 + 3 x + x2 + Dx f n), (25)

P3 = −Df n(6 + 12 x + 6 x2)

− D2 f 2 n(3 + 4 x + 3x2 + Dx f n), (26)

ρ1 = 2 Dn3x2 f n+1 − n2(1 + 2 x − 2 x3 − x4)

+ Dn2x f n[8 x + x2 + 7 − 6 Dx f n], (27)

ρ2 = −Df n(22 + 36 x + 6 x2 − 8 x3)

− D2 f 2 n(11 + 4 x + 3 x2 + D2x f n), (28)
ρ3 = 2 n(1 + 2 x − 2 x3 − x4)

− 2 nD f n[−6 − 3 x + 10 x2 + 7 x3 + (5 − 3x) Dx f n].
(29)

4 Matching condition

For any physically acceptable charged solution, the following
boundary conditions must be satisfied:
(i) The interior of metric (1) for the charged fluid distribu-
tion join smoothly with the exterior of Reissner–Nordström
metric

ds2 = −
(

1 − 2M

r
+ Q2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2M

r
+ Q2

r2

)
dt2, (30)

at the surface of charged compact stars, whose mass is the
same as M at r = R.
(ii) The pressure p must be finite and positive at the center
r = 0 and it must be zero at the surface r = R of the charged
fluid sphere [44].

By matching the first and second fundamental forms, the
interior of the metric (1) and the exterior of the metric (30)
at the boundary r = R (the Darmois–Israel condition), we
can find the constants D, B, and M . These therefore can be
obtained as follows:

D = −Fn + (n − 1)AR2 Fn + nA2R4 Fn +
√

(R) F2(n+1)

AR2 F2n ,

(31)

B = (1 + AR2)−n[1 + D AR2 (1 + AR2)n−2]−1, (32)

M = AR3

2

×
[
n F2 AR2(n − 2) + DFn [−2 n AR2 F + 2 F (2 F − 1) + 3 DAR2 Fn ]

2
(
F2 + DAR2Fn

)2

]

,

(33)

where F = (1+AR2), (R) = 1+2n2A2R4+2 n A R2 F .
However, the value of the constant A can be determined

by using the density at the surface of the star i.e. ρs at r = R,
so that we get

A = 8 π ρs

[
2(F2 + 2 Ar2 + DAR2Fn)

2

−n2AR2F2 + 2 n A R2F2(1 + 3D Fn−1) + D Fn �(R)

]

,

(34)

where �(R) = [6 − 4A2R4 + 2AR2 + DAR2Fn].
Also the value of the constant K can be determined by

using the relation D = A B n2 K ,

K = D

n2 A B
. (35)

5 Physical features of the charged compact star models

Let us look at the results so far we have obtained in the pre-
vious section. A close observation of the results immediately
reveals the following two distinct features:
(i) The metric (1) becomes flat and also the expressions for all
the physical parameters, viz. pressure, energy density, elec-
tric charge etc., become zero in all the cases if we take A = 0.
This feature shows that our solutions represent the so-called
‘electromagnetic mass model’ [17].
(ii) In this work we have taken the metric function ν(r), with
n ≥ 2 and have calculated the data of the stellar models for
n = 3.3 to 1000. We come across a very interesting result:
that when we increase the value of n at very large value, say
higher than 100, then the product nA becomes approximately
a constant C (see Table 2). So for the limit of n tending to
infinity, the present metric potential ν(r) in Eq. (16) will
convert to the following form: ν(r) = Cr2 + ln B, which is
the same as considered by Maurya et al. [11]. However, the
nature of the present models, at very large value of n i.e. at
infinity, can be found in Ref. [11].
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Table 2 Numerical values of
the product of n and A i.e. nA
for different charged compact
star models

n = 3.3 n = 10 n = 100 n = 1000
Compact stars nA nA nA nA

Her X-1 7.36 ×10−13 7.32 ×10−13 7.29 ×10−13 7.29 ×10−13

RXJ 1856-37 9.56 ×10−13 9.47 ×10−13 9.43 ×10−13 9.44 ×10−13

SAX J1808.4-3658 (SS1) 11.74 ×10−13 11.50 ×10−13 11.40 ×10−13 11.39 ×10−13

SAX J1808.4-3658 (SS2) 15.59 ×10−13 15.25 ×10−13 15.10 ×10−13 15.08 ×10−13

Let us now, besides the above two general features, try to
explore some other physical behavior of our models.

5.1 Regularity condition

(i) Potentials at the center r = 0: From Eqs. (16) and
(17), we observe that the metric potentials at the center
r = 0 becomes eλ(0) = 1 and eν(0) = B. This implies
that metric potentials are singularity free and positive at
the center. However, both are monotonically increasing
function (Fig. 1).

(ii) Pressure at the center r = 0: From Eq. (20), one can
obtain p0 = A (2n− D)/8 π , where A and D are posi-
tive numbers. Hence, the pressure should be positive at
the center and this implies that D < 2n.

(iii) Density at the center r = 0: From Eq. (21), we get
the central density ρ0 = (3 A D/8 π), which must be
positive at the center. Since A is positive, D is also
positive due to the positivity of ρ. We know that D =
A B n2 K , where A, B, n all are positive. This implies
that K is also a positive quantity.

5.2 Causality and well behaved condition

The speed of sound must be less than the speed of light, i.e.
0 ≤ V = √

dp/dρ < 1. However, for a well behaved nature
of the charge solution, Canuto [45] argued that the speed of
sound should monotonically decrease outward for the equa-
tion of state with an ultra-high distribution of matter. Form
Fig. 3, one can observe that the speed of sound is monoton-
ically decreasing outwards. This implies that our model for
the charged fluid is well behaved.

It can also be observed from Fig. 3 that the velocity of
sound starts decreasing from n = 3.3 and this clearly indi-
cates that the solution is physically valid for the values from
n = 3.3 onwards. However, one thing is then important to
know, namely what will happen for increasing n toward a
very large value. It seems possible to get a reasonable model
even when n tends to infinity. This is because the product of
nA becomes approximately constant for large values of n.
So if we take n tending to infinity the metric ν reduces to the
case of Ref. [11] as discussed earlier in the introductory part
of this Sect. 5.

Fig. 3 Variation of the velocity of sound with respect to the fractional
radial coordinate r/R for n = 3.3. For plotting this figure the values of
the arbitrary constants A, B, and K are used from Table 1

5.3 Energy conditions

For physically valid charged fluid sphere, the null energy
condition (NEC), the strong energy condition (SEC), and the
weak energy condition (WEC) all must be satisfied simulta-
neously at all the interior points of the star. Therefore, in our
model the following inequalities should hold good:

NEC :ρ + E2

8π
≥ 0, WEC :ρ − p + E2

4π
≥ 0,

SEC :ρ − 3p + E2

2π
≥ 0.

In Fig. 4 we have shown the energy conditions which are
in conformance with physical requirements.

5.4 Generalized TOV equation

The generalized Tolman–Oppenheimer–Volkoff (TOV) is
equation [46,47]

− MG(ρ + pr )

r2 e
λ−ν

2 − dp

dr
+ σ

q

r2 e
λ
2 = 0, (36)

where MG is the effective gravitational mass given by

MG(r) = 1

2
r2ν′e(ν−λ)/2. (37)
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Fig. 4 Variation of energy conditions with respect to the fractional radial coordinate r/R for n = 3.3. For plotting this figure the values of the
arbitrary constants A, B, and K are used from Table 1

Equation (36) describes the equilibrium condition for a
charged perfect fluid subject to the sum total interaction
between the gravitational (Fg), hydrostatic (Fh), and electric
(Fe), so that one should get

Fg + Fh + Fe = 0, (38)

where

Fg = −1

2
(ρ + p) ν′

= −nA2r

8π

[
2 Df n+1

(
1 − Ar2 + 2 nAr2

) + 2 n f 3

2 f (1 + 2 Ar2 + A2r4 + DAr2 f n)2

]

,

(39)

Fh = −dp

dr
, (40)

Fe = A2r

4π

[
Fe1 + Fe2 + Fe3 + Fe4 + Fe5

2 (1 + 2 Ar2 + A2r4 + DAr2 f n)3

]

, (41)

Fe1 = −2 Dn3A2r4 f n+1

+ n2(3+10 Ar2+12 A2r4+6 A3r6 + A4r8), (42)

Fe2 = n2DAr2 f n(−1 + 4 Ar2 + 5 A2r4 + 2 DAr2 f n),

(43)

Fe3 = Df n[6 + 12 Ar2 + 6 A2r2

+ Df n(3 + 4 Ar2 + 3 A2r4 + DAr2 f n)], (44)

Fe4 = 2 n[3 + 10 Ar2 + 12 A2r4 + 6 A3r6 + A4r8], (45)

Fe5 = 2 nD f n[ 3 + 2 A3r6 + 6 Ar2

+5 A2r4 + 2 DA2r4 f n]. (46)

From the plot for the TOV equation in Fig. 5 it can be
observed that the system is in static equilibrium. The sum
of all the forces, like gravitational, hydrostatic, and electric
forces, is zero. It is interesting to note from Fig. 5 that the
gravitational force is counter balanced by the joint action of
hydrostatic and electric forces.
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Fig. 5 Variation of different
forces with respect to the
fractional radial coordinate r/R
for n = 3.3. (i) Her X-1 (top
left), (ii) RXJ 1856-37 (top
right), (iii) SAX J1808.4-3658
(SS1) (bottom right). (iv) SAX
J1808.4-3658 (SS1) (bottom
right). For plotting this figure
the values of the arbitrary
constants A, B, and K are used
from Table 1

5.5 Effective mass–radius relation

For physically valid models, the ratio of the mass and the
radius of a compact star models cannot be arbitrarily large.
Buchdahl [48] has imposed the stringent restriction on the
mass-to-radius ratio that for the perfect fluid model it should
be 2M/R < 8/9. However, Böhmer and Harko [49] have
given the generalized expression of lower bound for a charged
compact object as follows:

Q4 + 18 R2Q2

12 R4 + R2Q2 ≤ 2 M

R
. (47)

The upper bound of the mass for charged fluid sphere was
generalized by Andréasson [50] and one proved that

2 M

R
≤

2
(

2 R2 + 3 Q2 + 2 R
√
R2 + 3 Q2

)

9 R2 . (48)

We, therefore, conclude from the above two conditions
that 2M/R must satisfy the following inequality:

Q4 + 18 R2Q2

12 R4 + R2Q2 ≤ 2 M

R
≤

2
(

2 R2 + 3 Q2 + 2 R
√
R2 + 3 Q2

)

9 R2 .

(49)

In this model, the effective gravitational mass has the fol-
lowing form:

Meff = 4π

∫ R

0

(
ρ + E2

8π

)
r2dr = 1

2
R[1 − e−λ(R)], (50)

which can finally be expressed as

Meff = 1

2
R

[
DAR2

(
1 + AR2

)n−2

1 + DAR2
(
1 + AR2

)n−2

]

. (51)

5.6 Surface redshift

We define the compactification factor as

u = Meff

R
= 1

2
[1 − e−λ(R)] = 1

2

[
DAR2

(
1 + AR2

)n−2

1 + DAR2
(
1 + AR2

)n−2

]

.

(52)

The surface redshift corresponding to the above compact-
ness factor u is obtained:

Z =(1 − 2u)−1/2 − 1 =
√

1 + DAR2
(
1+AR2

)n−2 − 1.

(53)

In Table 3 we have shown AR2, which are very much
required as all the equations are dependent on AR2, specially
Eq. (33). As we know that, for each different star the ratio
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Table 3 Numerical values of
physical parameters M (M�),
R (km) and AR2 for different
values of n

n = 3.3 n = 10 n = 100 n = 1000
Compact star M (M�) R (km) AR2 AR2 AR2 AR2

Her X-1 0.98 6.7 0.1000 0.03272 0.003260 0.0003258

RXJ 1856-37 0.9048 6.003 0.10437 0.03414 0.003400 0.0003400

SAX J1808.4-3658 (SS1) 1.435 7.07 0.1779 0.05750 0.005700 0.0005695

SAX J1808.4-3658 (SS2) 1.3232 6.33 0.1893 0.06108 0.006048 0.0006042

Fig. 6 Variation of redshift with respect to the fractional radial coordi-
nate r/R for n = 3.3. For plotting this figure the values of the arbitrary
constants A, B, and K are used from Table 1

M/R is fixed, for this purpose we suppose the value of AR2

to determine the ratio M/R from Eq. (33). The feature of Z
is shown in Fig. 6.

5.7 Electric charge

The amount of charge at the center and boundary for differ-
ent stars are given in Table 5. Also, from Fig. 7 it is clear that
the charge profile is minimum at the center and monotoni-
cally increasing away from the center, however, it acquires
the maximum value at the boundary of the stars. To convert
the amount of charge in Coulomb, every value should be
multiplied by a factor 1.1659 × 1020 in Table 5.

5.8 Equation of state

In the present work as such we have not directly used any
EOS. As a result of the used metric conditions, the algorithm
(which is used to calculate the compact star properties) does
not require an EOS. Here, in essence, the expression EOS
means a function p(ρ), where p is the fluid pressure and
ρ is the energy density. The resulting pressure and density
profiles (see Fig. 2) follow from the solution of the differential
equations after adjusting (in order to fit the properties of the
known compact star candidates, e.g. Her X-1, RXJ 1856-37,

Fig. 7 Variation of the electric charge (q) with respect to the fractional
radial coordinate r/R for n = 3.3. For plotting this figure the values of
the arbitrary constants A, B, and K are used from Table 1

SAX J1808.4-3658 (SS1) and SAX J1808.4-3658 (SS2)) the
parameters A, B, etc.

Let us now suppose that the pressure of the charged fluid
sphere is related with the energy density, respectively, in Eqs.
(20) and (21), by a parameter ω via the EOS, p = ω ρ, which
is given by (see Fig. 8)

ω = A

[
n2Ar2 f 2 − Df n(2 + 2Ar2 + DAr2 f n) + 2n(1 + Ar2)p1

−n2Ar2 f 2 + 2nAr2 f 2(1 + 3Df n−1) + Df nρ1

]

.

(54)

In Fig. 8 the variation of the factor ω with respect to the frac-
tional radial coordinate (r/R) has been plotted. We note from
Fig. 8 that the ratio ω = p/ρ is less than unity throughout
the interior of stars. This unique result obviously implies that
the densities are dominating over the pressures everywhere
inside the star and therefore the underlying fluid distribution
is non-exotic in its nature [51].

Let us consider now another feature of Figs. 2 and 8. If one
compares the different curves in these figures it seems that
the EOS is different for the four presented compact star can-
didates. Though initially this seems unphysical as the EOS
for elementary matter should be the same for all of the stars,
however, it is possible that two compact stars (e.g. two quark
stars or two neutron stars) have quite different EOS [52]. The
idea emerging from Fig. 8 is that the general EOS must be
the same but they can take separate forms for different stars.
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Table 4 The energy densities and central pressure for different charged compact star candidates for n = 3.3

Compact star Central density (gm/cm3) Surface density (gm/cm3) Central pressure (dyne/cm2) 2M/R

Her X-1 2.0892×1015 1.0742×1015 8.4453×1034 0.432

RXJ 1856-37 2.6964×1015 1.3588×1015 1.1487×1035 0.444

SAX J1808.4-3658 (SS1) 2.9626×1015 1.1407×1015 2.4628×1035 0.598

SAX J1808.4-3658 (SS2) 3.8651×1015 1.4409×1015 3.4786×1035 0.616

Table 5 The electric charge for
different compact stars in the
relativistic unit (km)

r/a Her X-1 RXJ 1856-37 SAX J1808.4-3658 (SS1) SAX J1808.4-3658 (SS2)

0.0 0.0 0.0 0.0 0.0

0.2 0.0126 0.0117 0.0189 0.0174

0.4 0.098 0.0905 0.1466 0.135

0.6 0.3144 0.2902 0.468 0.4314

0.8 0.6971 0.6426 1.0253 0.9453

1.0 1.2564 1.1562 1.8141 1.6706

Fig. 8 Variation of the parameter ω with respect to the fractional radial
coordinate (r/R): the upper left, upper right, lower left and lower right
panels, respectively, for n = 3.3, n = 10, n = 100, and n = 1000. For

plotting this figure the values of the arbitrary constants A, B, and K are
used from Table 1
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As a special example, we would like to mention the object
SAX J 1808:4-3658 which was actually “by far the fastest-
rotating, lowest field accretion-driven pulsar known” [52].
In Ref. [52] several EOS for rotating neutron star models are
investigated which did not able to reproduce the fast rotation
of the object SAX J. By taking EOS of strange star mod-
els one can understand SAX J and eventually there are two
different EOS so that one has two models: SS1 and SS2 in
connection with which one needs different EOS for different
stars.

On the other hand, an interesting point has been demon-
strated in Fig. 8 where we have shown four compact stars in
four panels for different values of n and observe that varia-
tions of the EOS with the radial coordinate are, in general,
different for different stars. However, by looking at Fig. 8
one can note that effectively only two different EOSs occur
(Her X-1 is quite similar to RXJ 1856-37 and SAX-1 is sim-
ilar to SAX-2).

6 Conclusion

We have investigated a new stellar model with spherically
symmetric matter distribution under the Einstein–Maxwell
spacetime. It is observed that the model represents a com-
pact star of embedding class 1. The solutions obtained here
are general in their nature having the following two specific
features:

(i) The metric becomes flat and also the expressions for
the pressure, energy density and electric charge become
zero in all the cases if we consider constant A = 0,
which shows that our solutions represent the so-called
‘electromagnetic mass model’ [17].

(ii) The metric function ν(r), for the limit n tending to infin-
ity, converts to ν(r) = Cr2 + ln B, which is the same
as considered by Maurya et al. [11].

We have also studied several physical aspects of the model
and find that all the features are acceptable within the
expected requirements of the contemporary theoretical works
and observational evidence. Some salient features of these
physical behaviors of our models are as follows:

(1) Regularity condition: We have discussed the following
cases:

(i) Potentials at the center r = 0: From Eqs. (16) and
(17), we observe that the metric potentials at the
center r = 0 becomes eλ(0) = 1 and eν(0) = B.
This implies that metric potentials are singularity
free and positive at the center. However, both are
monotonically increasing functions (Fig. 1).

(ii) Pressure at the center r = 0: From Eq. (20), one
can obtain p0 = A (2n − D)/8 π , where A and D
are positive. The pressure should be positive at the
center and this implies that D < 2n.

(iii) Density at the center r = 0: From Eq. (21), we get
the central density ρ0 = (3 A D/8 π), which must
be positive at the center. Since A is positive, D is
also positive due to the positivity of ρ. We know
that D = A B n2 K , where A, B, n are all positive.
This implies that K is also positive.

(2) Causality and well behaved condition: The speed of
sound as suggested by Canuto [45] is satisfied in the pre-
sented compact star model as is evident from Fig. 3. It
can be observed that the velocity of sound starts decreas-
ing from n = 3.3 and this clearly indicates that the
solution is well behaved from n = 3.3 onwards and it
seems possible to get a reasonable model even when n
tends to infinity.

(3) Energy conditions: In our model all the energy condi-
tions, viz. NEC, SEC, and WEC, are satisfied simulta-
neously at all the interior points of the star.

(4) Generalized TOV equation: The generalized Tolman–
Oppenheimer–Volkoff (TOV) equation [46,47] is satis-
fied here and indicates that the model is in static equi-
librium under the interaction between the gravitational,
hydrostatic, and electric forces.

(5) Effective mass–radius relation: We have verified that
the Buchdahl [48] condition 2M/R < 8/9 is satisfied in
our model within the stipulated range as can be observed
from Table 4.

(6) Surface redshift: The surface redshift in the present
model is found to be satisfactory as can be seen from
Fig. 6.

(7) Electric charge: The amount of charge at the center and
boundary for different stars can be found from Table 5.
Figure 7 depicts that the charge is minimum at the cen-
ter and monotonically increasing away from the center,
however, it acquires the maximum value at the bound-
ary of the stars.

(8) Equation of state: We can form separate EOS for every
star as evident from Figs. 2 and 8 from our model. This
means we can predict nature of EOS for each star though
initially we do not have any EOS to start with whether it
is neutron star or strange star. If we restrict ourselves by
choosing a specific EOS our claim of the model for com-
pact stars would not be practically correct. Rather we
choose to use metric conditions, the algorithm (which is
used to calculate the compact star properties) does not
require an EOS. In Fig. 8 the EOS is different for the
four presented compact star candidates because there
the internal constituent matters of the stars are in differ-
ent proportions. However, from Fig. 8 we observe that
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effectively only two different EOS occur (Her-X-1 is
quite similar to RXJ 1856-37 and SAX-1 is similar to
SAX-2).

As a final comment, however, one may wish to consider
several other aspects of the embedding class 1 metric and per-
form further investigations on the corresponding model for
compact stars as far as ultra-modern observational evidence
is concerned.
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