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Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive
stimuli, memory consolidation) and individual characteristics (intellectual quotient). Oddly enough, the definition of a spindle is
both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome
and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential.
Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-
analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively
extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is
provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection
methods in a robust and comparable way.

1. Introduction

Spindles are intriguing brain oscillations observed in par-
ticular stages of sleep (NREM sleep) and during anesthe-
sia. They constitute the first characteristic sleep patterns
observed in electroencephalographic (EEG) signal whose
neurophysiological mechanisms were elucidated [1, 2]. The
first hint for the involvement of thalamocortical loops in their
generation dates back to 1945 [3, 4]. The first mechanistic
models were proposed in the 90s [5–8] and were regularly
updated since then [9–13]. According to thesemodels, spindle
generationmainly depends on an interplay between thalamus
and cortex, including the hippocampus [12]. Because thalam-
ocortical loops play a key role in buttressing brain function,
it is not surprising that modifications of spindle character-
istics were reported in a wide array of physiological and
pathological conditions: learning and memory [13–15], aging
[16, 17], and neurodegenerative and psychiatric diseases [18].

Likewise, the interindividual variability of spindles is large
[19] compared to their intraindividual stability [20] or to
their similarity between monozygotic twins [21]. They also
appear under various species-specific blends in rodents [9],
carnivores [22, 23], nonhuman primates [24], and humans.

Despite the wealth of data accumulated about these osci-
llations, spindles continue to raise a number of questions.The
mechanisms underpinning the functional impact, sometimes
referred to as function, of spindles remain obscure and were
the focus of several hypotheses [23, 25]. Even the develop-
ment of a generic, systematic, reproducible, and robust
method to detect and analyze sleep spindles proved surpris-
ingly difficult [26].

This review aims to capture the various aspects of spindles
that should be accounted for by such “automatic spindle
detectionmethods” (ASDM).The review consists of twomain
parts. The first part describes the sleep spindle physically
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(Section 2.1) and topographically (Section 2.2). The second
part describes the general workflow of ASDM (Section 3)
as well as each part of it (Sections 3.4 and 3.3) and then
proposes a consensus method to assess ASDM performance
(Section 4). Finally, a discussion and conclusion are given
(Section 5).

2. Spindle Description

In 1968, Rechtschaffen and Kales defined spindles as “. . . a
burst of oscillatory brain activity visible on an EEG that occurs
during stage 2 sleep. It consists of 12–14Hz waves that occur for
at least 0.5 seconds” [27]. More recently, Iber et al. specified in
the manual of the American Academy of SleepMedicine [28]
the following: “Sleep spindle [is] a train of distinct waves with
frequency 11–16Hz (most commonly 12–14Hz) with a duration
≥0.5 seconds, usually maximal in amplitude using central
derivations.” Still there is some freedom in how spindles are
described individually (Section 2.1) but also in terms of their
variability (Section 2.2).

2.1. Physical Description. Thephysical description defines the
spectral (frequency and intrafrequency) and temporal (shape
and duration) properties of the sleep spindle.

2.1.1. Main Frequency. No neurophysiological argument can
still delimit definitely the frequency range of a sleep spindle.
Indeed, spindle frequency variability has been identified
between individuals (twins [21], age [16, 17]), within indi-
viduals (across the night [20]), and even between spindles
[29]. In animals, spindles frequency can range from 7–15Hz
in cats [22] to 6–10Hz in ferrets [9]. In humans, the spindle
frequency range is typically between 11 and 16Hz, although
some authors reportmuch slower (9-10Hz [30, 31]) and faster
(18Hz [32]) spindles. Furthermore, (at least) two types of
spindles are reported in humans: late slow frontal (9–12Hz)
and early fast centroparietal (13–15Hz) spindles (reviewed in
[18, 33]). This dichotomy was reported in various EEG and
MEG studies [13, 18, 20, 30] but also with functionalmagnetic
resonance imaging (fMRI) [34] and after pharmacological
manipulation [35]. This distinction, based on the spindle
time onset, frequency, and topography, also corresponds
to different phase relationships with sleep slow oscillations
and implications in memory consolidation [12, 14, 15, 31]
(Section 2.2).

2.1.2. Intraspindle Frequency. Changes in intraspindle fre-
quency were recently reported, a phenomenon attributed to
variations in levels of depolarization of thalamocortical (TC)
neurons [30].This phenomenonwas observedwith both EEG
and MEG [36–38] but also using deep brain recordings [30,
39]. On average, 50% spindles show a decrease in intraspindle
frequency (Figure 1) [30, 36–40]. On average, the oscillation
deceleration has been estimated around−0.8Hz/s over a large
population of spindles [30].

2.1.3. Duration. Theminimumduration of a spindle has been
set to 0.5 s seemingly without any firmobjective physiological
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Figure 1: The intraspindle frequency variation. Averaged (60 EEG
sensors) spatiotemporal evolution of different frequency during
an example spindle. Power in different frequencies is color coded
(warmer colors are higher frequencies). Modified from [37].

criterion. Admittedly a minimum number of oscillations are
necessary to estimate spindle frequency or its typical waxing
waning shape. However, some authors now detect sleep
spindles as short as 0.3 s [26].

By contrast, no maximal duration value has been pro-
posed. Yet, spindles are discrete events, a feature that dis-
tinguishes them from spindling activity (i.e., the continuous
EEG activity between 11 and 16Hz, often reported as the EEG
power in this frequency band). Different neurophysiologic
mechanisms were proposed to explain spindle termination
[13, 41]: the refractory period due to sustained open calcium
channels [9], the intra-spell-out regulation [12], and the
desynchronization of cortical neurons [42].

On EEG recordings, the spindle duration critically dep-
ends on its delimitationwith the identification of spindle start
and end which is heavily dependent on frequency analysis
specifications (when the signal is filtered in a specific freq-
uency range) and/or on an arbitrary amplitude threshold
(Section 3.2).

No direct link has been found between spindle duration
and frequency. Nevertheless, both are considered as very
stable characteristics from night to night in an individual
(reviewed in [26]) whereas they vary substantially between
individuals [20].

2.1.4. Waxing Waning Shape. Sleep spindles typically have a
symmetrical waxing and waning shape [26]. The reasons for
this morphological aspect are not fully understood. During
the initial part of a spindle, the population of cortical neu-
rons recruited synchronously by the oscillation grows. Con-
sequently, on EEG recordings the amplitude of spindle oscil-
lations increases: it corresponds to the waxing phase (Fig-
ure 2). In the second phase, different neuronal mechanisms
are thought to induce a reduction or a dephasing of recruited
neuronal population leading to the waning phase during
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Figure 2: Spindles are generated in thalamocortical (TC) loop.The reticular (nRt) cells encounter the TC cells confined within the thalamus.
The nRt cells inhibit TC cells which project excitatory inputs to the cortical cells. Cortical cells send excitatory input back to thalamic neurons.
Sleep spindles arise from a cascade of recurrent, inhibitory, and excitatory signals between nRt, TC, and cortical cells. Modified from [18].

which the EEG amplitude of oscillations decreases [41]
(Figure 2).

2.2. Topographical Description. During a burst of successive
sleep spindles (5–15 events) [13, 43], typically recurring every
4 s [16, 42–45], each sleep spindle is described as late slow
frontal or early fast centroparietal according to its time onset,
its mean frequency, and its position on the median line.
Spindle can also be described as local or global according
to its visibility over scalp and isolated or combined with a
SlowWave Oscillation. Moreover, according to analysis done
simultaneously in EEG and MEG, some sleep spindles are
only visible in one modality only. This differentiation gives
rise to a newTCmodel [46] which could explain the presence
of focal spindles [30, 39].

2.2.1. Late Slow Frontal versus Early Fast Centroparietal
Spindles. This distinction between late slow frontal and early
fast centroparietal spindles comes from observations done
in EEG and MEG but has also been reinforced with fMRI
[34] and pharmacological manipulation [35]. Sleep spindle
frequency is related to its location, with a relative decrease of
the mean frequency from centroparietal to frontal areas.This
difference between faster and slower spindles would be more
pronounced in deeper brain areas with a sharp distinction
around the supplementary motor area (SMA) (Figure 3(a))
[30]. In [38], Zerouali et al. proposed that themean frequency
observed could be relative to the duration of the fast and slow
regimes composing the spindle itself depending on network
properties [47, 48]. On average fast centroparietal spindles
precede slow frontal spindles by 200–500ms whereas no
significant differences are found within both regions [30, 31,
49] (Figure 3(b)).

2.2.2. EEG versus MEG Spindles. It is admitted that spindles
recorded in EEG andMEG come from dissociated generators
[50–53].This postulate is due to differences observed between
EEG and MEG spindles: the coherence is larger between
pairs of EEG than MEG sensors (resp., 0.7 compared to 0.3
[52]); spindles are even sometimes only visible in one of
the two modalities [52, 53]. Typically, MEG spindles precede
EEG spindles. Bonjean et al. account for this finding by
assuming two subpopulations of thalamocortical cells: core
and matrix TC cells [42, 46] (Figure 4). The former, the core
pathway, projects focally to middle cortical layers in specific
cortical areas whereas the latter sends projections diffusely
to superficial cortical layers of widespread cortical regions
[24, 54, 55]. This model reconciles the difference in MEG
and EEG as follows: spindles would first focally occur in
the core pathway (MEG spindles) and then quickly spread
to the matrix pathway (EEG spindles) which contributes to
their widespread synchronization across the cortical network
[46].This hypothesis is supported by observations in humans
[52, 53].

In theory, the displacement of electric charges induced by
neuronal activity produces both electric and magnetic fields
observable, respectively, from EEG and MEG recordings.
Therefore, beyond these different source dynamics, differ-
ences in scalp topography are also partially explained by the
way the electric and magnetic fields project on the scalp:
EEG (resp., MEG) sensors show higher sensitivity for sources
oriented radially (resp., tangentially) to the scalp surface.
Moreover the low-conductivity of the skull induces large
spreading, that is, spatial blurring, in the EEG contrary to
MEG. Finally inMEG, different sensor types are used, mainly
magnetometer and radial/planar gradiometer, each having a
specific sensitivity profile.
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Figure 3: Fast and slow sleep spindles. (a) Average frequency of spindles across depth electrodes (𝑛 = 50 electrodes in 13 individuals).
The color of each circle denotes the mean spindle frequency in an individual electrode according to its precise anatomical location. Green
outlines mark electrodes placed more laterally than the midline. The two outliers in the medial prefrontal cortex (red circles) were the only
electrode placements in one atypical individual in whom parietal spindles may be even faster than 13.5Hz. (b) Quantitative analysis of time
offsets in spindle occurrence. A graph showing the order in which spindles are detected across multiple regions (node color) and the mean
temporal delays within each pair of regions (edge color). Mean order and timing across spindles for all individuals (𝑛 = 12) indicate that
centroparietal spindles precede frontal spindles. Orbitofrontal cortex (OF), anterior cingulate cortex (AC), posterior cingulate cortex (PC),
presupplementary motor area (pSMA), and supplementary motor area (MSA). Modified from [30].

Still sleep spindle characteristics observed from both
modalities should be the same with only differences in terms
of spatial distribution [56, 57]. This means that ASDM used
in EEG should be transposable to MEG signals.

2.2.3. Local versus Global Spindles. Although spindles are
usually analyzed across multiple recording sites (global spin-
dles), some spindles could also appear independently, in
separate brain regions (local spindles). The regional aspect
of sleep spindles is interpreted as a consequence of the
reprocessing by sleep spindles of specific memory traces [58].

This differentiation is particularly reported in deeper
brain areas (via MEG [52, 53] or intracerebral electrodes
(EEG) [30, 39, 44]) with actually more local spindles than
global ones (73% of all spindles are observed in less than
half the electrodes [30]) (Figure 5).The comparison of deeper
homotopic regions also revealed many spindles observed
only in one hemisphere (40.4 ± 1.7% [39]), indicating that
differences between anterior and posterior regions could not
account for local spindles [39].

The observation of local and global spindles could also
be explained by the model proposed by Bonjean et al. [46]:
spindles would first come from the core pathway focally
(local spindles) and then spread to the matrix pathway more
synchronized (global spindles) [30, 39, 46].

The distinction between early fast centroparietal and late
slow frontal spindles as well as the local and global spindles
should encourage people to analyze and detect spindles over
all channels.

2.2.4. Oscillatory Context of Spindles. Sleep spindles are just
one type of EEG oscillating waves observed during NREM
sleep which is mainly characterized by three rhythms: Slow
Wave Oscillation (SWO) (≤1 Hz), delta oscillation (1–4Hz),
and sleep spindles (7–15Hz) (reviewed in [22]). However,
other rhythms are also detected during NREM sleep: cortical

gamma rhythms (30–80Hz), cortical or hippocampal ripples,
and neocortical ripples (>100Hz) (reviewed in [11]).

Thalamic delta oscillations (1–4Hz) were shown to arise
from the interplay between a nonspecific cation current and
the low threshold Ca2+ current. At the cortical level, they are
usually considered as SWO generated under conditions of
low sleep pressure [59]. The SWO (≤1 Hz) is a fundamental
sleep oscillation characterized, at the cellular level, by a
bistable membrane potential that alternates between a hyper-
polarized state, during which the neurons are silent, and
a depolarized state, during which the neurons fire. During
hyperpolarization, the thalamus is disabled and no sustained
activity exists between thalamus and cortex whereas during
active state the thalamus generates fast oscillations within
thalamocortical network. This oscillation seems to have its
origin in cortical area [11] but the thalamus contributes to its
generation [60].

SWO, sleep spindles, and ripples in hippocampus are
hierarchically nested [61, 62]. The nesting of frequencies
results in synchrony over widespread regions in brain activity
[61, 63–65]: ripples occur during troughs of sleep spindles
whereas sleep spindles are mainly observed during troughs
of slow oscillations (in deep area) [61].

Significant differences were found in the association of
early fast and late slow spindles with SWO. Taking the most
negative trough of the SWO as the reference time (𝑡 = 0),
early fast centroparietal spindles appear to ride on the positive
(going upward) potential of the SWO whereas late slow
frontal spindles appear on the downward side of the SWO
[30, 31] (Figure 6(a)). The shift between the spindle peak and
the reference time (𝑡 = 0) is more positive, themore posterior
the fast spindle, andmore negative, themore anterior the slow
spindle (Figure 6(b)). This observation is in keeping with the
fact that the SWO is a traveling wave going from the anterior
to the posterior brain areas [66].
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Core Matrix

Figure 4: A thalamocortical system to reconcile differences between EEG and MEG sleep spindles. The distribution of matrix cells (red)
and core cells (blue) indicated in a frontal section through the middle of a macaque monkey thalamus. The core thalamic projections are
topographically ordered to the middle layers of a single cortical field. The matrix thalamic projections collectively project diffusely to the
superficial layers of widespread cortical fields. Modified from [24].

With intracerebral analysis, Nir et al. [39] showed that
53.7% ± 3.1% of sleep spindles were not associated with
SWO (no SWO around sleep spindle ±1.5 s) and among these
isolated spindles, 79.8% were considered as local spindles. In
deeper brain areas, sleep spindles and SWO are not so much
associated. However, at the scalp level, the mean spindle fre-
quency is on average slower during sustained SWO(0.5–4Hz,
corresponding to slow wave sleep) than during light sleep
(N2) [30, 67]. Deeper sleep is thus associated with lower
spindles frequencies and density [30]. Moreover, this differ-
entiation in spindle frequency over sleep stages was observed
within NREM sleep. During the first four cycles, the time
courses of mean spindles frequency and slow waves activities
(SWA) have been associated with a U-shape [68] and an
inverse U-shape [30], respectively (Figure 7).

2.2.5. Source Localization. Spindles are observed most often
through the TC loop (thalamus, cortex, and neocortex).
Nevertheless, with intracerebral EEG, some spindles have
also been observed in parahippocampal gyrus, hippocampus,
and amygdala [30, 65]. A few spindles have also been
observed in medial temporal lobe but this could be due to
pathology in epilepsy patients [30, 69, 70].

From fMRI studies, a more general view of brain areas
activated during sleep spindles also emerges [34, 71, 72], with
the distinction of late slow frontal and early fast centroparietal
spindles (Figure 8). The distribution of brain activity during
both these spindle types have significant positive responses
in the thalamus, cortex (paralimbic area, anterior cingulate
cortex, and the left insula), and neocortex (bilateral response
in the superior temporal gyrus) [34].
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Figure 5: Local spindles. (a) An example of local spindles. Depth EEG along with corresponding spectrograms in the spindle frequency range
(9–16Hz) during 15 s of slow wave sleep. (b) Distribution of involvement (percent of monitored brain structures expressing each spindle).
Considering local spindle below 50%of involvement, most sleep spindles are local (21240 spindles in 49 electrodes of 12 individuals).Modified
from [30].

The activity of the early fast centroparietal spindles seems
to be more constrained in the thalamus but extended at
the cortical level (orbitofrontal and middle frontal areas,
precentral and middle frontal gyri, SMA, and midcingulate
cortex ventral to the cingulate motor zones) and in hip-
pocampus [34, 71, 72]. During late slow frontal spindles,
the brain activation resembles the common activity pattern
with significant responses identified in the thalami, anterior
cingulate, insular, and auditory cortices [34]. Compared to
late slow frontal spindles (Figure 8(b)), the activations relative
to early fast centroparietal spindles were significantly higher
in orbital and middle frontal, precentral and postcentral, and
insular cortices but also in mesial prefrontral cortex and
hippocampus [34, 72].

The reasons for this complex topographic distribution are
currently debated and include aspects of neocortical propaga-
tion and resonance, different contributions of thalamic nuclei
and focal versus distributed thalamocortical projections from
first- and higher-order thalamic nuclei, and the possibility of
several spindle-generating loci. Most of these characteristics
have also been observed from source reconstruction models
of MEG and EEG recordings [38, 49, 73].

From this last section, we can conclude that at least
two kinds of spindles exist: early fast centroparietal spindles
and late slow frontal spindles. Both spindle types are distin-
guishable temporally [30, 38] and spectrally [20] as well as
functionally since they are implied in different brain pro-
cessing [15, 31] and respond differently to pharmacological
manipulation [35]. Moreover, they seem to be initiated from
different part in the brain despite a common origin in the
thalamocortical loop [34, 49, 71, 72]. Finally, both spindle
types would have a different dynamic over the scalpwith early

fast centroparietal spindles more locally synchronized and
late slow frontal spindles more globally synchronized [38].

3. Automatic Spindle Detection Method

Traditionally, sleep experts proceed by visual inspection
but this task is time consuming and prone to intra- and
interscorer variability. It is also heavily dependent on the
scorer’s ability to visually distinguish spindles among varying
EEG background activity.The need for an “automatic spindle
detection method” (ASDM) is linked to the increase in
interest for sleep spindles and the ever increasing amount
of digital data to be analyzed. On the positive side an
automated method allows for a detection which is faster,
more reproducible, and systematic. However the issue with
automated methods is their weak robustness when spindles
characteristics change and the weak agreement with sleep
experts [26].

The aim of this section is to describe and comment on
automatic spindle detection approaches, through examples of
published ASDM; ASDM are mainly characterized by their
signal decomposition and decision making processes. Before
these, a preprocessing step is usually necessary to prepare
data. Finally, spindle characteristics can also be provided
after the detection itself. A typical ASDM thus processes the
EEG signal, channel by channel, via five serially connected
modules, as shown in Figure 9.

From the spindle properties described in the previous
sections, we can propose that a spindle should be detected
as follows:

(i) a discrete burst of oscillations, that is, not a continu-
ous activity;
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(ii) oscillations with frequency going from 9 to 16Hz or
any explicitly specified range within this span;

(iii) a nonstationary wave due to a possible waxing and
waning shape;

(iv) local or synchronized event over the scalp: due to
its focal apparition in deeper area, the spindle can
also appear at scalp level as a superposition of several
independent events.

The various ASDM described and cited in Sections 3.1 to
3.3 are summarized in a Supplementary Table S1 in Supple-
mentaryMaterial available online at http://dx.doi.org/10.1155/
2016/6783812.

3.1. Preprocessing. In addition to bandpass filtering and signal
downsampling [34, 74], preprocessing dealsmainlywith non-
oscillatory transients. These activities can result from both

measurements artifacts and nonrhythmic brain activities. By
filtering data, these distortions are amplified making the
interpretation of time-frequency analysis more complex and
leading to spurious oscillatory activity [75, 76]. To address
this issue, Parekh proposed the Dual-Basis Pursuit Denoising
(Dual-BPD) method: it consists of nonlinearly decomposing
the raw EEG signal into nonoscillatory transient and sus-
tained rhythmic oscillation components using long and short
windows for the STFT [77]. This technique was applied prior
to filtering with 5 different methods [17, 78–81] and improved
the spindle detection methods, increasing the number of
truly detected events and reducing the number of falsely
detected events [77]. Finally, specific artifacts and/or high
alpha activity detection methods were developed [82–85] to
clean up the signal or exclude noisy segments before spindle
detection. This is why ASDM have been tested on specific
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artifact-free EEG periods [86, 87]. Therefore the preprocess-
ing stage in a spindle detection method should ideally follow
these successive steps:

(1) a decomposition method such as the Dual-BPD to
remove as many transients as possible;

(2) bandpass filtering to remove slow fluctuations due to
artifacts [88] and high frequencies to allow decima-
tion without aliasing;

(3) downsampling to reduce computing time;
(4) artifacts and high alpha activity rejection.

3.2. Decomposition. The decomposition module consists in
delimiting the events of interest in temporal and frequential
domain before the feature extraction. It can either be operated
directly on the preprocessed signal with spectral analysis and
time-windowing (simple decomposition) or be preceded by
some signal transformations (complex decomposition).

3.2.1. Simple Decomposition. The order of operations (spec-
tral analysis and time-windowing) determines if the features
extracted are of temporal (temporal analysis) or spectral
(spectral analysis) nature.

With the exception of waveform morphology for spindle
detection (WMSP) [89], in temporal analysis, data are usually
filtered first. This is typically done with a classical filter (e.g.,
Butterworth or Gauss filters). In this case, the bandpass
filtering is applied in one frequency band [17, 63, 79, 83, 84,
86, 87, 90–93] or multiple ones, for example, to distinguish
slow and fast spindles [34]. As frequencies also vary across
individuals [20], filtering procedures, adapted to the specific
frequency bands of spindles and individuals, have also been
developed [80, 94]. Nevertheless spindle frequencies also
slowly change overnight (Section 2.2) and filtering in narrow

frequency bands can induce distortions in the signal. As an
alternative to classical filtering techniques, a few approaches
use wavelet filters [74, 95].TheWavelet Transform (WT) is an
efficient tool to decompose a signal into a fundamental set of
components and obtain subband localization [96].

Prior to feature extraction, potential events still have to
be temporally segmented, for example, with a moving time
window. Then boundaries of potential events are delimited
approximately by one (or more) segment(s) or determined
with fixed or adaptive (e.g., percentile) thresholds applied
on the envelope of the filtered signal. The envelope can be
estimated either by the absolute value of the signal or the
Teager Energy Operator (TEO) [97]. The TEO computes
the instantaneous energy and is sensitive to changes in both
frequency and noise.

With spectral analysis, the signal is first temporally win-
dowed before being transformed into spectral data with Fast
Fourier Transform (FFT) [82–84, 98–101]. The time window
usually lasts 0.5 s, a result from a trade-off between spectral
resolution and stationarity condition (≤0.5 s). When the time
delimitation is done with fixed time windows, the spindle
boundaries are estimated only approximately, despite the fact
that “duration” is essential in spindle analysis (Section 3.4).

3.2.2. Complex Decomposition. To limit frequential (resp.,
temporal) uncertainty in event delimitation due to fixed
predefined frequency bands (resp., time-window length),
some preliminary transformations can be used. These allow
the simultaneous extraction of temporal and spectral com-
ponents (time-frequency analysis) or the direct estimation
of features from a model-based approach (model-based
decomposition).

(1) Time-Frequency Analysis. Time-frequency analyses are
computed from transformation derived from linear decom-
position methods such as Short Time Fourier Transform
(STFT) [74, 89, 102], Continuous Wavelet Transform (CWT)
[78], and Matching Pursuit (MP) [36, 103, 104] or nonlinear
decomposition methods such as Complex Demodulation
(CD) [105], Hilbert Huang Transform (HHT) [106], and
SynchroSqueezed Transform (SST) [85].

Both STFT and CWT have to deal with the Heisenberg
principle (fix ratio between time and frequency resolution).
The resolution of STFT is regulated by the length of the
analysis windows and is maintained over all frequencies
whereas the CWT use wavelet filters to obtain higher fre-
quency resolution in lower frequency and higher temporal
resolution in higher frequency. The main drawback of the
CWT is that the ideal resolution depends on the a priori
good choice of the wavelet filters (“mother wavelet”) [107]. To
achieve better time-frequency resolution, iterative methods
are used to either reconstruct the original signal from well-
known functions (MP) or deconstruct the original signal in
main components to be evaluated (HHT, SST, and CD).

The Matching Pursuit breaks down the analyzed signal
into a weighted sum of known functions from a set of
“atoms” called Dictionary [107]. Separating the oscillatory
part from the transient one was shown to be an efficient
approach, at least for noise-free (or artificial) signal, but
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Figure 8: (a)Main effects of late slow and early fast spindles. (A–E left) fMRI responses to slow spindles displayed over an individual structural
image normalized to the Montreal Neurological Institute space (𝑃 < 1). The leftmost panels show peristimulus time histograms (PSTHs)
depicting the responses in auditory cortices (circled) (A), thalamus (B), anterior cingulate (circled) and midbrain tegmentum (dotted) (C),
anterior insula (D), and superior frontal gyrus (E). The PSTH (solid blue line; blue error bars reflect the SEM) depicts the mean response
across spindles of the corresponding voxel, irrespective of contrast based on a finite impulse response refit. The fitted response is drawn in
black. (F–I center) Conjunction analysis of slow and fast sleep spindles. (J–M right) fMRI responses to fast spindles (𝑃uncorrected < 0.001).
The right most panels show PSTHs depicting the response in superior temporal gyri (J), thalami (K), midcingulate cortex (circled) and SMA
(dotted) (L), and anterior insula (M). (b) Differential fMRI activity between fast and slow spindles. Larger brain responses for fast (red) than
slow (black) spindles were revealed in the hippocampus (A), mesial prefrontal cortex (B), precentral gyrus (C), and postcentral gyrus (D).
Peristimulus time histograms show mean response of the corresponding voxels (dotted lines; error bars show SEM) and the corresponding
fitted responses (continuous lines). Modified from [34].
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Figure 9: General workflow of an “automatic sleep spindle detection method” (ASDM). It is composed of 4 modules: preprocessing,
decomposition, decision making, and characteristic extraction. The latter is optional.

it could be suboptimal in low SNR conditions [76]. This
adaptive approach assumes that the signal components are
well represented by atoms of the Dictionary but this is not
necessarily the case in real data. Consequently, nuances in
sleep spindles characteristics could induce distortions in
successive iterations. Improvements of this method rely on
creating a Dictionary whose functions are more adapted to
EEG sleep patterns to induce less distortions in the iterative
decomposition. For example, “chirplets” [36] have time-
varying oscillations, that is, faster/slower waves over time.
Another possibility is the use of a self-updating Dictionary
whose content increaseswith each detection performed [108].

The Hilbert Huang Transform (HHT) decomposes the
signal into intrinsic mode functions (IMF) via the Empirical
Mode Decomposition (EMD) with good time resolution
[109] and uses the Hilbert Transform to estimate instan-
taneous amplitude and frequency [110]. HHT is limited to
narrowband signals and is very sensitive to noise [111]. To
address this issue, some improvements have been proposed
[112]. Another possibility is theComplexDemodulation (CD)
approach that isolates in the spectral domain the signal of
interest [113].Themain drawback of this method is the neces-
sity to a priori specify the frequency band corresponding to
the signal of interest [114].

The SynchroSqueezed Transform is an approach that can
be associated with the EMD but is built differently. It is a
special case of reallocation method that aims to sharpen a
time-frequency representation according to local behaviors
around nonzero activity [75].

Huupponen et al. [115] compared some of these methods
and showed that the MP method performed better than
the STFT (with zero padding). Nevertheless, the MP was
implemented with the same functions as the ones used to
create the testing data (synthetic signal with known spindles
characteristics) which could be biasing the assessment. A
more recent study, also assessed with synthetic data and
simulated spindles, showed that the HHT was better at
detecting spindles than the MP and CD methods [116]. A
last comparison was performed by Daubechies et al. [75] who
show differences between STFT, CWT, and SST. In this case,
the signal is composed of two kinds of oscillations (constant
and variant) with a sharp transition in between (Figure 10).
This induces blurring effect in the time-frequency repre-
sentation of STFT and CWT because of their limited time-
frequency resolution. On the contrary, the SST approach is
still able to correctly follow the instantaneous variations in
frequency.

To summarize, EEG signal contains transient activities
inducing blurred representations in STFT and CWT analysis.
These two approaches cannot clearly distinguish diffused

“background” activities in the spindle frequency band from
well-defined spindles [75]. MP has a concise description of
the signal with a relatively small number of atoms but its
adaptive iterationmethod and its limitedDictionary prevents
nuances in spindles analysis. However, new methods could
lift this limitation [108]. CD computes activities in well-
defined frequency bands but needs a priori information about
the carrier frequency [113, 114]. HHT is very sensitive to noise
but numerous enhancements exist and good preprocessing
such as the Dual-DBP (Section 3.1) could address this issue.
Finally the SST method seems to be the most robust and
precise method to discriminate transient activity.

(2) Model-Based Decomposition. The model-based decom-
position uses mathematical models to transform the signal
into a new set of components such as Principal Component
Analysis [117] and linear models [118–121].

The Principal Component Analysis is a statistical proce-
dure converting correlated variables into a set of uncorre-
lated variables decomposing the initial signal into its main
components [122]. The ability to distinguish uncorrelated
components is a very interesting advantage. Nevertheless,
to be interpreted, these unlabeled components need more
laborious decision making and/or preliminary analysis [117].

A linear model is a mathematical equation whose com-
plexity depends on its order. For example, the autoregressive
model of order 𝑛, denoted by AR(𝑛), uses the 𝑛 last values in
a given time series to estimate the next value. The AR model
is constrained to stationary signal and is unable to track the
slow change in the spectrum [119]. To address this issue, the
Adaptive-AR(𝑛) estimates parameters of its model by using
the Least Mean Square (LMS) method for each sample. A last
model is the ARMA model made of an autoregressive and a
moving average part of orders𝑝 and 𝑞, respectively, and noted
ARMA(𝑝, 𝑞).Thismodel ismore complex but could provide a
better representation of the sleep spindle [123, 124].Themain
drawback of linear modelizations is that the quality of data
representation depends on the model order whose optimal
values are only local.

3.3. Decision Making. Decision making relies on either
thresholding approaches, with fixed or adaptive parameters,
or multiparameters approaches combining different features
simultaneously.

3.3.1. Thresholding. Thresholds can be fixed empirically from
limited training dataset (fixed threshold) [90, 103, 106, 120,
121] or self-adjusting via some data derived statistics (adap-
tive threshold) [17, 34, 79, 80, 83–87, 93–95, 104, 105]. To
refine adaptive thresholds, some detectors must be informed
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Figure 10: Time-frequency analysis. The testing signal (upper left corner) is composed of two kinds of oscillations (constant and variant)
with a sharp transition in between. Its ideal spectral representation is shown on the lower left corner. Due to their limited time-frequency
resolution, the sharp transition induces blurring in the time-frequency representation of STFT and CWT whatever the window size and the
mother wavelet, respectively. On the contrary, the SST approach is still able to correctly follow the instantaneous variations in frequency.
Modified from [75].

by prior knowledge about sleep stages [63, 78–80, 94] or
previously detected spindles [85, 87, 95]. ASDM with fixed
thresholds are unable to account for all spindle variabilities.
Depending on the subject, these detectors show weak sensi-
tivity or specificity and are therefore unreliable. Importantly
one should not use a fixed threshold on specific characteris-
tics to detect spindles and then produce any statistics based
on the same characteristics. In other words, this circular
reasoning implies that you can only findwhat you are looking
for.

Adaptive thresholds are computed either once for all from
a set of a priori data (e.g., NREM sleep periods or sleep
spindles visually detected) or specifically for each putative
spindle from a determined time window centered on it,
for example, to compare spindle activity to its background.
If well defined, the former approach can be sufficient to
correctly detect spindles for sleep classification (Section 3.4).
However, overnight changes of spindle characteristics are
better characterized with the latter. Methods relying on
prior data usually only consider light sleep (N2) or sleep
spindles detected in N2 for the definition of spindle detection
parameters. Such approach would thus be constrained and
biased to the a priori set of spindles considered and could
introduce subjectivity if the spindle set was definedmanually.
This approach is thus suboptimal for the other sleep stages, as
spindle characteristics vary across sleep stages (Section 2.2).

To avoid such biased or suboptimal detection, a few
ASDM propose the use of multiple features combined with
more complex decision-making (Section 3.3.2). These fea-
tures are directly taken from time series [92] or spectral data
[101, 102] or need preliminary transformations such as linear
model parameters [118–121] or principal components derived
from PCA [117].

3.3.2. Multiparameters Approaches. Machine learning tech-
niques operate by building a model from example inputs in
order to make data-driven predictions or decisions. Machine
learning can be described as supervised or unsupervised
depending on the nature of the learning process used.
Supervised learning uses a training dataset composed of
examples of labeled data, that is, with data (input) and their
associated label (output).Themodel then learns the mapping
from input to output from these examples. On the contrary
with unsupervised learning algorithm, no labels are provided
and the model has to learn the structure of the input data on
its own.

A very simple supervised learning method used by some
ASDM is the decision tree which can combine different
detection methods with adapted and/or fixed thresholds [74,
89]. Fuzzy logic is a form of probabilistic decision tree that
induces the certainty with which the spindles are detected
[91, 98, 106].
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More complex supervised learningmethods are also used
in many ASDM, for example, the “Multilayer Perceptron”
(MLP) [92, 102, 118, 119] and the “Discrete Perceptron” (DP)
[119] methods. These feedforward artificial neural network
models consist of multiple layers of nodes in a directed graph
with each layer fully connected to the next one. Suchmethods
require a good balance between complexity (numbers of
neurons and layers) and computation time. The “Support
Vector Machine” (SVM) [101, 102, 118, 119] performs linear
or nonlinear classification depending on the kernel function
used [125]. The performance of SVM and MLP is difficult to
compare because of MLP’s parametrization. However, SVM
is considered more robust than MLP [102, 118, 119].

Statistical models tend to represent the data generation
process of a system, like the Bayesian model [82, 98, 117]
or “Hidden Markov Model” (HMM) [101], and can be used
for event recognition. Bayesian models are able to repre-
sent induced dependencies between variables in the system
whereasHMMpoint to cyclic dependencies. In thesemodels,
variables are linked via probabilistic distributions initially
defined from a training dataset. We can also use such proba-
bilistic distributions to estimate if the characteristics of a
putative spindle are truly those of a spindle or not [84, 101].

The main weakness of supervised machine learning for
spindle detection remains the training set. For a reliable and
generalizable detection, the training dataset should include
a sufficient number of representative spindles, that is, with a
wide range of characteristics from young and elderly popula-
tions, healthy subjects, and patients (with neurological/psy-
chiatric disorders), with and without experimental condi-
tions (e.g., sleep deprived), and so forth [126].The creation of
such (training) dataset is itself an enormous and difficult task.

Unsupervised learning methods do not rely on prior data
for training and aim at inferring a function to describe hidden
structure from unlabeled data but were barely developed for
spindle detection (e.g., neuronal gas and merge neuronal gas
[100]). However, unsupervised learning would probably be
the most robust method if features are well defined.

3.4. Features Extraction. It is important to understand which
characteristics are essential in sleep spindle analysis. Indeed,
we think that a distinction should be made between spindle
properties and detection criteria to avoid the standardization
of spindles detected and, consequently, bias further spindle
analysis.

One usually extracts only useful characteristics depend-
ing on the aim of the analysis. As an example, to score sleep
stages, no specific spindle characteristic is needed. In order to
compare results from several sleep analyses, one should rely
on exactly the same spindle characteristics.

3.4.1. Individual Properties. Many sleep spindles analyses
exploit individual properties to show differences between
populations. For example, studies showed that the intraspin-
dle frequency increases with age while spindle duration
decreases [16, 17]. In total, we list four categories of individual
properties: frequential, temporal, spatial, and dynamic
(Table 1).

The “main frequency” of a spindle, that is, the average
of instantaneous frequencies, can be used as unique value to
characterize the spindle as slow or fast. This distinction is
important as late slow and early fast spindles have specific
functions in some brain processes (e.g., memory process
[31]). “Intraspindle frequency” change can be expressed by its
pace (Hz/s) and is either positive or negative for increasing or
decreasing oscillation rate, respectively.

Spindle “duration,” defined as the elapsed time between
the start and end point of the spindle, depends strongly
on the decomposition method used in ASDM (Section 3.2)
and is often poorly estimated compared to human [26].
This property, with the “intraspindle frequency,” is probably
the most representative parameters of the thalamocortical
process [126].The “shape,” which is related to cortical process
[126], can be described by two measures: skewness and
kurtosis. The skewness is positive (resp., negative) when the
maximal amplitude of sleep spindle is shifted to the left (resp.,
right) whereas kurtosis value is positive (resp., negative) for
spindles with sharper (resp., flatter) envelope than a normal
distribution.

The spatial aspect of a sleep spindle needs multiple
channels analysis for “scalp localization” and an inversion
model for “source localization.”

Regarding the spindle dynamic, the “interplay” relates
to the link between sleep spindles and SWO. This relation
can be quantified as the duration between time points
corresponding to maximum spindle peak and maximum
negative SWO peak, the latter being taken as reference time
(𝑡 = 0) [31] (Section 2.2.4). Positive (resp., negative) value
would be given to “interplay” when the maximal amplitude
of the sleep spindle precedes (resp., follows) this reference
time.The “interplay” parameter is particularly interesting for
any studies related to learning and memory processes [15] or
spindles generation [5].

3.4.2. Ensemble Properties. From all spindles detected (over-
night) or part of them (e.g., during one NREM cycle),
the following ensemble properties could be computed: the
“count” is the number of spindles detected, the “density” is the
number of spindles over time intervals (e.g., sleep stages and
cycles), and the “rate” is the time between successive spindles.
These properties are exploited in numerous analyses. For
example, changes in “count” are related to sleep perturbation
[127, 128], psychiatric disorders such as schizophrenia [129],
and aging [16, 17]. Estimated over successive short 20 s epoch,
the “density” brings out the fact that the number of sleep
spindles is reduced after a sleep deprivation (confirming
an inverse homeostatic relationship of sleep spindles and
slow waves [130]). Finally, the “rate” is, for example, a
characteristic which becomes more variable over ages [16].

3.4.3. Detection Criteria. Most of the comparisons between
human and automatic detection point to an overestimated
number of automatically detected spindles [26, 131], suggest-
ing a higher sensitivity of automatic detection compared to
visual scoring.Though different mismatches (as compared to
the same human consensus) are observed for each ASDM,
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Table 1: Main characteristics of sleep spindle (SS). SWO: SlowWave Oscillations; coord: coordinates.

Parameters of SS Measurement Units
Individual properties

Main frequency Mean intraspindle frequency Hz
Intraspindle frequency Rate of frequency changes Hz/s
Duration Time between start and end s
Shape Skewness and kurtosis —
Scalp localization EEG channel coord(𝑥, 𝑦)
Source localization Spindle origin coord(𝑥, 𝑦, 𝑧)
Interplay Delay between the nearest SWO and SS s

Ensemble properties
Count Number of SS —
Density Count by min (within cycles and sleep stages) min−1

Rate Time interval between successive SS s

depending on the approach, each ASDM is likely to confound
spindle events with other specific types of EEG activity [26].

As described through Section 3, to determine if a bit
of signal is a spindle or not, various features can be used
and each ASDM combines them in different ways. Finding
the optimal approach is still an open question; neverthe-
less some features are open to criticism. Most ASDM rely
directly on sleep spindles properties for their detection and
thus necessarily standardize sleep spindles detected. This
introduces bias in further analysis and has big influences on
performance. For example, the “shape” [85, 89, 106] is a severe
criterion which probably decreases the sensitivity for the
spindle detection. On the contrary, both “frequency” [74, 84]
and “amplitude” criteria lead to more sensitivity detection
but cannot distinguish sleep spindles from continuous sigma
activity. To address this issue, some methods take into
account the contextual aspect of the sleep spindles by using
the power spectrum in specific frequency bands [82, 95,
98–100, 106]. Critically detection criteria based directly on
the amplitude or its power spectrum should be avoided.
Indeed their absolute value strongly depends on the recording
setup as well as on the source localization and orientation.
However the two most common detection criteria in ASDM
are actually the amplitude [74, 78–80, 82, 83, 86, 87, 90–
95, 103, 105, 106] and the root mean squared values (RMS)
of power spectrum or filtered signal [17, 34, 63, 84, 104].
This may at least partly explain the lack of generalizability of
ASDM.

Anecdotally the one criterion shared by all ASDM is the
duration of the sleep spindle event. Although important, this
aspect is often overlooked [26], despite its impact on the
estimation of the other spindle features.

4. Assessment of the ASDM

The performance of a machine depends on the trade-off
between its sensitivity (ability to detect all/most events of
interest) and its specificity (ability to detect only/mostly
events of interest). For example, when sleep spindle detection
is used for sleep staging classification, sleep spindle detection
should be more specific than sensitive in order to detect

spindles (at least enough of them) in stage 2 and avoid
falsely detected events in the other stages. However, when the
primary goal is the characterization of the spindle activity,
for example, to measure the effect of pharmacotherapy or
neurological/psychiatric disorders, the sensitivity of spindle
detection has to be increased, usually to the detriment of
specificity [126].

In any case, in order to properly assess the performance of
anASDM,we need to compare it to some references, typically
annotated databases, and rely on robust assessment statistics.

4.1. Gold Standard for Evaluation. Human raters are sub-
jective and less sensitive but more specific compared to
machines. In order to obtain a reference score which is both
sensitive and specific, a consensus between different raters
has to be generated: the “gold standard.”There exist different
ways to generate such “gold standard” [82, 119, 132] and to
account for the variability of human raters, Warby et al. [26]
proposed the following:

(i) Human raters have to detect spindles and give to each
detected event a confidence score (1 = definitively,
0.75 = probably, 0.5 = maybe/guessing, and 0 = no
spindle).

(ii) For each sample, the mean of weighted confidence
scores is computed.

(iii) A sample is considered as a spindle if the mean
value is larger than some threshold (a threshold value
of 0.25 was empirically found as being the most
representative by [26]).

To assess the robustness of an ASDM a large database
composed of heterogeneous populations (healthy versus
pathologic, young versus elderly) [126] is required. To obtain
such database, crowd-sourcing (examples of crowd-sourc-
ing: the Montreal Archive of Sleep Studies (MASS): http://
www.ceams-carsm.ca/en/MASS/ [133]; Physionet: https://
www.physionet.org/; andDREAMS: http://www.tcts.fpms.ac
.be/∼devuyst/Databases/DatabaseSpindles/) is an efficient
and fast way to amass data and raters and to benchmark
many ASDM simultaneously [133–135]. Furthermore, freely
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available databases can be continuously scored or commented
on by experts and nonexperts.

It is also crucial that ASDM implementations are available
for others to use [26]. At least for scientist applications such
an open-source software approach had several benefits: no
time is wasted reimplementing a published method, results
are then more easily reproduced, code reviewing will spot
and correct bugs over time, and the method can be improved
and new features added. Moreover, different methods could
directly be compared on the same databases with the same
assessment method [134].

4.2. Assessment Statistics. For a fair assessment of anyASDM,
the data on which the method is tested should not have
been used to set up the method itself. Training and testing
a method on the same dataset is a clear case of “dou-
ble dipping,” which leads to overestimated positive results
but provides no information on the generalizability of the
method to other datasets.

To assess the detection provided by the ASDM, it should
be directly comparable with the gold standard and have the
same temporal granularity, for example, 1 s time window.
Typically, for each signal, the value “1” is attributed to all
segments where the presence of a spindle is considered,
“0” otherwise. Finally, both signals are compared and the
following occurrences are counted: (i) true positives (“TP”);
that is, the gold standard and the ASDM give “1”; (ii) true
negatives (“TN”); that is, the gold standard and the ASDM
give “0”; (iii) false positives (“FP”); that is, the gold standard
detection is “0” whereas the ASDM gives “1”; (iv) false
negatives (“FN”); that is, the gold standard detection is “1”
whereas the ASDM gives “0.”

Over the course of a sleep EEG recording, there are many
more time bins without spindle thanwith a spindle.Therefore
standardmatchingmeasures such as specificity are not useful.
For this reason, it ismore appropriated to use the “Recall” and
“Precision” parameters (1)-(2):

Recall = TP
TP + FN

(1)

Precision = TP
TP + FP

. (2)

“Recall” is the ratio between the number of spindle events
correctly detected and the total number of spindle events
considered by the gold standard. “Precision” is the ratio
between the number of spindle events correctly detected and
the total number of events detected by the machine.They are
equivalent to the sensitivity and the positive predictive value
(PPV), respectively. From these two measures, a single value
can be derived the 𝐹1-score which is the harmonic mean of
Precision and Recall:

𝐹1 =

2 ∗ Precision ∗ Recall
Precision + Recall

.
(3)

If 𝐹1 = 1, then the detection was 100% accurate with
no false positive or false negative detected event. In a more
realistic case, for example, Recall of 0.8 (corresponding to
25% of false negative detected event) and Precision of 0.9

(corresponding to 11%of false positive detected event) lead to
𝐹1 value of 0.85. To ease future comparison across literature,
three statistic parameters (1)–(3) should be employed.

For a more complete detector evaluation, a second unit of
comparisons is proposed: each individual spindle is consid-
ered as an event. To decidewhen 2 raters agreed on a common
event, that is, spindle and detected event, a minimum of
overlap between the spindles has to be fixed a priori. For a
detected event to be considered as a match, the minimum
overlap between the gold standard and detected spindle can,
for example, be fixed at 20% [26]. The three statistics (1)–(3)
defined above can be reexpressed in terms of events instead
of 1 s time windows.

5. Discussion and Concluding Remarks

This review tried to define the sleep spindle as a simple
pattern or dynamic event. The main brain processes implied
in its generation have been described in order to define its
physical parameters. Likewise, its topographic and dynamic
aspects have been presented in order to understand how this
phenomenon appears in the brain.

From this general description, a sleep spindle can be
seen as an oscillatory mode that occurs transiently but the
characteristics of this pattern are not strictly defined. A
sleep spindle is regulated by slow oscillations and is itself
the regulator of faster oscillations; otherwise, it belongs
to a hierarchical nesting of oscillatory modes [61]. The
sleep spindle is characterized by internal frequency changes.
However, it is usually characterized by a unique frequency
corresponding to the frequency with the maximal power.
From itsmean frequency, the sleep spindle has been classified
as late slow frontal or early fast centroparietal. However, this
differentiation is not so clear-cut in some individuals [20].

Sleep spindles are patterns of activity of great interest
and automatic detection methods are essential for repro-
ducible analysis. Indeed to better understand their func-
tioning, their detection should be done in a systematic
and robust way. By this way, comparisons between different
populations (e.g., elderly versus young, health versus psychi-
atric/neurodegenerative disorders) will be more reliable.

In order to find an optimal method, this review described
some ASDM and proposed an evaluation process. In the
ASDM description, advantages and disadvantages of the
main processes are listed. An important point is to delimit
the event as precisely as possible to extract the characteristic
features of the putative spindle; which ones are most specific
is still unknown. Regarding decisionmaking, machine learn-
ing and statisticalmodels aremore robustmethods in the face
of the large variability of spindles.

In conclusion the objective comparison of all the existing
and future methods would require that their implementation
(executable or source code) ismade available and thatwe have
access to databases with a large variety of marked recordings.
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