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Multiple imaging modalities based face recognition has become a hot research topic. A great number of multispectral face
recognition algorithms/systems have been designed in the last decade. How to extract features of different spectrumhas still been an
important issue for face recognition. To address this problem, we propose a robust tensor preserving projection (RTPP) algorithm
which represents a multispectral image as a third-order tensor. RTPP constructs sparse neighborhoods and then computes weights
of the tensor. RTPP iteratively obtains one spectral space transformation matrix through preserving the sparse neighborhoods.
Due to sparse representation, RTPP can not only keep the underlying spatial structure of multispectral images but also enhance
robustness. The experiments on both Equinox and DHUFO face databases show that the performance of the proposed method is
better than those of related algorithms.

1. Introduction

Multibiometrics can be considered the fusion of different
sensor modalities in a single recognition system. The reason
of using two or more sensor modalities is to improve the
recognition accuracy. Multiple imaging modalities based
face recognition has become a hot research topic [1–7].
Recent studies have shown thatmultispectral face recognition
offers several advantages, such as invariance to illumination
changes [8, 9]. Multispectral image also reveals anatomical
information of a subject [1]. Socolinsky and Selinger [3, 10]
developed different recognition algorithms on visible and
thermal infrared face image databases and obtained good
performances. Chen et al. [11] tested the effect of illumination,
facial expression, and passage of time between the training
and testing images. Wang et al. [12] showed that color space
combination represents a viable approach for improving face
recognition performance. The image-based fusion designed
in thewavelet domain and the feature-based fusion developed
in the eigenspace domain were shown in [13]. Heo et al.
[14] proposed to fuse visual and thermal images for robust

face recognition. Multisensory biometric fusion algorithms
were investigated for personal identification [15]. Pan et al.
[4, 5] analyzed the facial tissue spectral measurements in
the near-infrared spectral range (0.7𝜇m–1.0 𝜇m) for face
recognition. Denes et al. [6] tested the spectral asymmetry
with three visible bands (0.6 𝜇m, 0.7 𝜇m, and 0.8 𝜇m). Chang
et al. [16] fused the multispectral images in the visible
spectrum (0.4 𝜇m–0.72𝜇m) into a single image to enhance
face recognition accuracies. Chou and Bajcsy [7] prepro-
cessed the multispectral images (visible: 0.4𝜇m–0.72𝜇m
and near-infrared: 0.65 𝜇m–1.1 𝜇m) by principal component
analysis (PCA) to perform face detection. Based on visible
images, Wong and Zhao [17] adopted kernel PCA to remove
eyeglasses of thermal face images.

The above algorithms are mainly developed to preserve
the global structure information of the multispectral data.
They do not clearly treat the manifold structure of the data.
However, research results of manifold learning algorithms
presented in the past decade demonstrate that the local
geometric structure is more important than the global
structure since the high-dimensional data often lies on
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the low-dimensional manifold [18]. Due to the low-
dimensional manifold structure of the face images, the mani-
fold-learning-based linear dimension reduction algorithms
[4–9, 12–14, 19–24] become popular.

Since these linear feature extraction algorithms cannot
deal with high-order tensor data, some of these algorithms
were further extended to be multilinear cases, and a lot of
tensor-basedmanifold learning algorithms were proposed by
using higher order tensor decomposition [25–27].Within the
past ten years, there has been great interest in high-order
tensor feature extraction, and the tensor-basedmethods have
been popular in computer vision and pattern recognition
[28–31]. For example, Igarashi et al. proposed tensor subspace
analysis (TSA) [32] for second-order learning. Dai and Yeung
proposed tensor NPE (TNPE) [19]. Recently, orthogonal
tensor neighborhood preserving embedding (OTNPE) was
proposed for facial expression recognition. Some variations
were also proposed for gait recognition, action recognition,
and so forth. For more details, please see the latest survey of
multilinear subspace learning [1–3].

Recent research demonstrates that the high-order tensor
based manifold learning algorithms, such as tensor pre-
serving embedding (tensor NPE) [20], can obtain better
performance than the classical feature extraction algorithms
on tensor data set. Unfortunately, the tensor data contain
large quantities of information redundancy and thus not all
the features/variables are important to feature extraction and
classification [21–23]. It was shown that integrating sparse
representation and manifold learning for feature extraction
may obtain better performance [24]. It has been shown
that the sparse representation methods can obtain better
performance than their corresponding nonsparse methods
in the real data. And these sparse methods can give an
intuitionistic or semantic interpretation for the transformed
features [25].

Till now, the field in high-order tensor data embedding
with sparse manner has not been widely investigated and
how to extend the manifold learning algorithms integrating
sparseness and manifold structure for multispectral face
recognition is unsolved. In this paper, motivated by tensor
data embedding and sparse representation, we propose a
novel method called robust tensor preserving projection
(RTPP) for multispectral image feature extraction. The mul-
tispectral image is considered a third-order tensor. The
aim of RTPP is to obtain transformation matrices through
preserving the sparse information of the third-order tensors.

The rest of the paper is organized as follows. In Section 2,
we give the related definitions to tensor. In Section 3, the
introduction of tensor locality preserving projection is pro-
vided. In Section 4, a novel sparse tensor embedding method
is presented. Experiments are carried out to evaluate the pro-
posed tensor learning method in Section 5, and conclusions
are given in Section 6.

2. Tensor Fundamentals

A tensor is a multidimensional array. It is the higher order
generalization of scalar (zero-order tensor), vector (1st-order

tensor), and matrix (2nd-order tensor). In this paper, lower-
case letters (i.e., 𝑎, 𝑏, 𝑐) denote scalars, bold lowercase letters
(i.e., a, b, c) denote vectors, uppercase letters (i.e., 𝐴, 𝐵, 𝐶)
denote matrices, and bold uppercase letters (i.e., A, B, C)
denote the tensors. It is assumed that the training samples are
represented as the 𝑛th-order tensor {A

𝑖
∈ 𝑅
𝑚
1
×𝑚
2
×⋅⋅⋅×𝑚

𝑛 , 𝑖 =

1, 2, . . . , 𝑁}, where 𝑁 denotes the total number of training
samples.

Definition 1. The inner product of two tensors
A, B ∈ 𝑅

𝑚
1
×𝑚
2
×⋅⋅⋅×𝑚

𝑛 is defined as ⟨A, B⟩ = ∑
𝑖
1

∑
𝑖
2

⋅ ⋅ ⋅

∑
𝑖
𝑛

A
𝑖
1
,𝑖
2
...,𝑖
𝑛

B
𝑖
1
,𝑖
2
...,𝑖
𝑛

. The Frobenius norm of a tensor
A ∈ 𝑅𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 is then defined as ‖𝐴‖ = √⟨A, A⟩. And the
distance between two tensors A, B ∈ 𝑅𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 is defined
as𝐷(A, B) = ‖A − B‖.

Definition 2. The 𝑘-mode flattening of the 𝑛th-order tensor
A
𝑖
∈ 𝑅
𝑚
1
×𝑚
2
×⋅⋅⋅×𝑚

𝑛 (𝑖 = 1, 2, . . . , 𝑁) into matrix 𝐴(𝑘) ∈
𝑅
𝑚
𝑘
×∏
𝑖 ̸=𝑘
𝑚
𝑖 , that is, 𝐴(𝑘)⇐

𝑘
A, is defined as 𝐴(𝑘)

𝑖
𝑘
,𝑗
= A
𝑖
1
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,
𝑗 = 1 + ∑
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(𝑖
𝑞
− 1)∏

𝑛
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𝑚
𝑝
.

Definition 3. The 𝑘-mode product of a tensor A ∈

𝑅
𝑚
1
×𝑚
2
×⋅⋅⋅×𝑚

𝑛 by a matrix 𝑈 ∈ 𝑅
𝑚
󸀠

𝑘
×𝑚
𝑘 , denoted by

B = A ×
𝑘
𝑈, is an (𝑚

1
× 𝑚
2
× ⋅ ⋅ ⋅ × 𝑚

𝑘−1
× 𝑚
󸀠

𝑘
×

𝑚
𝑘+1
× ⋅ ⋅ ⋅ × 𝑚

𝑛
)-tensor of which the entries are given by

B
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1
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𝑘−1
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𝑘+1,...,
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𝑖,𝑗
(𝑗 = 1, 2, . . . , 𝑚

󸀠

𝑘
).

The aim of tensor learning algorithm is to obtain a set of
projection matrices {𝑈

𝑖
∈ 𝑅
𝑑
𝑖
×𝑚
𝑖 , 𝑑
𝑖
≤ 𝑚
𝑖
, 𝑖 = 1, 2, . . . , 𝑛}

and map the original tensor into a new tensor:

B
𝑖
= A
𝑖
×
1
𝑈
1
×
2
𝑈
2
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
. (1)

3. Tensor Neighborhood
Preserving Embedding

Let A
1
,A
2
, . . . ,A

𝑁
be the multispectral face images in a high-

order tensor form and A
𝑖
∈ 𝑅
𝑚
1
×𝑚
2
×⋅⋅⋅×𝑚

𝑛 (𝑖 = 1, 2, . . . , 𝑁),
𝑁, the number of individuals. Assume thatA

1
,A
2
, . . . ,A

𝑁
are

from an unknown manifoldM embedding in a tensor space
𝑅
𝑑
1
×𝑑
2
×⋅⋅⋅×𝑑

𝑛 . The aim of tensor NPE is to find optimal trans-
formationmatrices𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
such that the local topolog-

ical structure of M is preserved and the intrinsic geometric
property is effectively captured. The optimal transformation
matrices 𝑈

𝑗
∈ 𝑅
𝑑
𝑗
×𝑚
𝑗 (𝑑
𝑗
≤ 𝑚
𝑗
, 𝑗 = 1, 2, . . . , 𝑛) project

high-dimensionalA
𝑖
into low-dimensional representationB

𝑖
,

where B
𝑖
= A
𝑖
×
1
𝑈
1
×
2
𝑈
2
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
.

We construct a neighborhood graph to represent the
intrinsic geometric structure ofM and apply the heat kernel
to define the affinity matrix𝑊 = [𝑤

𝑖𝑗
]
𝑁×𝑁

as

𝑤
𝑖𝑗
=

{{{

{{{

{
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−
󵄩󵄩󵄩󵄩󵄩
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𝑖
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𝑗
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2

𝑡
) , if A
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∈ 𝑂 (𝐾,A

𝑖
) ,

0, otherwise,

(2)
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where 𝑂(𝐾,A
𝑖
) denotes the set of 𝐾 nearest neighbors of

A
𝑖
and 𝑡 is a positive constant. The affinity matrix 𝑊 is

then normalized such that each row sums to one. In order
to preserve the geometric structure explicitly, we define the
following objective function based on the Frobenius norm of
a tensor:

argmin𝐽 (𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
)

= ∑

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
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𝑗
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𝑈
1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
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𝑗

𝑤
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A
𝑗
×
1
𝑈
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2

.

(3)

To eliminate an arbitrary scaling factor in the projection
matrices, we impose the following constraint: ∑

𝑖
‖B
𝑖
‖
2
=

∑
𝑖
‖A
𝑖
×
1
𝑈
1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
‖
2
= 1. Then the optimization problem

for tensor NPE can be expressed as

argmin 𝐽 (𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
)

= ∑

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

A
𝑖
×
1
𝑈
1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
−∑

𝑗

𝑤
𝑖𝑗
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𝑗
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𝑈
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𝑛
𝑈
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

s.t. ∑

𝑖

󵄩󵄩󵄩󵄩A𝑖×1𝑈1 ⋅ ⋅ ⋅ ×𝑛𝑈𝑛
󵄩󵄩󵄩󵄩
2
= 1.

(4)

Note that this optimization problem is a high-order non-
linear programming problem with a high-order nonlinear
constraint, making direct computation of the projection
matrices infeasible. In general, this type of problems can
be solved approximately by employing an iterative scheme
which was proposed for low-rank approximation. The opti-
mization problem in (4) can be solved by such an iter-
ative scheme. Assuming that 𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑘−1
, 𝑈
𝑘+1
, . . . , 𝑈

𝑛

are known, letB𝑘
𝑖
= A
𝑖
×
1
𝑈
1
⋅ ⋅ ⋅ ×
𝑘−1
𝑈
𝑘−1
×
𝑘+1
𝑈
𝑘+1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
. In

addition, since 𝐵(𝑘)
𝑖
⇐
𝑘
B𝑘
𝑖
and based on the properties of

tensor and trace, we rewrite the optimization function and
the constraint in (4) as follows:

arg ,min𝐽
𝑘
(𝑈
𝑘
) = ∑

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

B𝑘
𝑖
×
𝑘
𝑈
𝑘
−∑

𝑗

𝑤
𝑖𝑗
B𝑘
𝑗
×
𝑘
𝑈
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= ∑

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑈
𝑘
𝐵
(𝑘)

𝑖
−∑

𝑗

𝑤
𝑖𝑗
𝑈
𝑘
𝐵
(𝑘)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= ∑

𝑖,𝑗

tr {𝑈
𝑘
( (𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)

× (𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)
𝑇

)𝑈
𝑇

𝑘
}

= tr
{

{

{

𝑈
𝑘
(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)

× (𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)
𝑇

)𝑈
𝑇

𝑘

}

}

}

,

∑

𝑖

󵄩󵄩󵄩󵄩󵄩
B𝑘
𝑖
×
𝑘
𝑈
𝑘

󵄩󵄩󵄩󵄩󵄩

2

= ∑

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘
𝐵
(𝑘)

𝑖

󵄩󵄩󵄩󵄩󵄩

2

= tr{𝑈
𝑘
(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

)𝑈
𝑇

𝑘
} .

(5)

Thus, the optimization problem in (4) can be reformulated as

argmin 𝐽
𝑘
(𝑈
𝑘
)

= tr
{

{

{

𝑈
𝑘
(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)

× (𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)
𝑇

)𝑈
𝑇

𝑘

}

}

}

,

s.t. tr{𝑈
𝑘
(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

)𝑈
𝑇

𝑘
} = 1.

(6)

The unknown transformation matrix 𝑈
𝑘
can be obtained by

solving the eigenvectors corresponding to the 𝑘th smallest
eigenvalues in the generalized eigenvalue equation

(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
) (𝐵
(𝑘)

𝑖
− 𝑤
𝑖𝑗
𝐵
(𝑘)

𝑗
)
𝑇

) u

=𝜆(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

) u.

(7)

The other transformation matrices can be obtained in a
similar manner.

3.1. Tensor Locality Preserving Projection. Different from
tensor NPE, the optimization problem for tensor LPP can be
expressed as

argmin 𝐽 (𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
) = ∑

𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
B
𝑖
− B
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗

= ∑

𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
A
𝑖
×
1
𝑈
1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
− A
𝑗
×
1
𝑈
1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗
,

s.t. ∑

𝑖

󵄩󵄩󵄩󵄩A𝑖×1𝑈1 ⋅ ⋅ ⋅ ×𝑛𝑈𝑛
󵄩󵄩󵄩󵄩
2
𝑑
𝑖𝑖
= 1.

(8)

In general, the larger the value of 𝑑
𝑖𝑖
= ∑
𝑗
𝑤
𝑖𝑗
is, the more

important the tensor B
𝑖
is in the embedded tensor space for
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representing the original tensor A
𝑖
. It is easy to see that the

objective function will give a high penalty if neighboring
tensorsA

𝑖
andA

𝑗
aremapped far apart.Thus if two tensorsA

𝑖

andA
𝑗
are close to each other, then the corresponding tensors

B
𝑖
and B

𝑗
in the embedded tensor space are also expected to

be close to each other.
The optimization function of tensor LPP can be formu-

lated as follows:

argmin 𝐽
𝑘
(𝑈
𝑘
) = ∑

𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
B𝑘
𝑖
×
𝑘
𝑈
𝑘
− B𝑘
𝑗
×
𝑘
𝑈
𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗

= ∑

𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘
𝐵
(𝑘)

𝑖
− 𝑈
𝑘
𝐵
(𝑘)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗

= ∑

𝑖,𝑗

tr {𝑈
𝑘
( (𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)

𝑗
)

× (𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)

𝑗
)
𝑇

𝑤
𝑖𝑗
)𝑈
𝑇

𝑘
}

= tr
{

{

{

𝑈
𝑘
(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)

𝑗
)

× (𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)

𝑗
)
𝑇

𝑤
𝑖𝑗
)𝑈
𝑇

𝑘

}

}

}

,

s.t. tr{𝑈
𝑘
(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

𝑑
𝑖𝑖
)𝑈
𝑇

𝑘
} = 1.

(9)

Moreover the transformation matrix 𝑈
𝑘
can be computed by

solving the eigenvectors corresponding to the 𝑘th smallest
eigenvalues in the generalized eigenvalue equation

(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)

𝑗
) (𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)

𝑗
)
𝑇

𝑤
𝑖𝑗
) u

=𝜆(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

𝑑
𝑖𝑖
) u.

(10)

4. Robust Tensor Preserving Projection

Sparse representation algorithms have been widely studied in
signal processing, computer vision, and pattern recognition.
Wright et al. [25] used sparse representation for robust face
reconstruction and recognition, Qiao et al. [26] proposed
sparse preserving projections, and Cheng et al. [27] used the
𝐿
1
graph for image clustering. As demonstrated in [26, 27],

the graphs constructed by the 𝐿
1
norm have the advantages

of greater robustness to noise and information redundancy.
In the following, we fuse the sparse representationwith tensor
feature extraction.

4.1. Sparse Tensor Representation. In this part, we present
the sparse representation for the tensor data A

1
,A
2
, . . . ,A

𝑁
.

Let 𝑍 = [𝑧
𝑖𝑗
]
𝑁×𝑁

be the optimal sparse representation
coefficients. Sparse representation assumes that the training

sample A
𝑖
(𝑖 = 1, 2, . . . , 𝑁) can be sparsely represented

as a linear combination of the other data. Based on this
assumption, the following sparse optimization problem was
proposed in [25]:

min 󵄩󵄩󵄩󵄩𝑍𝑖,:
󵄩󵄩󵄩󵄩0

s.t.
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

A
𝑖
− ∑

𝑗,𝑗 ̸=𝑖

𝑧
𝑖𝑗
A
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜀,

(11)

where 𝑁 × 𝑁 matrix 𝑍 = [𝑧
𝑖𝑗
]
𝑁×𝑁

is the representation
coefficient matrix satisfying diag(𝑍) = 0 and 𝑍

𝑖,:
denotes the

𝑖th row vector of𝑍. The parameter 𝜀 is a small constant set by
users. However, the above optimization problem is NP hard.
One can use the convex relaxation method to the NP-hard
problem and solve the following optimization problem:

min 󵄩󵄩󵄩󵄩𝑍𝑖,:
󵄩󵄩󵄩󵄩1

s.t.
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

A
𝑖
− ∑

𝑗,𝑗 ̸=𝑖

𝑧
𝑖𝑗
A
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜀.

(12)

Due to the sparseness of 𝑧
𝑖𝑗
, then only a few 𝑧

𝑖𝑗
̸= 0 (𝑖, 𝑗 =

1, 2, . . . , 𝑁). It means that, for tensor A
𝑖
(𝑖 = 1, 2, . . . , 𝑁),

not all the other tensors are used in the representation.
Let 𝑧
𝑖𝑗
𝑖

𝑘

(𝑖 = 1, 2, . . . , 𝑁; 𝑘 = 1, 2, . . . , 𝐾
𝑖
) be the nonzero

coefficients. Then the representation error is as follows:

𝑑 (𝐴
𝑖
) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

A
𝑖
− ∑

𝑗,𝑗 ̸=𝑖

𝑧
𝑖𝑗
A
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

(𝑖 = 1, 2, . . . , 𝑁) . (13)

In this paper, we also use sparse representation classifier
(SRC) for RTPP. SRC classifies the test sample to the class with
the least within-class reconstruction error. Formore details of
SRC, please refer to [25].

Define the affinity matrix 𝑆 = [𝑠
𝑖𝑗
]
𝑁×𝑁

. Let 𝑠
𝑖𝑗
= 0, if 𝑧

𝑖𝑗
=

0. We can compute the 𝑠
𝑖𝑗
𝑖

𝑘

(𝑖 = 1, 2, . . . , 𝑁; 𝑘 = 1, 2, . . . , 𝐾
𝑖
)

as follows:

min
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

A
𝑖
−

𝐾
𝑖

∑

𝑘=1

𝑠
𝑖𝑗
𝑖

𝑘

A
𝑗
𝑖

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

s.t.
𝐾
𝑖

∑

𝑘=1

𝑠
𝑖𝑗
𝑖

𝑘

= 1 𝑠
𝑖𝑗
𝑖

𝑘

≥ 0 (𝑘 = 1, 2, . . . , 𝐾
𝑖
) .

(14)

Here we obtain the weights in a similar way as in LLE, except
the constraints 𝑠

𝑖𝑗
𝑖

𝑘

≥ 0 (𝑘 = 1, 2, . . . , 𝐾
𝑖
). The nonnegative

constraints lead to a parts-based representation because they
allow only additive, not subtractive, combinations. Previous
studies have shown that there is psychological and physiolog-
ical evidence for parts-based representation in human brain
[11, 13, 17]. The sum-to-one constraint∑𝐾𝑖

𝑘=1
𝑠
𝑖𝑗
𝑖

𝑘

= 1 is used to
make the weights invariant to translation.

Discriminant information can be naturally preserved
in the weights, even if no class information is available.
In face recognition, one particularly simple but reasonable
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assumption is that the samples from the same class lie on a
linear subspace. In other words, the nonzero weights mostly
correspond to the samples from the same class, which implies
that the nonzero weights may help distinguish that class from
the others. Therefore, the weights tend to include potential
discriminant information.

In the design of the proposed RTPP, we use 𝑆 = [𝑠
𝑖𝑗
]
𝑁×𝑁

instead of the similarities used in tensor NPE. One advantage
of the proposed technique is that the difficulty in selecting
the size 𝐾 of the local neighborhood can be avoided in
tensor NPE. Moreover, the similarities can give intuitionistic
or semantic interpretation of the represented tensor data.
Another advantage is that sparse representation has the
potential discriminative ability since most nonzero sparse
representation coefficients are located on the samples in the
same class as the represented sample.

4.2. Algorithm of Robust Tensor Preserving Projection. For
convenience, in this section, we use the notations in Section 3
to derive RTPP. Assuming that 𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑘−1
, 𝑈
𝑘+1
, . . . , 𝑈

𝑛

are known, now we want to compute the projection matrix
𝑈
𝑘
. Using the similarities in (13), we have the optimization

function as follows:

argmin 𝐽
𝑘
(𝑈
𝑘
) = ∑

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑈
𝑘
𝐵
(𝑘)

𝑖
−∑

𝑗

𝑠
𝑖𝑗
𝑈
𝑘
𝐵
(𝑘)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= tr
{

{

{

𝑈
𝑘
(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝑠
𝑖𝑗
𝐵
(𝑘)

𝑗
)

× (𝐵
(𝑘)

𝑖
− 𝑠
𝑖𝑗
𝐵
(𝑘)

𝑗
)
𝑇

)𝑈
𝑇

𝑘

}

}

}

s.t. tr{𝑈
𝑘
(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

)𝑈
𝑇

𝑘
} = 1.

(15)

Let 𝐵(𝑘) = [𝐵(𝑘)
1
, 𝐵
(𝑘)

2
, . . . , 𝐵

(𝑘)

𝑁
], 𝜖
𝑖
be a 𝑁-dimensional unit

vector with the 𝑖th element 1, 0 otherwise, and 𝑆
𝑖,:
denotes the

𝑖th row vector of 𝑆. With simple formulation, we can get

∑

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑈
𝑘
𝐵
(𝑘)

𝑖
−∑

𝑗

𝑠
𝑖𝑗
𝑈
𝑘
𝐵
(𝑘)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= tr
{

{

{

𝑈
𝑘
(∑

𝑖,𝑗

(𝐵
(𝑘)

𝑖
− 𝑠
𝑖𝑗
𝐵
(𝑘)

𝑗
) (𝐵
(𝑘)

𝑖
− 𝑠
𝑖𝑗
𝐵
(𝑘)

𝑗
)
𝑇

)𝑈
𝑇

𝑘

}

}

}

= tr{𝑈
𝑘
(∑

𝑖

(𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)
𝑆
𝑖,:
) (𝐵
(𝑘)

𝑖
− 𝐵
(𝑘)
𝑆
𝑖,:
)
𝑇

)𝑈
𝑇

𝑘
}

= tr{𝑈
𝑘
(∑

𝑖

(𝐵
(𝑘)
𝜖
𝑖
− 𝐵
(𝑘)
𝑆
𝑖,:

𝑇
)

× (𝐵
(𝑘)
𝜖
𝑖
− 𝐵
(𝑘)
𝑆
𝑖,:

𝑇
)
𝑇

)𝑈
𝑇

𝑘
}

= tr{𝑈
𝑘
(∑

𝑖

(𝐵
(𝑘)
𝜖
𝑖
− 𝐵
(𝑘)
𝑆
𝑖,:

𝑇
)

× (𝐵
(𝑘)
𝜖
𝑖
− 𝐵
(𝑘)
𝑆
𝑖,:

𝑇
)
𝑇

)𝑈
𝑇

𝑘
}

= tr{𝑈
𝑘
𝐵
(𝑘)
(∑

𝑖

(𝜖
𝑖
− 𝑆
𝑖,:

𝑇
) (𝜖
𝑖
− 𝑆
𝑖,:

𝑇
)
𝑇

)𝑈
𝑇

𝑘
}

= tr {𝑈
𝑘
𝐵
(𝑘)
(𝐼 − 𝑆)

𝑇
(𝐼 − 𝑆) 𝐵

(𝑘)
𝑇

𝑈
𝑇

𝑘
} ,

(16)

where 𝐼 is𝑁 ×𝑁 identity matrix. We can also obtain

tr{𝑈
𝑘
(∑

𝑖

𝐵
(𝑘)

𝑖
𝐵
(𝑘)

𝑖

𝑇

)𝑈
𝑇

𝑘
} = tr {𝑈

𝑘
𝐵
(𝑘)
𝐵
(𝑘)
𝑇

𝑈
𝑇

𝑘
} . (17)

Then the optimization problem in (14) can be rewritten as

argmin 𝐽
𝑘
(𝑈
𝑘
) = tr {𝑈

𝑘
𝐵
(𝑘)
(𝐼 − 𝑆)

𝑇
(𝐼 − 𝑆) 𝐵

(𝑘)
𝑇

𝑈
𝑇

𝑘
}

s.t. tr {𝑈
𝑘
𝐵
(𝑘)
𝐵
(𝑘)
𝑇

𝑈
𝑇

𝑘
} = 1.

(18)

Then the transformation matrix 𝑈
𝑘
can be obtained by

solving the eigenvectors corresponding to the 𝑑
𝑘
smallest

eigenvalues in the generalized eigenvalue equation

(𝐵
(𝑘)
(𝐼 − 𝑆)

𝑇
(𝐼 − 𝑆) 𝐵

(𝑘)
𝑇

) u=𝜆(𝐵(𝑘)𝐵(𝑘)
𝑇

)u. (19)

The other transformation matrices can be obtained in a
similar manner.

5. Experimental Results

In this section, experiments on Equinox data set andDHUFO
data set are presented to evaluate RTPP in Algorithm 1 for
recognition tasks. In the experiments, we compare the RTPP
algorithm with the tensor NPE method. Besides tensor NPE,
we also perform NPE directly on the serial combined data.
The serial combined data 𝑧serial is a super vector by combining
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑠
∈ 𝑅
𝑚 as 𝑧serial = [𝑥

𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑠
]
𝑇. For visible

and thermal infrared data, such as 𝑥visible and 𝑥IR, the serial
combined data 𝑧serial = [𝑥

𝑇

visible, 𝑥
𝑇

IR]
𝑇.

For the purpose of evaluating the performance of RTPP,
we used face verification rate as the criteria. The FERET
Verification Testing Protocol [28] recommends using the
receiver operating characteristic (ROC) curves to depict the
relations between the face verification rate (FVR) and the
false accept rate (FAR).TheROCcurveswere plotted by using
the Statistical Learning Toolbox according to the obtained
score matrix. For tensor operations, we used the tensor
toolbox developed by Bader and Kolda inMATLAB [29].The
sparse representations were obtained by Friedman et al. [30].
In the following experiments, we set 𝜂 = 0.1 for both data
sets.
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Input: A
1
, A
2
, . . . ,A

𝑁
(A
𝑖
∈ 𝑅
𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛) and 𝑑

1
× 𝑑
2
× ⋅ ⋅ ⋅ × 𝑑

𝑛
;

(1) Construct the similarity matrix 𝑆 by (12) and (14);
(2) Compute the embedding as follows:
Initialize 𝑈0

1
= 𝐼
𝑑1×𝑚1

, 𝐼
𝑑2×𝑚2

, . . . , 𝑈
0

𝑛
= 𝐼
𝑑𝑛×𝑚𝑛

;
for 𝑡 = 1, 2, . . . , 𝑇max do

for 𝑘 = 1, 2, . . . , 𝑛 do
B𝑘
𝑖
= A
𝑖
×
1
𝑈
1
⋅ ⋅ ⋅ ×
𝑘−1
𝑈
𝑘−1
×
𝑘+1
𝑈
𝑘+1
⋅ ⋅ ⋅ ×
𝑛
𝑈
𝑛
;

𝐵
(𝑘)

𝑖
⇐kB𝑘𝑖 ;

𝐻
1
= 𝐵
(𝑘)
(𝐼 − 𝑆)

𝑇
(𝐼 − 𝑆)𝐵

(𝑘)
𝑇

;
𝐻
2
= 𝐵
(𝑘)
𝐵
(𝑘)
𝑇

;
Compute 𝑈𝑡

𝑘
∈ 𝑅
𝑑𝑘×𝑚𝑘 by solving the eigen function:𝐻

1
𝑈
𝑡

𝑘
= 𝐻
2
𝑈
𝑡

𝑘
Λ
𝑘
;

if 󵄩󵄩󵄩󵄩𝑈
𝑡

𝑘
− 𝑈
𝑡−1

𝑘

󵄩󵄩󵄩󵄩 < 𝜀 for each 𝑘 then
break;

end if
end for

end for
Output: 𝑈

𝑖
= 𝑈
𝑡

𝑖
∈ 𝑅
𝑑𝑖×𝑚𝑖 (𝑖 = 1, 2, . . . , 𝑛).

Algorithm 1: The RTPP algorithm.

5.1. Experiments on Equinox Data Set. The National Insti-
tute of Standards and Technology and Equinox Corpora-
tion have developed a database (http://www.equinoxsens-
ors.com/products/HID.html) of face images using registered
broadband-visible/IR camera sensors for experimentation
and performance evaluations [10]. Since the registration of
the thermal images and the corresponding visible images is
fulfilled by camera sensors, in our experiments, we did not
need to do these procedures.

We used the long-wave infrared (LWIR) (i.e., 8𝜇m–
12 𝜇m) and the corresponding visible spectrum images from
this database. The data were collected during a two-day
period. Each pair of LWIR and visible light images was taken
simultaneously and coregistered with 1/3 pixel accuracy. The
LWIR images were radiometrically calibrated and stored as
grayscale images with 12 bits per pixels. The visible images
were also grayscale images represented with 8 bits per pixel
[10].

The database contains frontal faces under the following
scenarios: (1) three different light directions: frontal and
lateral (right and left); (2) three facial expressions: frown,
surprise, and smile; (3) vocals pronunciation expressions:
subjects were asked to pronounce several vocals from which
three representative frames were chosen; and (4) presence of
glasses: for subjects wearing glasses, all of the above scenarios
were repeated with and without glasses.

In our experiments, 1320 images (660 thermal images
and 660 corresponding registered visible images) were used.
These images belonged to 33 individuals. For each individual,
we had 20 thermal images and 20 corresponding visible
images. Original 12-bit gray level thermal images were con-
verted into 8 bits. All images (including thermal images and
visible images) were cut off the background, aligned, and then
normalized with a resolution of 28 × 24. The goal of the
preprocessing was to remove background and scale the faces.

Figure 1 shows sample images of one person in the Equinox
data set.

For any thermal image and its corresponding visible
image, the tensor sample was represented in the size of
28 × 24 × 2 pixels. In the experiments, 10 tensor samples
(10 thermal images and 10 corresponding visible images) of
each individual were randomly selected and used as training
set and the remaining 10 tensor samples as test set. The
experiments were independently performed 20 times and the
average results were calculated.

For our proposed RTPP algorithm and tensor NPE
algorithm, the reduceddimensions𝑑

1
×𝑑
2
×𝑑
3
of the extracted

features were 14×12×1 and 10×8 ×1, respectively. For NPE
algorithms performed on IR feature, visible feature, and serial
combined feature, the corresponding reduced dimensions
were 𝑑 = 168 and 𝑑 = 80, respectively. For tensor NPE
algorithm, we performed experiments to obtain the best
parameter 𝐾 (the number of nearest neighbors) for Equinox
data set. Figures 2 and 3 showed the ROC curves of the
proposed RTPP algorithm and tensor NPE algorithm using
different 𝐾’s (𝐾 = 5, 10, 15, 20, 25, 30, 35). From the ROC
curves, we can find that the best performance could be
obtained when 𝐾 = 5 (for both 𝑑 = 168 and 𝑑 = 80). And
the performance of the proposed RTPP algorithm is much
better than the tensor NPE algorithm, nomatter which𝐾was
selected.

The ROC curves of the different methods were shown
in Figures 4 and 5. The NPE algorithm was also separately
performed on visible data and thermal infrared data. In the
NPE algorithm, we set 𝐾 = 5. The results indicate that the
performance of the proposed RTPP algorithm is better than
other algorithms.

5.2. Experiments on DHUFOData Set. DHUFO is a database
of face images using registered visible/IR camera sensors for
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Figure 1: Sample images of one individual from Equinox data set.

experimentation and performance evaluations. The data set
was designed by the researchers. In our experiments, the
long-wave infrared (LWIR) (i.e., 8 𝜇–12 𝜇) sensor was used.
The registration of the thermal images and the corresponding
visible images was fulfilled by the camera sensors. Face image
variations in the DHUFO database included illumination,
facial expression, and glasses. In our experiments, 1020
images, which involved variations in illumination and facial
expressions, were selected. We manually cropped the face
portion of the images. These images belonged to 17 individu-
als. For each individual, there were 30 thermal images and 30
corresponding visible images. All images (including thermal
images and visible images) were cut off the background,
aligned, and then normalized with a resolution of 28 × 24.

For any thermal image and its corresponding visible
image, the tensor sample was represented in the size of
28 × 24 × 2 pixels. In the experiments, 15 tensor samples
(15 thermal images and 15 corresponding visible images) of
each individual were randomly selected and used as training
set and the remaining 15 tensor samples as test set. The
experiments were independently performed 20 times and the
average results were calculated.

For our proposed RTPP algorithm, tensor NPE algo-
rithm, and tensor LPP algorithm, the reduced dimensions
𝑑
1
× 𝑑
2
× 𝑑
3
of the extracted features were 14 × 12 × 1 and

10 × 8 × 1, respectively. For both NPE and LPP performed
on the serial combined feature, the corresponding reduced
dimensions were 𝑑 = 168 and 𝑑 = 80, respectively. The
ROC curves of the different methods were shown in Figures
6 and 7. In both NPE and LPP algorithm, we set 𝐾 = 5. The
results indicate that the performance of the proposed RTPP
algorithm is better than other algorithms.

5.3. Discussion. Based on the experimental results, the fol-
lowing observations are obtained.

(1) From the ROC curves of different methods on
Equinox data set and DHUFO data set, the proposed
RTPP algorithm obtained the best performance. The
experimental results indicate that combining the 𝐿
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norm for sparse tensor learning is a better way than
using local information reconstruction.

(2) RTPP does not introduce the local neighborhood
parameter 𝐾 and thus there is essential difference.
In RTPP, the 𝐿

1
norm is combined for the recon-

struction coefficients with sparse properties; thus the
advantages of robustness to data distortion and the
potential discriminative ability proven in [25–27] are
encoded in the representation coefficients, which are
preserved in the low-dimensional subspace. These
are the essential reasons for RTPP to achieve good
performance.

(3) Since RTPP well preserves the spatial structure of the
originalmultispectral face images, RTPPoutperforms
serial combined feature extraction algorithms.

6. Conclusion

We have proposed in this paper a novel tensor learning
algorithm, called robust tensor preserving projection (RTPP),
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for multispectral face recognition. The STE algorithm incor-
porates tensor manifold criterion to learn multiple subspaces
in high-order tensor space by preserving the sparse represen-
tation information of the multispectral images. RTPP cannot
only keep the underlying spatial structure of multispectral
images but also enhance robustness. Experimental results
demonstrate the excellent performance of RTPP.

Since RTPP is an unsupervised learning algorithm, one
of our future works will be supervised tensor learning algo-
rithms. We also plan to enforce the sparsity on the projection
matrix/vector and investigate the sparse projection learning
methods for tensor recognition.
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