
Scientific Programming 13 (2005) 151–158 151
IOS Press

The CanonicalProducer: An instrument
monitoring component of the Relational Grid
Monitoring Architecture (R-GMA)

Stuart Kennya,∗, Brian Coghlana, David O’Callaghana, John Ryana, Rob Byromb, Laurence Fieldb,
Steve Hicksb, Manish Sonib, Antony Wilsonb, Xiaomei Zhub, Roney Cordenonsia, Ari Dattac,
Linda Cornwalld, Abdeslem Djaouid and Norbert Podhorszkie
aTrinity College Dublin, Ireland
bPPARC, UK
cQueen Mary, University of London, UK
dRutherford Appleton Laboratory, UK
eSZTAKI, Hungary

Abstract. We describe how the R-GMA (Relational Grid Monitoring Architecture) can be used to allow for instrument monitoring
in a Grid environment. The R-GMA has been developed within the European DataGrid Project (EDG) as a Grid Information
and Monitoring System. It is based on the Grid Monitoring Architecture (GMA) from the Global Grid Forum (GGF), which is
a simple Consumer-Producer model. The special strength of this implementation comes from the power of the relational model.
It offers a global view of the information as if each Virtual Organisation had one large relational database. It provides a number
of different Producer types with different characteristics; for example some support streaming of information. We describe the
R-GMA component that allows for instrument monitoring, the CanonicalProducer. We also describe an example use of this
approach in the European CrossGrid project, SANTA-G, a network monitoring tool.

Keywords: Grids, instrument monitoring, grid monitoring architecture, grid information and monitoring systems, R-GMA,
CanonicalProducer, SANTA-G

1. The R-GMA

The Grid Monitoring Architecture (GMA) [2] of the
Global Grid Forum (GGF), as shown in Fig. 1, consists
of three components: Consumers, Producers and a di-
rectory service, which in the R-GMA is referred to as
a Registry.

In the GMA Producers register themselves with the
Registry and describe the type and structure of infor-
mation they want to make available to the Grid. Con-
sumers can query the Registry to find out what type

∗Corresponding author. ORI F34, Computer Science Department,
Trinity College Dublin, Dublin 2, Ireland. Tel.: +353 1 6081720;
E-mail: Stuart.Kenny@cs.tcd.ie.

of information is available and locate Producers that
provide such information. Once this information is
known the Consumer can contact the Producer directly
to obtain the relevant data. By specifying the Con-
sumer/Producer protocol and the interfaces to the Reg-
istry one can build inter-operable services. The Reg-
istry communication is shown on Fig. 1 by a dotted line
and the main flow of data by a solid line.

The current GMA definition also describes the reg-
istration of Consumers, so that a Producer can find a
Consumer. The main reason to register the existence of
Consumers is so that the Registry can notify them about
changes in the set of Producers that interests them. Al-
though the GMA architecture was devised for monitor-
ing, the R-GMA uses it as a basis for a combined infor-

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194600269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

152 S. Kenny et al. / The CanonicalProducer: An instrument monitoring component

Producer

Consumer

RegistryTransfer
Data

Store location

Lookup location

Fig. 1. Grid Monitoring Architecture.

CanonicalProducer
API

User’s Canonical
Producer Code

Consumer
API

User’s Consumer
Code

Registry
API

Producer
API

Registry
API

Canonical
Producer
Servlet

Registry
Servlet

select data

select data

transfer
data

transfer
data select data

register Consumers,
and select Producers

Consumer
Servlet

Fig. 2. CanonicalProducer servlet communication.

mation and monitoring system. The case for this was
argued in [4]; that the only thing which characterises
monitoring information is a time stamp, so in the R-
GMA there is a time stamp on all measurements, saying
that this is the time when the measurement was made,
or equivalently the time when the statement represented
by the tuple was true.

The GMA does not constrain any of the protocols
nor the underlying data model, so the implementation
of the R-GMA was free to adopt a data model which
would allow the formulation of powerful queries over
the data.

R-GMA is a relational implementation of the GMA,
developed within the European DataGrid (EDG), which
harnesses the power and flexibility of the relational
model. R-GMA creates the impression that you have
one RDBMS per Virtual Organisation (VO). However
it is important to appreciate that the system is a way

of using the relational model in a Grid environment
and not a general distributed RDBMS with guaranteed
ACID properties. All the producers of information are
quite independent. It is relational in the sense that Pro-
ducers announce what they have to publish via an SQL
CREATE TABLE statement and publish with an SQL
INSERT and that Consumers use an SQL SELECT to
collect the information they need. For a more formal
description of R-GMA see [3].

R-GMA is built using servlet technologyand is being
migrated rapidly to web services, specifically to fit into
an OGSA/OGSI [5] framework.

There have so far been defined not just a single Pro-
ducer but four different types: a DataBaseProducer,
a StreamProducer, a LatestProducer and a Canonical-
Producer. All appear to be Producers as seen by a
Consumer, but they have different characteristics.

The producers are instantiated and given the descrip-
tion of the information they have to offer by an SQL

S. Kenny et al. / The CanonicalProducer: An instrument monitoring component 153

Device

Monitoring
Instrument

Log File Search
Class

SQLParser

Processing
Thread

Listener

User’s
Canonical

Producer Code

CP
API

Canonical
Producer
Servlet

Register,
declare tables

ServerSocket

ResultSet

Connection

query

dataseek

Implemented
by user

Fig. 3. An example of CanonicalProducer user code.

Monitoring
Instrument Grid Resource

Log Files
Canonical

Producer API

User’s Canonical
Producer Code

Grid Information
System (R-GMA)

Fig. 4. SANTA-G monitoring framework.

CREATE TABLE statement and a WHERE clause ex-
pressing a predicate that is true for the table. Currently
this is of the form WHERE (column 1=value 1
AND column 2=value 2 AND . . .). To publish
data, in all but the CanonicalProducer, a method is in-
voked which takes the form of a normal SQL INSERT
statement. The CanonicalProducer, though in some re-
spects the most general, is somewhat different due to
the absence of a user interface to publish data via an
SQL INSERT statement; instead, it triggers user code
to answer an SQL query. For more detail see Section 3.

A Consumer uses the Registry to find out what type of
information is there, and where it is. The R-GMA Reg-
istry stores information about all producers currently
available. The R-GMA, uniquely, includes a mediator
(a kind of broker that is hidden behind the Consumer
interface) specifically to make the R-GMA easy to use.
The mediator knows that Producers are associated with
views on a virtual data base. Currently views have the
form:

SELECT * FROM <table> WHERE <predicate>

154 S. Kenny et al. / The CanonicalProducer: An instrument monitoring component

Log Files

Trace Directory

SANTA-G
Sensor

LatestProducer
API

CanonicalProducer
API

SANTA-G
QueryEngine

Sensor and
log file

information

R-GMA

Tcpdump

write network
data

invoke

monitor

register
log file

info
Sensor ID

Consumer
API

SANTA-G
Viewer

Fig. 5. SANTA-G NetTracer.

This view definition is stored in the Registry. When
queries are posed by a Consumer, the Mediator uses the
Registry to find the right Producers and then combines
information from them.

2. R-GMA architecture

R-GMA is currently based on servlet technology.
Each component has the bulk of its implementation in
a servlet. Multiple APIs in Java, C++, C, Python and
Perl are available for user code to communicate with the
servlets. The R-GMA makes use of the Tomcat servlet
container. Most of the R-GMA code is written in Java
and is therefore highly portable. The only dependency
on other EDG software components is in the security
area.

When a Producer is created its registration details
are sent via the Producer Servlet to the Registry. The
Registry records details about the Producer, which in-
clude the description and view of the data published,
but not the data itself. The description of the data is
actually stored as a reference to a table in the Schema.
In practise the Schema is co-located with the Registry.
Once registration is completed, then whenever the Pro-

ducer publishes data, the data are transferred to a local
Producer Servlet.

When a Consumer is created its registration details
are also sent to the Registry although this time via a
Consumer Servlet. The Registry records details about
the type of data that the Consumer is interested in. The
Registry then returns a list of Producers back to the
Consumer Servlet that match the Consumer’s selection
criteria.

The Consumer Servlet then contacts the relevant
Producer Servlets to initiate transfer of data from the
Producer Servlets to the Consumer Servlet. The data
are then available to the Consumer on the Consumer
Servlet, which should be close in terms of the network
to the Consumer.

As details of the Consumers and their selection cri-
teria are stored in the Registry, the Consumer Servlets
are automatically notified when new Producers are reg-
istered that meet their selection criteria.

The system makes use of soft state registration to
make it robust. Producers and Consumers both commit
to communicate with their servlet within a certain time.
A time stamp is stored in the Registry, and if nothing
is heard by that time, the Producer or Consumer is un-
registered. The Producer and Consumer servlets keep
track of the last time they heard from their client, and

S. Kenny et al. / The CanonicalProducer: An instrument monitoring component 155

R-GMA

transfer
data

SQL query

SANTA-G
QueryEngine

SQLParser

Search

Responder

LatestProducer
API

CanonicalProducer
API

Log File

Log File

seek

data

socket

parsed SQL

ResultSet

XML
ResultSet

Fig. 6. SANTA-G QueryEngine query processing.

ensure that the Registry time stamp is updated in good
time.

3. The CanonicalProducer

If we have to deal with a large volume of data it
may not be practical to convert it all to a tabular stor-
age model. Moreover, it may be inefficient to trans-
fer the data to a producer servlet with SQL INSERT
statements. It may be judged better to leave the data in
its raw form at the location where it was created. The
CanonicalProducer is able to cope with this by accept-
ing SQL queries and using user supplied code to return
selected information in tabular form when required.

In general the R-GMA producers are sub-classes of
the Insertable class, the class that provides the insert
method. The insert method is used by the producers to
send data to the servlets as an SQL INSERT string. The
CanonicalProducer is different however; it is a subclass
of the Declarable class. This means that it inherits the
methods for declaring tables, but not inserting data.
The user’s producer code is responsible for obtaining
the data requested. Figure 2 shows the communication
between the servlets for a CanonicalProducer. When

the other producer types publish data, the data is trans-
ferred to a local producer servlet via a SQL INSERT.
The CanonicalProducer Servlet, however, is never sent
raw data, which is instead retained local to the user’s
CanonicalProducer code.

A CanonicalProducer is instantiated by calling the
API constructor method:

CanonicalProducer myProducer =
new CanonicalProducer
(8998, CanonicalProducer.
HISTORY);

This creates a new CanonicalProducer object, which
registers itself with the CanonicalProducerServlet. The
first parameter is a port number. The CanonicalPro-
ducerServlet expects to be able to connect, by way of
a socket connection, to the CanonicalProducer code on
this port in order to satisfy SQL queries. The second
parameter describes the type of query that this producer
code can satisfy, HISTORY or LATEST.

The table, or tables, that this producer publishes are
then declared using the declareTable method.

myProducer.declareTable (
"cpuLoadUsage",

156 S. Kenny et al. / The CanonicalProducer: An instrument monitoring component

" WHERE (ipAddress=’" + this.
ipAddress + "’)",
"CREATE TABLE cpuLoadUsage
(ipAddress VARCHAR(50)
NOT NULL PRIMARY KEY, cpuLoad
REAL)"

)

When the servlet receives a query it opens a socket
connection on the given port number to the Canonical-
Producer code and forwards the SQL SELECT query
to the producer code. The producer code must then
execute the query, in whatever way it likes, and return
a ResultSet to the servlet. The servlet can then return
this ResultSet to the consumer. With the other producer
types the producer is never aware of the SQL SELECT
queries, they simply push the data to the servlet, and
it is the servlet that carries out the SQL query. With a
CanonicalProducer, however, the servlet has only the
very minimum functionality. To satisfy the query, it
simply acts as an intermediary, forwarding the query to
the correct CanonicalProducer instance and waiting for
results to be returned.

A typical implementation of CanonicalProducer
code would consist of several components, as shown
in Fig. 3. Although the figure shows the data being
collected by an instrument and stored in log files, the
data source could be anything.

CanonicalProducer Code would be the main class
implemented by the user, which would use the
CanonicalProducer API to instantiate a producer
object, and declare the tables that the producer
publishes. It would then start a Listener to wait
for connections from the servlet.

Listener would be created by the main class. It would
need to create a ServerSocket and then listen on
this socket for connections from the servlet. When
a connection is obtained it would be passed to a
processing thread to execute the query and then
continue listening for new connections.

Processing Thread would receive the connection to
the servlet from the Listener. The processing
thread would read the SQL SELECT query from
the socket connection, and process it over the
available data. When the results had been accu-
mulated they would then be returned to the servlet,
over the same socket connection.

SQL Parser Some additional classes would have to be
used by the processing thread. A class would be
needed to parse the SQL SELECT received from
the servlet.

Search Class A class would also be needed to search
the data for the required results to satisfy the query.
This class might, for example, perform seek op-
erations on a binary log file to find the data, or
possibly invoke a script to collect the data.

Results should be returned to the servlet as XML
ResultSets. The form of these is as follows:

<?xml version = ’1.0’ encoding=’UTF
-8’ "standalone=’no’?>

<edg:XMLResponse xmlns:edg=’
http://www.edg.org’>

<XMLResultSet>
<rowMetaData>

<colMetaData>Column
Name</colMetaData>

</rowMetaData>
<row><col>ColumnValue</
col></row>

</XMLResultSet>
</edg:XMLResponse>

An important issue with the CanonicalProducer is
the following. For the other producer types one can es-
timate how often the producer will contact the servlet,
as it should be regularly inserting data. This is not the
case with the CanonicalProducer. Because the Canoni-
calProducer never actually inserts data, the servlet will
never be informed as to whether the producer is still
alive, and therefore will not inform the registry. Af-
ter the R-GMA termination interval the CanonicalPro-
ducer would be presumed to be dead and its details
would be removed from the registry. To avoid this a
CanonicalProducer implementation should ensure that
it regularly sends a sign of life to the servlet. This can
be achieved by a thread that periodically, at intervals
less than the termination interval, contacts the servlet.

Because the user must write the code to parse and
execute the query, the CanonicalProducer can be used
to carry out any type of query on any type of data
source.

4. Example use of the CanonicalProducer

SANTA-G (Grid-enabled System Area Networks
Trace Analysis) is a generic template for ad-hoc, non-
invasive monitoring with external instruments, see
Fig. 4. The template allows for the information cap-
tured by external instruments to be introduced into the
Grid Information System. It is possible for these instru-

S. Kenny et al. / The CanonicalProducer: An instrument monitoring component 157

ments to be anything, from fish sonars to PCR Analy-
sers. The enabling technology for the template is the
CanonicalProducer. The demonstrator of this concept,
developed within the CrossGrid [11] project, is a net-
work tracer that allows a user to analyse the Ethernet
traffic at a site. The information obtained is useful for
both the validation and calibration of intrusive moni-
toring systems and also for performance analysis.

The SANTA-G NetTracer is composed of three com-
ponents that allow for the monitoring data to be ac-
cessed through the R-GMA: a Sensor (which is installed
on the node(s) to be monitored), a QueryEngine, and
a Viewer GUI, see Fig. 5. The Sensor invokes Tcp-
dump (an open-source packet capture application), and
then monitors the log files created. The Sensor notifies
the QueryEngine when new log files are detected. The
QueryEngine records these events, which are published
to users through the R-GMA (by using the LatestPro-
ducer API). The QueryEngine also includes the inter-
face to the R-GMA by using the CanonicalProducer
API. Data is viewed via the R-GMA by submitting an
SQL SELECT statement, as if querying a relational
database. Through the CanonicalProducer this query
is forwarded to the QueryEngine, which then parses
the query, searches the appropriate log file to obtain
the data required to satisfy the query, and returns the
dataset to the GUI through the R-GMA.

It is the SANTA-G QueryEngine that implements
the components of the CanonicalProducer code as
described in Section 3. Figure 6 shows how the
QueryEngine executes a SQL query received from the
R-GMA (i.e. from the CanonicalProducerServlet). The
QueryEngine listens on a socket, waiting for connec-
tions from the Servlet. When a connection is made the
SQL query is read from the socket and passed to an
SQLParser class. The parser breaks the query into three
separate lists; a select list that contains the network
header fields to be read, a from list that contains the ta-
ble the fields belong to, and a where list that contains the
values used to match the packets to. The Search class
searches the log file for network packets that match the
WHERE predicates specified in the query, and extracts
the required packet header fields from them. The data
that satisfies the query is accumulated into a ResultSet
in XML format and returned to the Servlet over the
socket connection. For example, the following query:

SELECT source_address, destination_
address, packet_type
FROM Ethernet
WHERE sensorId = ‘some.machine.com:
0’
AND fileId = 0 AND packetId < 100

would return the source address, destination address,
and packet type fields of the Ethernet header for the
first 100 packets in the log file assigned ID 0 and stored
on ‘some.machine.com’.

The SANTA-G Viewer provides a graphical user in-
terface, which makes use of the R-GMA Consumer
API, to allow users to graphically view network pack-
ets in the log files, and also to build and submit SQL
queries that will be carried out on the log files.

5. Conclusion

The R-GMA is a relational implementation of the
GMA architecture. It is built using servlet technology.
In the R-GMA most producers of information publish
data by transferring the data to servlets. This may not
always be suitable for all applications. When dealing
with instruments which produce a large volume of data
it may not be practical to convert it all to a tabular
storage model nor efficient to transfer the data to the
servlets. It may be preferrable to leave the data where
it was created, and only transfer it across the network
when specifically requested by a user. In order to al-
low for this a special type of producer was included
in R-GMA, the CanonicalProducer. This allows a user
to customize the way the producer responds to a user
request, i.e. a SQL query. The SANTA-G network
monitoring tool developedwithin the CrossGrid project
demonstrates the CanonicalProducer concept by pub-
lishing Ethernet trace data.

References

[1] A. Cooke, W. Nutt, J. Magowan, Manfred Oevers, P. Taylor, A.
Datta, R. Cordenonsi, R. Byrom, L. Field, S. Hicks, M. Soni,
A. Wilson, X. Zhu, L. Cornwall, A. Djaoui, S. Fisher, N. Pod-
horszki, B. Coghlan, S.K.D. O’Callaghan and J. Ryan, RGMA:
First Results After Deployment CHEP03, La Jolla, California,
March 24–28, 2003.

[2] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor
and R. Wolski, A Grid monitoring architecture, Global Grid
Forum Performance Working Group, March, 2000. Revised
January 2002.

[3] A. Cooke, A.J.G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oev-
ers, P. Taylor, R. Byrom, L. Field, S. Hicks, J. Leake, M. Soni,
A. Wilson, R. Cordenonsi, L. Cornwall, A. Djaoui, S. Fisher,
N. Podhorszki, B.C.S. Kenny and D. O’Callaghan, R-GMA:
An Information Integration System for Grid Monitoring, Pro-
ceedings of the Tenth International Conference on Cooperative
Information Systems, 2003.

[4] B. Coghlan, A. Djaoui, S. Fisher, J. Magowan and M. Oevers,
Time, Information Services and the Grid, 31st May 2001.

158 S. Kenny et al. / The CanonicalProducer: An instrument monitoring component

[5] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman and P. Vanderbilt, Grid Service Specifica-
tion http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-
gridservice-04 2002-10-04.pdf, 2003.

[6] The DataGrid Project. http://www.eu-datagrid.org.
[7] DataGrid WP3, DataGrid Information and Monitoring Final

Evaluation Report, https://edms.cern.ch/document/410810/4/
DataGrid-03-D3.6-410810-4-0.pdf.

[8] B. Coghlan and S. Kenny, SANTA-G Software Design Docu-
ment.

[9] B. Coghlan and S. Kenny, SANTA-G First prototype Descri-
ption, http://www-eu-crossgrid.org/Deliverables/M12pdf/
CG3.3.2-TCD-D3.3-v1.1-SANTAG.pdf.

[10] CrossGrid WP3. Deliverable D3.5, Report on the Results
of the 2nd and 3rd Prototype http://www-eu-crossgrid.org/

Deliverables/M24pdf/CG3.0-D3.5-v1.2-PSNC010-
Proto2Status.pdf.

[11] The CrossGrid Project http://www.eu-crossgrid.org.
[12] DataGrid WP3 Information and Monitoring Services http://

hepunx.rl.ac.uk/edg/wp3/.
[13] Global grid forum. http://www.ggf.org.
[14] I. Foster and C. Kesselman, The Grid: Blueprint for a New

Computing Infrastructure, chapter 2: Computational Grids,
Morgan Kaufmann, 1999, 15–51.

[15] I. Foster, C. Kesselman and S. Tuecke, The anatomy of the
Grid: Enabling scalable virtual organization, The International
Journal of High Performance Computing Applications 15(3)
(2001), 200–222.

[16] G. Toolkit. http://www.globus.org.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

