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The soliton interaction is investigated based on solving the nonisospectral generalized Sawada-Kotera (GSK) equation. By using
Hirota method, the analytic one-, two-, three-, and 𝑁-soliton solutions of this model are obtained. According to those solutions,
the relevant properties and features of line-soliton and bright-soliton are illustrated. The results of this paper will be useful to the
study of soliton resonance in the inhomogeneous media.

1. Introduction

The Hirota method, originating from the work of Hirota
in 1971 [1], is a powerful method for constructing solutions
for integrable systems. The soliton theory is presented in
several monographs and review papers (see [2, 3]). In the
literature, various approaches have been proposed to find a
soliton solution for a given equation, for instance, the inverse
scatting transform [4] and the Darboux transformation [5].
It is remarked that the Hirota method is very efficient for
construction of soliton solutions.

The nonisospectral equations describe solitary waves in
inhomogeneous media. Recently, much attention has been
paid on the analytic solutions of the nonisospectral equations.
Deng et al. [6] and Sun et al. [7, 8] develop a systematic proce-
dure to find soliton solutions of the nonisospectral equations.
Based on exact solutions, numerical methods can be pre-
sented well for the nonisospectral nonlinear problem [9–11].

Jiang considers the nonisospectral problem [12] by using
the compatibility condition of Lax pairs. In our work, the
bilinear form and 𝑁-soliton solutions will be considered for
a generalized nonisospectral equation.

The nonisospectral generalized Sawada-Kotera (GSK)
equation [12] is written as follows:
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where 𝜔, 𝑎, and 𝑏 are real constants. The Lax pair of (1) is
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(2)

The aim of this paper is to propose a simple method for
construction𝑁-soliton solutions.Themain tool is the Hirota
method. Then we apply the idea to the nonisospectral GSK
equation.

This paper is organized as following: In Section 2, with
the aid of symbolic computation, the bilinear form of (1) is
obtained by use of Hirota method. Some special solutions
are explicitly presented based on their bilinear form (4) and
the soliton resonance is illustrated. The final section contains
some discussion.

2. Bilinear Form and 𝑁-Soliton Solutions

Through the dependent variable transformation

𝑢 = 3 (15 − √185) (ln𝑓)
𝑥𝑥

. (3)
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Equation (1) can be written in the bilinear form. Consider
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(4)

where the𝐷-operators [13] is defined by
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(5)

The perturbation method consists of expanding 𝑓 with
respect to a small parameter 𝜀 to obtain
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2
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3
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and then finding each coefficient 𝑓
(𝑛) successively for 𝑛 =

1, 2, 3, . . ..
Substituting the expansion formula of 𝑓 into the bilinear

equation (4) and arranging it at each order of 𝜀, we have
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let us choose

𝑓
(1)

= 𝑒
𝜉
1 , (10)

where 𝜉
1

= −𝑘
1
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.

Since substituting this into the left-hand side of (7) gives

𝑘
1,𝑡

(𝑡) = 𝜔𝑘
1
(𝑡) , (11)

then (11) is an ordinary differential system and it can be solved
exactly. The solutions of (11) are written as

𝑘
1
(𝑡) = 𝑐

1
𝑒
𝜔𝑡
. (12)

Therefore, we are able to choose 𝑓
(𝑗)

= 0, 𝑗 = 2, 3, . . ..
This shows that the expansion of 𝑓 may be truncated as the
finite sum

𝑓 = 1 + 𝑓
(1)

= 1 + 𝑒
𝜉
1 . (13)

Substituting (13) into (3), the one-soliton solution of the
nonisospectral GSK equation (1) can be obtained

𝑢 =

3 (15 − √185) 𝑘
2

1
(𝑡)

4
sech2 (𝜉

1

2
) . (14)

Here 𝑢 is the one-soliton solution. By the form of the solution
(14), one can see that the one-soliton travels with a time-
dependent top trace

𝜉
1
= 0. (15)

In fact, the top trace of the solution (14) is a linewith time-
dependent slope. Equation (14) provides a line-soliton with
the following time-dependent amplitude:

𝐴 =

3 (15 − √185) 𝑘
2

1
(𝑡)

4
. (16)

Figures 1 and 2 describe the different amplitudes of the
one-soliton solution at 𝑡 = 1 and 𝑡 = 2.

We begin here by finding a two-soliton solution. It is a
solution describing the interaction of two solitons.

To this end, we choose the solution to the linear differen-
tial equation (7) to be

𝑓
(1)

= 𝑒
𝜉
1 + 𝑒
𝜉
2 , (17)
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𝑗
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𝑗
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𝑗
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𝑗
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0

𝑗
for 𝑗 = 1, 2.

Substituting (17) into the left-hand side of (7), we have

𝑘
𝑗,𝑡

(𝑡) = 𝜔𝑘
𝑗
(𝑡) , (𝑗 = 1, 2) . (18)

The solutions of (18) are written as

𝑘
𝑗
(𝑡) = 𝑐

𝑗
𝑒
𝜔𝑡
, (𝑗 = 1, 2) . (19)

We here set that

𝑓
(2)

= 𝑒
𝜉
1
+𝜉
2
+𝜃
12 . (20)
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Figure 1: The shape and motion of the one-soliton solution for 𝜔 =

−0.8, 𝑎 = 1, 𝑏 = 1, 𝑐
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Figure 2: The shape and motion of the one-soliton solution for 𝜔 =

−0.8, 𝑎 = 1, 𝑏 = 1, 𝑐
1
= 1, 𝜉0

1
= 1, 𝑡 = 2.

From (20), wemight assume that the relations 𝑒𝜃12 = 𝐹(𝑡).
Equation (20) may also be written as

𝑓
(2)

= 𝐹 (𝑡) 𝑒
𝜉
1
+𝜉
2 . (21)

Substituting (17), (21) into the left-hand side of (8) and using
(18), we have

𝜕𝐹 (𝑡)

𝜕𝑡
− 3𝑘
1
(𝑡) 𝑘
2
(𝑡) [𝑘
1
(𝑡) + 𝑘

2
(𝑡)] 𝐹 (𝑡)

+
3𝑘
1
(𝑡) 𝑘
2
(𝑡) [𝑘
1
(𝑡) − 𝑘

2
(𝑡)]
2

[𝑘
1
(𝑡) + 𝑘

2
(𝑡)]

= 0.

(22)
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Figure 3:The shape andmotion of the two-soliton solutions for𝜔 =

−1, 𝑎 = 1, 𝑏 = 1, 𝑐
1
= 1, 𝑐
2
= 2, 𝜉0

1
= 1, 𝜉0

2
= 1, 𝑡 = 2.

Substitution of (19) into (22) gives

𝐹 (𝑡) =
[𝑘
1
(𝑡) − 𝑘

2
(𝑡)]
2

[𝑘
1
(𝑡) + 𝑘

2
(𝑡)]
2
= 𝑒
𝜃
12 . (23)

The coefficient 𝑒𝜃12 obtained in (23), which are similar to
the SK equation (see [14]), can also be KdV type.

Therefore, we are able to choose 𝑓
(𝑗)

= 0, 𝑗 = 3, 4, . . ..
The two-soliton solutions are obtained by (3) in which 𝑓 is
defined as

𝑓 = 1 + 𝑓
(1)

+ 𝑓
(2)

= 1 + 𝑒
𝜉
1 + 𝑒
𝜉
2 + 𝑒
𝜉
2
+𝜉
2
+𝜃
12 . (24)

Its shape and motion are shown in Figures 3 and 4.
In Figures 3 and 4, the line-soliton characters are shown in

two-soliton solutions, where the black areas denote zero value
and the white lines denote bright-soliton. In this case, the
amplitudes and slopes of the two-soliton will vary with time
and this time-dependent property comes from the effects of
inhomogeneous media.

Let us choose

𝑓
(1)

= 𝑒
𝜉
1 + 𝑒
𝜉
2 + 𝑒
𝜉
3 , (25)

where 𝜉
𝑗

= −𝑘
𝑗
(𝑡)𝑥 + 𝑘

3

𝑗
(𝑡)𝑦 − (𝑎/𝜔)𝑘

𝑗
(𝑡) + (𝑏/3𝜔)𝑘

3

𝑗
(𝑡) +

(9/5𝜔)𝑘
5

𝑗
(𝑡) + 𝜉

0

𝑗
for 𝑗 = 1, 2, 3.

Substituting (25) into the left-hand side of (7), we have

𝑘
𝑗,𝑡

(𝑡) = 𝜔𝑘
𝑗
(𝑡) , (𝑗 = 1, 2, 3) . (26)

The solutions of (26) are written as

𝑘
𝑗
(𝑡) = 𝑐

𝑗
𝑒
𝜔𝑡
, (𝑗 = 1, 2, 3) . (27)
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Figure 4: The density plots of two-soliton resonance for the
nonisospectral GSK equation with parameters 𝜔 = −1, 𝑎 = 1, 𝑏 = 1,
𝑐
1
= 1, 𝑐
2
= 2, 𝜉0

1
= 1, 𝜉0

2
= 1, 𝑡 = 2.

We here set that

𝑓
(2)

= 𝑒
𝜉
1
+𝜉
2
+𝜃
12 + 𝑒
𝜉
1
+𝜉
3
+𝜃
13 + 𝑒
𝜉
2
+𝜉
3
+𝜃
23 . (28)

Substitution of (25), (28) into (8) gives

𝑒
𝜃
12 =

[𝑘
1
(𝑡) − 𝑘

2
(𝑡)]
2

[𝑘
1
(𝑡) + 𝑘

2
(𝑡)]
2
,

𝑒
𝜃
13 =

[𝑘
1
(𝑡) − 𝑘

3
(𝑡)]
2

[𝑘
1
(𝑡) + 𝑘

3
(𝑡)]
2
,

𝑒
𝜃
23 =

[𝑘
2
(𝑡) − 𝑘

3
(𝑡)]
2

[𝑘
2
(𝑡) + 𝑘

3
(𝑡)]
2
.

(29)

Let

𝑓
(3)

= 𝑒
𝜉
1
+𝜉
2
+𝜉
3
+𝜃
123 . (30)

Substituting (25), (28), and (30) into (9), one obtains

𝑒
𝜃
123 =

[𝑘
1
(𝑡) − 𝑘

2
(𝑡)]
2

[𝑘
1
(𝑡) − 𝑘

3
(𝑡)]
2

[𝑘
2
(𝑡) − 𝑘

3
(𝑡)]
2

[𝑘
1
(𝑡) + 𝑘

2
(𝑡)]
2

[𝑘
1
(𝑡) + 𝑘

3
(𝑡)]
2

[𝑘
2
(𝑡) + 𝑘

3
(𝑡)]
2
.

(31)

Therefore, we are able to choose 𝑓
(𝑗)

= 0, 𝑗 = 4, 5, . . ..
The three-soliton solutions are obtained by (3) in which 𝑓 is
defined as

𝑓 = 1 + 𝑓
(1)

+ 𝑓
(2)

+ 𝑓
(3)

= 1 + 𝑒
𝜉
1 + 𝑒
𝜉
2 + 𝑒
𝜉
3 + 𝑒
𝜉
1
+𝜉
2
+𝜃
12 + 𝑒
𝜉
1
+𝜉
3
+𝜃
13

+ 𝑒
𝜉
2
+𝜉
3
+𝜃
23 + 𝑒
𝜉
1
+𝜉
2
+𝜉
3
+𝜃
123 .

(32)

The nonisospectral GSK equation [12] has been shown
to be integrable. It can be represented as the compatibility
condition in the Lax form [𝐿,𝑀] = 0. Therefore, it would be
reasonable to continue to find the 𝑁-soliton solutions (𝑁 >

3) with the help of symbolic computation (see [15]).
This process can be extended to the four-soliton solutions,

and so on. Generally, the𝑁-soliton solutions are expressed as

𝑓 = ∑ exp[

[

𝑁

∑

𝑗=1

𝜇
𝑗
𝜉
𝑗
+

(𝑁)

∑

𝑗<𝑙

𝜃
𝑗𝑙
𝜇
𝑗
𝜇
𝑙
]

]

, (33)

where the coefficients 𝜃
𝑗𝑙
and 𝜉
𝑗
are defined by

𝜃
𝑗𝑙
=

[𝑘
𝑗
(𝑡) − 𝑘

𝑙
(𝑡)]
2

[𝑘
𝑗
(𝑡) + 𝑘

𝑙
(𝑡)]
2
, (34)

𝜉
𝑗
= −𝑘
𝑗
(𝑡) 𝑥 + 𝑘

3

𝑗
(𝑡) 𝑦 −

𝑎

𝜔
𝑘
𝑗
(𝑡) +

𝑏

3𝜔
𝑘
3

𝑗
(𝑡)

+
9

5𝜔
𝑘
5

𝑗
(𝑡) + 𝜉

0

𝑗
, 𝑗 = 1, 2, . . . , 𝑁,

(35)

respectively.
In formula (33), the first ∑ means a summation over all

possible combinations of 𝜇
1
= 0, 1, 𝜇

2
= 0, 1, . . ., 𝜇

𝑁
= 0, 1,

and ∑
(𝑁)

𝑗<𝑙
means a summation over all possible pairs (𝑗, 𝑙)

chosen from the set {1, 2, . . . , 𝑁}, with the condition that
𝑗 < 𝑙.

Substituting (33) into (3), we obtain the 𝑁-soliton solu-
tions for the nonisospectral GSK equation.

3. Conclusion

In this paper, we have obtained the 𝑁-soliton solutions of
the nonisospectral GSK equation by the Hirota method.
Under transformation (3), (1) has been transformed into
bilinear form (4) directly. Based on formula (33), 𝑁-soliton
solutions have been constructed. A KdV-type solution has
also been obtained. Soliton resonance and interaction for
(1) can be regarded as the combination of the effects of
various variable coefficients, as shown in Figures 1–3. Effects
of the line-soliton, bright-soliton, and soliton resonance have
been summarized. Finally, according to Figure 4, the possible
applications of soliton resonance in the inhomogeneous
media have been discussed.
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