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The use of fractal features from the periphery
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A polygonization-based method is used to estimate the frac-
tal dimension and several new scalar lacunarity features from
digitized transmission electron micrographs (TEM) of mouse
liver cell nuclei. The fractal features have been estimated in
different segments of 1D curves obtained by scanning the 2D
cell nuclei in a spiral-like fashion called “peel-off scanning”.
This is a venue to separate estimates of fractal features in the
center and periphery of a cell nucleus. Our aim was to see
if a small set of fractal features could discriminate between
samples from normal liver, hyperplastic nodules and hepato-
cellular carcinomas. The Bhattacharyya distance was used to
evaluate the features. Bayesian classification with pooled co-
variance matrix and equal prior probabilities was used as the
rule for classification.

Several single fractal features estimated from the periph-
ery of the cell nuclei discriminated samples from the hyper-
plastic nodules and hepatocellular carcinomas from normal
ones. The outer 25–30% of the cell nuclei contained impor-
tant texture information about the differences between the
classes. The polygonization-based method was also used as
an analysis tool to relate the differences between the classes
to differences in the chromatin structure.
Keywords: Medical image analysis, nuclear texture analy-
sis, peel-off-scanning, fractal dimension, lacunarity, classifi-
cation
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1. Introduction

There is an increasing interest in using fractals in
biology and medicine, particularly to describe single
cells [10,15,32,39,47,53]. However, most studies of
fractal features of cells are considering fractal descrip-
tions of the curve outlining the cell contour in binary
images, and are almost exclusively using only the frac-
tal dimension [4,29,33,37]. Only a few studies [6,17,
18,25,35] have utilized fractal geometry to character-
ize the chromatin structure in gray level images of the
cell nuclei. The fractal approach may be helpful in de-
tecting ultrastructural changes of nuclear components
which occur in cell tissues during pathologic processes
[34].

It is known that carcinogenesis can involve alter-
ations of normal gene regulation [12], resulting not
only in an increased amount but also structural dif-
ferences in the chromatin [31,48,57]. Danielsen et al.
[12] noted several variables that discriminated between
liver cell nuclei from normal liver and hepatocellular
carcinomas. Second order and higher order statistical
texture features and texture features based on the Laws
convolution matrices have earlier been extracted from
the same liver cell material used in the present study [2,
3,56], where mean texture features extracted from the
whole 2D cell nucleus were used to classify samples as
normal, regenerating, hyperplastic nodules and hepato-
cellular carcinomas. The results demonstrated the pos-
sible use of digital texture analysis as a diagnostic aid
in tumour pathology.

The aim of the present study was to extract separate
estimates of fractal features in the center and periphery
of the cell nuclei and to select a small set of such fea-
tures for classification. Of special interest for us was
a quantification of the chromatin structure close to the
nuclear membrane.

As a venue to separate estimates of fractal features
in the center and periphery of a cell nucleus, we have
transformed 2D gray level images of liver cell nuclei
into 1D gray level signals by scanning the cell nuclei in
a spiral-like fashion called “peel-off scanning”. A 1D
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polygonization-based method [1] was then used to es-
timate fractal texture features in different segments of
the 1D gray level curves.

An estimate of the fractal dimension of a 2D gray
level surface is usually obtained by counting the num-
ber of boxes of different sizes that are needed to
cover the surface. A number of refinements of this
2D scheme exist [19,28,44,50]. The successive “ε-
blanket” method [40] also gives good approximation to
the fractal dimension of 2D surfaces [1].

For 1D signals such as those obtained by our scan-
ning procedure, several algorithms are applicable to
the problem of measuring the length of an irregu-
lar curve. Mandelbrot [36] suggested walking a yard-
stick of lengthε along the curve. Thisconstant-length
divider-stepmethod is not even theoretically exact
for curves without self-similarity, and yields poor re-
sults in practice if the curve contains only a small
number of points [38]. Normant and Tricot [38] pro-
posed aconstant-deviation variable-stepmethod, us-
ing local convex hulls. However, this method involves
a complicated algorithm, resulting in long computa-
tion times. We therefore proposed a fast and reliable
polygonization-based method for estimation of fractal
dimension [1] which we have applied in the present
study.

Mandelbrot [36] also introducedlacunarity, Λ, to
quantify texture. The lacunarity definition of Voss [50]
has the form of a set of variance measures, computed
from a set of distributions, each of which is obtained
for a certain value of the box size. Keller et al. [28] in-
troduced another measure of lacunarity, also based on
a function obtained for different values of the box size.
The significance of the lacunarity vector is that it de-
scribes the deviation from homogeneity in the texture.
We suggested two new lacunarity definitions [1] which
we have used in this study, and we now also introduce
a small, compact set of scalar lacunarity features that
represent these lacunarity vectors.

We have applied the polygonization-based method
to digitized transmission electron micrographs (TEM)
of mouse liver cell nuclei from normal and regen-
erating liver, hyperplastic nodules and hepatocellular
carcinomas [14]. For comparison, we have estimated
fractal dimension by a 1D “ε-blanket” method [40].
We have also computed Gray Level Coocurrence Ma-
trix (GLCM) [24] and Gray Level Run Length Matrix
(GLRLM) [21] features from the different segments of
the 1D gray level curves.

Using fractal dimension and lacunarity, we found
that the outer parts of the liver cell nuclei contained im-

portant textural information that enabled us to differ-
entiate normal and regenerating samples from noduli
and tumour samples.

The polygonization-based method was also used as
an analysis tool to give qualitative descriptions of the
difference in chromatin texture between the classes.

2. Material and methods

2.1. Data description

2.1.1. Care and treatment of animals
C3H/HeJ mice were obtained from Bomholt gård,

Ry, Denmark. They were housed in plastic cages on
hardwood shavings and fed a commercial diet (R3,
Ewos, Sweden) and tap waterad libitum. Except for
controls, each mouse was given a single i.p. injection
of 0.5µmol DEN (diethylnitrosamine, Sigma Chem-
icals Co., St Louis, MO) dissolved in 0.9% NaCl/g
body weight within 24 h of birth. The controls were
given 0.9% NaCl only. At three weeks of age the mice
were weaned, segregated by sex, and male mice were
kept and housed in groups of five. Unless otherwise in-
dicated by procedure, the mice were killed by cervical
dislocation.

2.1.2. Preparation of liver specimens
The hepatocyte nuclei of normal liver, regenerat-

ing liver, nodules and hepatocellular carcinomas were
studied [14]. Four to five-month-old mice were used
in two different control groups. The first group was
a normal (non-proliferating) control group and con-
sisted of liver samples from five animals. The second
group contained normal, but proliferating cells, and in-
cluded liver samples from five animals killed 48 h after
a 2/3 partial hepatectomy. Specimens were taken from
each of the right lobes from each animal. The third
group consisted of a total of 15 nodules (0.5–2 mm
in diameter) isolated by liver perfusion of 15 mice,
5 months after the administration of DEN. The per-
fusion procedure has been described elsewhere [13].
The nodules were isolated from the cell suspensions
by filtering through a 250µm nylon mesh filter. For
analysis of hepatocellular carcinomas (fourth group),
15 mice were killed 1 year after the administration of
DEN. One well defined tumour was taken randomly
from each animal, of which four were excluded from
the study by a pathologist, due to a large number of
necrotic cells.
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2.1.3. Preparation of liver sections and electron
micrographs

All specimens were cut into blocks less than 1 mm
in size and fixed with 2% glutaraldehyde in 0.1 M ca-
codylate buffer with 0.1 M sucrose, pH 7.4 at 4◦C for
48 hours. They were rinsed overnight in 0.1 M ca-
codylate buffer with 0.2 M sucrose and post-fixed with
1% osmium tetroxide in 0.1 M cacodylate buffer with
0.1 M sucrose pH 7.4, at 20◦C. Thereafter the ma-
terial was dehydrated in graded ethanol, rinsed three
times in propylenoxide and embedded in Epon. Ultra-
thin sections (approximate thickness= 60−90 nm)
were stained first with uranylacetate and then lead cit-
rate, and studied at a magnification of 2500 in a JEOL
EX1200 transmission electron microscope at 60 kV
with a 20µm aperture.

The cell images were recorded on Kodak 4489 EM
photographic film and were examined using a Kontron
(Germany) Image Processing System (IBAS), in which
a Sony CCD video camera (XC-77CE, Japan) was used
to capture the positive electron micrographs (with total
magnification of 7500). The images of cell nuclei were
selected at random from a larger set of cell images from
each sample. Each nuclear image was stored in 512×
512× 8 bits, and the pixel resolution was 39 nm per
pixel on the cell specimen.

2.1.4. Experimental design
In the first experiment the data was divided into a

training set consisting of 5 normal, 5 regenerating, 5
noduli and 5 tumour samples and an independent test
set consisting of 10 noduli and 6 tumour samples. This
is the same experimental design as was used earlier [2,
3,56].

Because of the small number of samples we also per-
formed a second experiment where all samples were
utilized in the feature evaluation and the error estima-
tion.

Because the main aim was to identify samples from
hyperplastic nodules and hepatocellular carcinomas,
we have considered normal and regenerating samples
as one (normal+regenerating) class in the statistical
analysis. However, we have also checked if it is rea-
sonable to pool these two classes for each of the fea-
tures chosen. Thus we define the following classes:
normal+regenerating, noduli and tumour. The value of
each texture feature used here to classify each sample
(lesion) was the mean value of about 100 cell nuclei
from each sample.

2.1.5. Preprocessing
The image data set available for the present study

had been pre-processed by a 3× 3 median filter [42].
This was done in order to reduce possible noise with-
out too much unwanted altering of the local texture
[56]. For the present application, the region of inter-
est includes the cell nucleus only. This was obtained
by manual segmentation. After segmentation, the his-
tograms of all images were normalized to the same
mean value (127.5) and standard deviation (50.0). The
gray level value 255 was used as background.

2.2. Spiral scanning

An 8-neighbour backtracking bug follower [42] has
been used as a spiral scanning algorithm. Starting with
the segmented cell nucleus, we follow the (outer) con-
tour of the nucleus, and spiral inwards as we peel off
layer by layer of the nucleus, forming a 1D gray level
signal. In this type of spiral scanning, which we call
“peel-off scanning”, the resulting 1D gray level curve
only reflects the size and contrast of structures inside
the nucleus, not the morphology of the nuclear mem-
brane.

The 1D gray level signal resulting from the “peel-
off scanning” of each TEM image was subdivided into
10 segments, each representing approximately 10% of
the total area of the nucleus (see Fig. 1). Each segment
contained an average of 2468 pixels. Two features of
the 1D signal were immediately visible for most of the
cells: (1) The dark outer 10–15% of the area close to
the nuclear membrane, corresponding to the accumula-
tion of dark chromatin and (2) the repetitive pattern in
the 1D signal, corresponding to one circumference of
the remaining area of the cell nucleus in the “peel-off
scanning” process.

Figure 2 shows examples of 2D cell nuclei from the
three classes, and the resulting 1D signals correspond-
ing to the second peripheral segments. The second pe-
ripheral segments correspond to about five pixel lay-
ers of the nuclei in the “peel-off scanning”. The in-
tensely stained particles (dark pixels) represent hete-
rochromatin and the lighter pixels represent euchro-
matin. To illustrate the differences in texture, the 1D
signal is shown for cell nuclei chosen from the normal,
noduli and tumour classes.
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(a) (b)

(c)

Fig. 1. (a) A malignant cell nucleus, (b) the 2D regions of every second segment (1, 3, 5, 7, 9) and (c) the resulting 1D gray level signal.

2.3. 1D fractal features

2.3.1. Fractal dimension by the polygonization-based
method

Our method for estimation of fractal dimension of
1D curves [1] is based on the polygonization method of
Wall and Danielsson [52]. Wall–Danielsson’s method
steps from point to point through an ordered sequence
of points (xi,fi), and outputs the previous point as a
new breakpoint if the area deviationAi per unit length
of the approximating line segmentsi exceeds a pre-
specified tolerance,TWD (see Fig. 3).

If |Ai|/si < TWD, i is incremented and (Ai, si) is
recomputed. Otherwise, the previous point is a new
breakpoint and the previous value ofsi is stored. This
method is purely sequential and very fast.

We approximate the 1D gray level signal obtained
by the “peel-off scanning” process by polygonization
with several values of the tolerance,TWD. For each tol-
erance value the total length of the line segments that
approximate the curve is summed up by

STWD =
∑
i

si. (1)

Here, the set of tolerance values is computed from
a Fibonacci sequenceTWD(k) = TWD(0)Fib(k + 1),
whereTWD(0) = 0.25, andFib(1) = 1, Fib(2) = 2,
Fib(n) = Fib(n − 1) + Fib(n − 2). The Fibonacci

sequence is used in order to obtain more points within
a certain {log(TWD), log(STWD )}-range, and thereby a
more reliable value of the estimated fractal dimension,
as compared to ordinary doubling of tolerance values.

For a true fractal the slope of the log(STWD) versus
log(TWD) graph is independent of the scale parameter
TWD. For real world physical objects, we merely expect
it to be approximately constant within some range of
scale. Finding this range of scale is a tricky problem
for any fractal dimension estimation method, and often
leads to visual inspection of the {log(TWD), log(STWD)}
plot.

Using the variable length polygonization concept,
the upper and lower limits of the useful range ofTWD

values may be found automatically, without visual in-
spection [1]. We simply assume that there is an up-
per and a lower limit to the number of line segments,
l, in a useful approximation of a curve consisting of
M points. After some testing on the liver cell images,
we found that a lower limit ofl = (M − 1) × 0.01
and an upper limit ofl = (M − 1) × 0.15 will
give {log(TWD), log(STWD )}-values that approximate a
straight line. Thus, the minimum average support of
the line segments is between seven and eight points,
and the minimum number of line segments is 1% of the
number of points.

Given a set ofn remaining points in the {log(TWD),
log(STWD)}-domain, we find the coefficients of a least-
squares fitted linear relation,
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Fig. 2. Cell nuclei chosen from the normal (upper), noduli (middel) and tumour (lower) classes and the corresponding 1D gray level signals of
the second peripheral segments.

log(STWD) = a+ b log(TWD),

b = ĤTWD − 1 = 1− D̂TWD (2)

as well as the uncertainty in the linear slope coefficient,
and the linear correlation coefficient,rT ,S . Thus, we
have an estimate of the validity of the fit as well as the
uncertainty in the estimated fractal dimensionD̂TWD

(the Hurst-parameter,̂HTWD = 2− D̂TWD ).

In this study, the coefficienta from Eq. (2) is also
used as a texture feature. This “prefactor” [36] is re-
lated to the “true” length of the 1D curve. It is there-
fore related to both the fractal dimension of the tex-
ture and the size of the cell nucleus, but it may also
contain additional textural information [36]. Figure 4
shows the log–log plots for two liver cell images cho-
sen from the normal and tumour classes, together with
the corresponding regression lines estimated on the ba-
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Fig. 3. The polygonization method of Wall and Danielsson.

Fig. 4. Log–log plots of the lengthSTWD of the approximating poly-
gon versus the polygonization toleranceTWD for cell images chosen
from the normal (◦) and tumour (2) classes. The linear regression
over the automatically selected range ofTWD for each log–log plot
is also shown.

sis of the automatic selection of the useful linear range,
as described above.

2.3.2. Lacunarity by the polygonization-based
method

For each tolerance valueTWD of the polygonization
we first find the distribution of the length,s, of the
line segments approximating the 1D gray level curve
[1]. This is done as a simple accumulation during the
polygonization. Examples of such distributions for the
normal and tumour classes (averaged over all cells in
each class) are shown in Fig. 5. We observe that the
average distributions are different for the two classes,
depending on the value of the toleranceTWD. In or-
der to characterize these distributions, we have there-
fore computed first order lacunarity values (e.g., mean
valueµs(TWD), standard deviationσs(TWD), third mo-
mentm3s(TWD) and fourth momentm4s(TWD)) from
this distribution, for each tolerance valueTWD.

Fig. 5. Average normalized histograms of the length of line segments
s for some tolerances,TWD = 1.25, 3.25, and 8.5. The histograms
are the average over all cells in the normal (- -) and tumour (—)
classes, and were extracted from the second 10% peripheral seg-
ments of the cell nuclei.
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Fig. 6. Average lacunarity vectors for samples from the normal (◦)
and tumour (2) class, using theµs(TWD) lacunarity obtained by the
1D polygonization method. The lacunarity vectors were fitted in the
log–log domain in a least-square sense by second order polynomials
and the inverse of these curves are also plotted (solid lines). The
lacunarity vectors were extracted from the second 10% peripheral
segment of the cell nuclei.

2.3.3. From lacunarity vectors to scalar lacunarity
features

A low dimensionality feature space will often prove
beneficial from a classification performance point of
view. It may therefore be wise to compress as much in-
formation as possible into only a few salient features.
Thus, it is necessary to extract only a few scalar fea-
tures from each lacunarity vector. In order to do this,
we transformed the lacunarity vectors into the log–log
domain, fitted them in a least-squares sense by second-
order polynomials, e.g.,

log(µs(TWD)) = αµ + βµ log(TWD)

+ γµ(log(TWD))2 (3)

and used the coefficientsα, β andγ describing each
lacunarity vector (e.g.,αµ, βµ, andγµ from µs(TWD))
as a new compact set of features to represent the la-
cunarity of the texture. Performing the least squares
quadratic regression in the log–log domain resulted in
a very good fit to the lacunarity vectorsµs(TWD) and
σs(TWD), even when transformed back to the linear do-
main (see Fig. 6). The regression coefficientsα, β and
γ from these two lacuarity vectors were therfore used
as new lacunarity features in this study.

2.3.4. Fractal dimension by the “ε-blanket” method
Peleg et al. [40] used gray level erosion and dilation

to estimate fractal signatures of a gray level intensity

surface. This is equivalent to covering the gray level
surface with a succession of “blankets” with increasing
thickness. The covering “blanket” is defined by its up-
per surfaceuε and its lower surfacelε. The scale-ε vol-
ume of the “blanket” around a 2D gray level intensity
surfacef (x,y) is defined by

Vε =
∑
x,y

τε(x,y) =
∑
x,y

uε(x,y)− lε(x,y). (4)

The surface area as a function of thicknessε is the vol-
ume of the added layer from radiusε− 1, divided by 2
to account for the upper and lower layers:

A(ε) =
(
Vε − Vε−1

)
/2 (5)

The surface area decreases at coarser resolutions since
fine details that contribute to the area disappear. Now
the slope ofA(ε) on the log–log scale is an estimate of
2− D̂ε (the Hurst parameter̂Hε = 3− D̂ε). The final
estimateD̂ε is obtained by a linear regression over the
range ofε for which the slope is approximately con-
stant. We have used the 1D version of this method with
ε-values from 1 to 25.

2.3.5. Lacunarity by the “ε-blanket” method
In its original version the method of Peleg et al.

[40] only estimates the fractal dimension, summing
up the vertical distances between the upper and the
lower “blanket” surface for each value ofε. The in-
formation contained in thedistribution of these dis-
tances is not utilized by Peleg et al. However, a
histogram of the surface distanceτε for each value
of ε opens up the possibility of obtaining a num-
ber of first order lacunarity vectors (e.g., mean value
µτ (ε), standard deviationστ (ε), third momentm3τ (ε)
and fourth momentm4τ (ε)) [1]. These four lacu-
narity vectors were computed, and new scalar lacu-
narity features were extracted from each lacunarity
vector in the same way as described above (Sec-
tion 2.3.3).

2.4. Gray Level Cooccurrence Matrix and Gray Level
Run Length Matrix features

A number of 2D Gray Level Coocurrence Matrix
(GLCM) [24] and Gray Level Run Length Matrix
(GLRLM) [21] features have given reasonably good
results (correct classification rates∈ (65–75%) on the
training data) for the same material [56]. These 2D fea-
tures were obtained by combining matrices from or-
thogonal directions, thus assuming directional isotropy
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in the texture, and using the whole 2D area of the
cell nucleus, thus assuming a stationary nuclear chro-
matin structure. The best results were obtained when
the number of gray levels in the images were reduced
to G = 16 before the matrices were computed. In
the case of GLCM, an inter-pixel distanced = 3 was
demonstrated to be optimal.

From each 1D gray level scan obtained by the “peel-
off scanning”, a GLCM and a GLRLM were obtained
for each of the 10 segments, from the nuclear mem-
brane to the nuclear center. The directions in the cell
nuclei that were utilized to extract the GLCM and
GLRLM seems more natural than, e.g., the horizontal
and vertical directions, particularly if one wants to sep-
arate estimates from the center and the periphery of the
cell nuclei.

The following nine often used GLCM features were
extracted: Angular Second Moment, Contrast, Cor-
relation, Variance, Inverse Difference Moment, En-
tropy [24], Cluster Shade, Cluster Prominence [9],
and Diagonal Moment [5]. From the GLRLM, the
following seven features were extracted: Short Runs
Emphasis, Long Runs Emphasis, Gray Level Non-
uniformity, Run-Length Non-uniformity, Run Percent-
age [21], Low Gray Level Runs Emphasis and High
Gray Level Runs Emphasis [8].

2.5. Feature evaluation

In this study, texture features have been evalu-
ated according to the statistical probabilisticBhat-
tacharyya distance, JB(ωu,ωv), between classesωu
andωv [23]. We have assumed normal distribution of
features within each class.

As suggested by, e.g., Kittler [30], we have used a
multiclass feature evaluation criterion defined in terms
of the above two-class probabilistic distance measure
as an average of the pairwise distances, weighted by
the a priori probabilitiesP (ωu,v)

JB = 3
2∑

u=1

3∑
v=u+1

P (ωu)P (ωv)JB(ωu,ωv). (6)

We have assumed equal a priori probabilities.
JB(ωu,ωv) was also used here to estimate upper and

lower bounds on the pairwise Bayesian classification
error,εu,v (see, e.g., [23]).

2.6. Classification

Bayesian classification with equal prior probabili-
ties for each class was used as the rule for classifi-
cation. The value of each texture feature used here
to classify each sample was the mean value of about
100 cell nuclei. The feature distribution within each
class was assumed to be multivariate normal and
the within-class covariance matrices were assumed
equal.

We have used the leave-one-out method to estimate
the misclassification rates in the training set of the first
experiment and in the whole data set of the second ex-
periment. In leave-one-out one merely classifies in turn
each sample based on the classifier designed on the
otherN − 1 samples [23]. The set of features is obvi-
ously kept the same during the whole procedure. The
total number of misclassifications relative to the design
set size is then used as an estimate of the Bayes error
rate.

In the first experiment the designed classifier was
tested on the independent test set.

3. Results

The 1D gray level signal resulting from the “peel-
off scanning” of each TEM image was subdivided into
10 segments, each representing approximately 10% of
the total area of the nucleus. Features were extracted
from each of the 10 segments, and the mean value
of about 100 cell nuclei was used to represent each
sample. Histograms of the features of all cells in each
class verified that our assumption of approximately
normally distributed features within each class was
correct.

3.1. 1D Fractal features – experimental design 1

3.1.1. Training set
For the second 10% peripheral segment of the cell

nuclei (see Fig. 2), the best single polygonization-
based features, ranked according to Eq. (6), are given
in Table 1. Several single fractal features estimated
from the periphery of the cell nuclei discriminated be-
tween normal+regenerating, noduli and tumour sam-
ples. The best feature,a, which gave a 0% error rate,
was then tested on the independent test set.
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Table 1

Estimated Bhattacharyya distances and lower and upper bounds of Bayes error (in %) for the best polygonization-
based fractal features, ranked according toJB computed from Eq. (6)

Method Feature Normal–noduli Normal–tumour Noduli–tumour JB ERR

Polygonization a 3.77 0.00–1.15 13.97 0.00–0.00 0.99 3.60–18.62 6.24 0

Polygonization ĤTWD 2.48 0.18–4.18 7.18 0.00–0.00 0.39 13.15–33.79 3.35 10

Polygonization αµ 2.73 0.11–3.28 6.12 0.00–0.00 0.87 4.65–21.06 3.24 5

Polygonization ασ 1.98 0.48–6.91 4.43 0.00–0.00 0.75 5.93–23.62 2.39 5

The classification errors (ERR) estimated by the leave-one-out method are also given. The features were extracted
from the second 10% peripheral segment of cell nuclei. The estimates are based on the 20 samples of the training set
(experimental design 1).

Table 2

Estimated Bhattacharyya distances and lower and upper bounds of Bayes error (in %) for the best fractal features,
ranked according toJB computed from Eq. (6)

Method Feature Normal–noduli Normal–tumour Noduli–tumour JB ERR

Polygonization a 1.92 0.54–7.33 1.83 0.65–8.01 0.03 37.4–48.4 1.26 33.3

Polygonization ĤTWD 1.83 0.64–8.00 1.21 2.26–14.9 0.08 31.3–46.4 1.04 38.9

Polygonization αµ 1.72 0.82–9.00 1.31 1.86–13.5 0.08 30.8–46.2 1.03 41.7

Polygonization ασ 1.26 2.04–14.1 1.08 2.97–17.0 0.12 27.0–44.4 0.82 38.9

ε-blanket αµ 1.80 0.68–8.23 1.18 2.44–15.4 0.12 27.1–44.4 1.03 41.7

ε-blanket a 1.28 1.98–13.9 1.64 0.95–9.68 0.03 38.4–48.6 0.98 33.3

ε-blanket Ĥε 1.37 1.64–12.7 1.02 3.36–18.0 0.14 25.3–43.5 0.84 33.3

ε-blanket αm4 1.00 3.49–18.4 0.86 4.69–21.1 0.12 26.9–44.4 0.66 50.0

ε-blanket ασ 0.98 3.66–18.8 0.83 5.04–21.9 0.13 26.2–44.0 0.65 41.7

The classification errors (ERR) estimated by the leave-one-out method are also given. The features were extracted
from the second 10% peripheral segment of cell nuclei. The estimates are based on the whole data set (experi-
mental design 2).

3.1.2. Independent test set
The error rate (ERR) on the test set was 70%. Five

tumour samples were classified as noduli and three
noduli samples were classified as tumour. One tumour
and one noduli sample were classified as normals. The
conclusion from this experiment was that the fractal
features could not discriminate noduli samples from
tumour. However, the fractal features seemed to dis-
criminate normal+regenerating samples from noduli
and tumour.

3.2. 1D fractal features – experimental design 2

For the second 10% peripheral segment of the cell
nuclei, the best single features, ranked according to
Eq. (6), are now given in Table 2. Several single frac-
tal features estimated from the periphery of the cell nu-
clei discriminated samples from the noduli and tumour
classes from normal+regenerating ones.

The outer 25–30% of the nuclei contained most of
the fractal textural information about the differences
between the classes (see Fig. 7). Alternatively one may
therefore utilize more data (e.g., the outer 20, 25, or

30% of the nucleus) in the estimates. Because of the
uncertainty caused by the manual segmentation pro-
cess, one may also remove the outer 5%, and then uti-
lize, e.g., the next 20% of the nuclear area. In this
study, we have chosen to use the second 10% periph-
eral segment, but the exact figures were not critical.

3.2.1. Fractal dimension by the polygonization-based
method

An average number of five points was used in the
linear regression (Eq. (2)) to obtain the estimated frac-
tal dimension of each cell nucleus. The average lin-
ear correlation coefficient for the log–log plots was
rT ,S = −0.99 with standard deviation 0.002, and the
average uncertainty in the linear slope coefficient was
0.18 (with standard deviation 0.06).

The fractal dimension in the periphery of the cell nu-
clei (the outer 25–30%) was lower for samples in the
noduli and tumour classes (ĤTWD was higher) than for
normal+regenerating ones (see Fig. 7(top)). In the cen-
ter of the nuclei, on the other hand, the fractal dimen-
sion of the three classes overlapped. We observe that
the standard deviations vary, both between the classes
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Fig. 7. Average estimated Hurst parameter,ĤTWD , (top), regression
coefficienta (middel) and scalar lacunarity parameter,αµ, (bottom)
for samples from the normal+regenerating (- -), noduli (-·) and tu-
mour (—) classes, as obtained from the 1D polygonization method,
are plotted versus segment. The standard deviation of each feature
for each class and segment is indicated. This is based on the mean
feature values obtained for each sample in each class.

and between the segments. For all features, the nor-
mal class shows the smallest variation between sam-
ples, while the tumour class has a significantly greater
inter-sample variation. For the features studied here the
standard deviation of the cell-wise features within sam-
ples were a factor of up to six higher than the standard
deviation of the mean sample values.

Note the relatively high value ofJB for the fea-
turea from Eq. (2) (see Table 2 and Fig. 7(middle)).
Each of the featureŝHTWD and a of segment num-
ber two discriminated noduli and tumour samples from
normal+regenerating ones with an error rate (ERR) of
5.6%. One tumour sample and one noduli sample were
classified as normal in both cases.

3.2.2. Lacunarity by the polygonization-based
method

As in the case of fractal dimension, Table 2 indi-
cates that several scalar lacunarity features extracted
from the periphery of the cell nuclei may discrimi-
nate samples from the noduli and tumour classes from
normal+regenerating ones. Figure 7(bottom) gives a
more detailed picture for one of these features. The
αµ feature of the outer segments was lower for sam-
ples from the noduli and tumour classes than for nor-
mal+regenerating ones. Each of the featuresαµ and
ασ discriminated normal+regenerating samples from
noduli and tumour samples with an error rate (ERR)
of 8.3%. One tumour sample and two noduli samples
were classified as normal.

3.2.3. Fractal dimension by the “ε-blanket” method
The estimatedJB(ωu,ωv) for the Ĥε feature was

lower than the correspondingJB(ωu,ωv) for ĤTWD , ex-
cept for the discrimination between noduli and tumour
samples, where the class overlap is considerable any-
way (see Table 2). However, the fractal dimensions es-
timated from the two different 1D methods correlated
very well (rĤTWD ,Ĥε

= 0.95), although the estimated
numerical values were different (see Fig. 8).

3.2.4. Lacunarity by the “ε-blanket” method
Of the scalar featuresα, β andγ representing each

lacunarity vector, the featureαwas the best to discrim-
inate between the classes (see Table 2).

3.3. Gray Level Coocurrence Matrix and Gray Level
Run Length Matrix features

A number of the GLCM and GLRLM features
seemed to benefit from being applied separately to the
outer parts of the cell nuclei (see Fig. 9). On the other
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Fig. 8. Estimated Hurst parameters as obtained from the 1D poly-
gonization method,ĤTWD , are plottet versus estimates obtained

from the 1D “ε-blanket” method,Ĥε, for samples from the nor-
mal+regenerating (◦), noduli (4) and tumour (2) classes. The fea-
ture values are extracted from the second 10% peripheral segment
of the cell nuclei, and are given as average values of the estimates
obtained from approximately 100 cells per sample.

hand, some features, e.g., Shade, seemed to be able to
discriminate samples from the tumour class from the
other classes, when estimated from the non-peripheral
part (70%) of the nuclei (see Fig. 10).

3.4. Combination of 1D features

As shown by Table 2 and Figs 7 and 9, several fractal
features as well as GLCM and GLRLM features were
able to discriminate the normal+regenerating samples
from the noduli and tumour samples, provided that
a peripheral segment is used. Only a few features,
like Shade, seemed to be able to discriminate the tu-
mour class from the other classes, but now the non-
peripheral part of the nuclei was used. Thus, when
searching for good feature combinations, a full combi-
natorial search can be avoided.

The combination of a single fractal feature estimated
from the periphery of the cell nuclei and the GLCM
feature Shade, extracted from the non-periphery of the
nuclei seemed to be useful to discriminate the three
classes. Examples of such combinations of two fea-
tures are given in Fig. 11, giving the mean feature val-
ues per sample for the GLCM feature Shade, and the
two featuresa and αµ obtained by the 1D polygo-
nization method. Figure 11 also gives the ellipses de-
scribing the pooled covariance matrix and the decision

boundaries for the classifier computed from the whole
data set. These combinations gave an error rate (ERR)
of 5.6%. One tumour sample and one noduli sample
was classified as normal.

4. Discussion

Chromatin structure has traditionally been regarded
as an important diagnostic clue in pathology. The chro-
matin structure, which both reflects and partially con-
trols genetic functions [54,58], changes within cell
nuclei as cancer develops [41]. In routine pathology
changes in cell nuclei are assessed subjectively and
are used in diagnosis and in grading of malignancies.
Quantification of such changes may therefore be a di-
agnostic aid, and may also contribute towards a further
understanding of the biological processes involved.

For several reasons the liver has proved especially
useful for experimental studies of carcinogenesis. The
administration of a single dose of diethylnitrosamine
to infant mice induces a sequential development of
foci, hyperplastic nodules and hepatocellular carcino-
mas. The premalignant nature of foci and hyperplas-
tic nodules is well documented [22,45,49]. The liver is
normally a quiescent organ whereas both hyperplastic
nodules and hepatocarcinomas are proliferative sam-
ples. Regeneration can be induced by partial hepatec-
tomy and one may use regenerating liver as a positive
control for proliferation. Furthermore, it is relatively
easy to isolate a large number of intact living cells,
both before and after the induced carcinogenesis.

An increased amount of condensed chromatin dur-
ing carcinogenesis has been shown for liver as well
as other tissues (see [11] and references therein).
Danielsen et al. [11] observed a stepwise development
of changes in the chromatin in liver carcinogenesis.
Some of the early changes, observed in preneoplastic
nodules, were reduction in nuclear size, increased size
of condensed chromatin particles and a reduction in the
number of chromatin particles.

Of particular interest is a quantification of the ten-
dency of condensed heterochromatin to be located ad-
jacent to the nuclear envelope [57]. Walker [51] pro-
posed a small set of additional features to the Statistical
Geometric Features of Chen et al. [7], tailored to detect
some of these differences. However, features designed
to measure the average displacement and average iner-
tia of chromatin clumps from the center of the gravity
of the nucleus, were not reported to capture chromatin
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Fig. 9. Some examples of Gray Level Coocurrence Matrix and Gray Level Run Length Matrix features that benefit from being applied separately
to the outer parts of the cell nuclei. Average features for samples from the normal+regenerating (- -), noduli (-·) and tumor (—) classes are plotted
versus segment. The standard deviation of each feature for each class and segment is indicated. This is based on the mean feature values obtained
for each sample in each class.

changes during cell dysplasia, when tested on a set of
cervical cell images.

Jagoe et al. [26] separated non-neoplastic and neo-
plastic liver biopsies by using a linear discriminant
based on nuclear shape and texture. They found, how-
ever, that texture measurements designed to reflect ag-
gregation of nuclear stained material close to the nu-
clear membrane did not appear to be of value when
discriminating between the two groups of biopsies.

Irinopoulou [25] evaluated the relationship between
morphometric features and prognosis in patients with
prostatic carcinoma. Dimension-, form-, and texture-
related nuclear features, both classic and fractal, were
computed. A discriminant function based on five tex-
ture-related features allowed complete separation be-
tween good and poor prognosis in the training set, but
the fractal dimension was not among the selected fea-
tures.

Einstein [17] applied fractal dimension to describe
chromatin appearance in biopsies of the breast. While
the mean Minkowski dimension did not differ signifi-
cantly between the benign and malignant samples, the
average mean spectral fractal dimension differed sig-
nificantly. Using logistic regression to classify a train-
ing set of 19 patients based on their mean fractal tex-
ture dimension and nuclear areas, 16 cases (84%) were
diagnosed correctly.

In the medical literature, estimates of the exact frac-
tal dimension of, e.g., boundaries of tumours and cell
profiles are reported [10]. Because of the preparation
of liver sections, the imaging process and the prepro-
cessing of the digitized images, it may be difficult to
give the exact fractal dimension of the chromatin struc-
ture itself. Our aim has therefore not been to estimate
the exact fractal dimension, but to see if there were sig-
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Fig. 10. Average estimated Gray Level Coocurrence Matrix feature,
Shade, for samples from the normal+regenerating (- -), noduli (-·)
and tumour (—) classes, are plotted versus segment. The standard
deviation of the feature for each class and segment is indicated. This
is based on the mean feature values obtained for each sample in each
class.

nificant differences in fractal dimension estimates be-
tween the classes.

In the present study, we have shown that the fractal
dimension in the periphery of mouse liver cell nuclei
was lower for samples in the noduli and tumour classes
than for normal+regenerating ones. In the center of the
cell nuclei, on the other hand, the fractal dimension of
the three classes overlap. Thus, fractal dimension esti-
mated from the whole 1D signal or from the whole 2D
nucleus was not able to discriminate between samples
from the normal, noduli and tumour classes.

The “prefactor” a (Eq. (2)) was correlated with
ĤTWD (ra,ĤTWD

= −0.91) and with the area of the cell
nucleus (ra,M = 0.80). Danielsen et al. [11] found
that the area of nuclear profiles was lower for nuclei
from the noduli and tumour classes than for normal
and regenerating ones. We have found that the frac-
tal dimension was lower (̂HTWD was higher) for sam-
ples from the noduli and tumour classes than for nor-
mal+regenerating ones. The combination of these re-
sults explains the good results obtained by the feature
a. The featurea is, however, not area-invariant. An area
invariant feature would bea/log(area), but this fea-
ture is even more correlated with the fractal dimension
(r = −0.96). In our study, the mean area of the cell
nuclei per sample could not be used to discriminate be-
tween the three classes (JB = 0.3).

We have introduced a small, compact set of scalar
fractal lacunarity features, based on the distribution
of the length of the line segments or the distribu-
tion of distance between surfaces that approximate the

Fig. 11. The Gray Level Coocurrence Matrix feature, Shade, is plot-
ted versus the featuresa (top) andαµ (bottom) as obtained by the 1D
polygonization method, for samples from the normal+regenerating
(◦), noduli (4) and tumour (2) classes. The principal axes of the
ellipses are given by the eigenvectors of the pooled covariance ma-
trix and the ellipses contain 95.4% of the probability. The decision
boundaries for the classifier computed from the whole data set are
also indicated.

1D curves. We found that several such scalar frac-
tal features estimated from the periphery of nuclei
could discriminate noduli and tumour samples from
normal+regenerating ones. We have also found that the
classification performance of many of the GLCM and
GLRLM features is also enhanced if separate estimates
are made in the center and periphery of the cell nuclei.
However, the features estimated from the periphery of
the cell nuclei could not by themselves discriminate
noduli from tumour. To discriminate between all three
classes, it seems that we have to combine a feature es-
timated from the periphery of the nuclei with texture
information extracted from the non-peripheral part of
the nuclei.

The distributions of line lengths,s, of the line seg-
ments approximating the 1D gray level curves are
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skewed (see Fig. 5). We have characterized these dis-
tributions by computing first order statistical moments.
Alternatively, median and percentiles could be used to
characterize these distributions, but the results would
be similar.

In this study, the linear discriminant functions gave
satisfactory results. Linear discriminant functions have
a variety of pleasant properties from an analytical point
of view. Even when they are not optimal, one might
be willing to sacrifice some performance to gain the
advantage of simplicity [16]. We have assumed equal
within-class covariance matrices in the classification,
but we have observed greater variance in the noduli and
tumour classes than in the normal+regenerating one
(see Figs 7, 9 and 10).

Small sample effects make the problem of design-
ing a pattern classification system very difficult [27,
43]. We have studied chromatin changes during exper-
imental carcinogenesis in in-bred mice. In this way we
have obtained well controlled noduli samples, which is
difficult when using clinical material, and thus made it
possible to work with a smaller data set. It has previ-
ously been observed that for the data set used here the
statistical variation between the samples (normal liver)
on measurement of, e.g., nuclear fraction of condensed
chromatin was as low as 2–4%, whereas the variation
between nuclear profiles from the same biopsy could
be as high as 35% [12,56]. Because of the reported
high variations between nuclear profiles we have used
approximately 100 nuclei from each sample. Increas-
ing the number of nuclear profiles above 100 is not
expected to improve the results statistically, as previ-
ously shown [11]. This has also been demonstrated for
light microscopy images of prostate lesions [55]. For
the features studied here the standard deviation of the
cell-wise features within samples were a factor of up
to six higher than the standard deviation of the mean
sample values. Hence the most important issue is a sta-
tistically sufficient number of cell nuclei per sample.

Ideally an independent data set should be used to es-
timate misclassification rates [46]. In the first exper-
iment we used a training set consisting of five nor-
mal, five regenerating, five noduli and five tumour
samples. Feature selection was done based on the re-
sults obtained from these samples. The classifier was
then tested on an independent test set consisting of 10
noduli and 6 tumour samples. However, because of the
small number of samples available, we have also cho-
sen to utilize all samples in the estimation of the Bhat-
tacharyya distances end error rates (Table 2). The fea-
tures selected, the range of the features, and the con-

clusion were the same in both experiments. The fractal
features estimated from the periphery of nuclei could
not discriminate noduli from tumour, but discriminated
normal and regenerating samples from noduli and tu-
mour samples.

It is obviously of interest to analyze the results of
the polygonization-based method, related to the differ-
ences between the classes expressed in terms of differ-
ences in the chromatin structure. Thus, 2D normalized
histograms of line lengths versus distance between
breakpoints in thex-direction of the digital curve were
generated. Mean histograms were computed over all
cells in each class, and difference histograms (Fig. 12)
for each tolerance were used as a tool to analyze the
difference in texture between the classes. Line seg-
ments of the same length may have widely different
gradients. From Fig. 12 one may observe that for a
given horizontal distance between breakpoints in the
1D signal, shorter polygonization line segments are
more probable in tumour cell nuclei, generally imply-
ing lower gray level gradients. Separate difference his-
tograms were also computed for line segments in the
dark area (gray level6 127), in the bright area (gray
level> 127) and for the transition between bright and
dark. The main difference between the classes were
found in the darker areas of the images and in the tran-
sitions between darker and lighter areas.

Fig. 12. 2D difference histogram of line lengths versus distance in
x-direction of the digital curve. This illustrates the difference be-
tween the mean normalized histograms extracted from all cells in the
tumour and normal classes, computed for toleranceTWD = 3.25.
The histograms were extracted from the second 10% peripheral seg-
ment of the cell nuclei. The lighter area corresponds to line segments
that are more probable for the tumour class than for the normal class
and the darker area corresponds to line segments that are less proba-
ble for the tumour class than for the normal class.
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The above analysis leads directly to the observation
that GLCM matrices will be more concentrated along
the diagonal in the tumour class than in the normal.
The same relation holds for the relation between the
noduli and normal classes. GLCM features computed
from the peripheral parts of cell nuclei using an inter-
pixel distanced = 3 support the above analysis re-
sults. Thus, Inverse Difference Moment, which gener-
ally gives high values for homogeneous images, was
higher for noduli and tumour samples than for nor-
mal+regenerating ones. Contrast, on the other hand,
will favour contributions away from the diagonal of
the cooccurrence matrix. Consequently, Contrast was
higher for the normal+regenerating class than for the
noduli and tumour classes (see Fig. 9). We note that a
lot of GLCM’s would have to be accumulated to match
the width of information contained in Fig. 12.

Difference histograms computed from the non-peri-
pheral part (70%) of the cell nuclei confirmed that the
main fractal information about the difference between
the classes is contained in the peripheral parts of the
cell nuclei. From these histograms it was hard to infer
anything about the behaviour of the GLCM-features of
the central parts of the cell nuclei. However, the results
indicate that the feature Shade, when estimated from
the non-peripheral part (70%) of the nuclei, will dis-
criminate samples of the tumour class from the other
classes (see Fig. 10). The weighting function of the
GLCM feature Shade [9] is anti-symmetric with re-
spect to the bi-diagonal of the GLCM matrix. This is
completely different from Inverse Difference Moment
and Contrast, which are both symmetric with respect
to the diagonal. So Shade will be sensitive to skewness
along the diagonal, i.e., if outliers are found predomi-
nantly on one side of the bi-diagonal. The combination
of a fractal feature and Shade discriminated the three
classes with a correct classification rate of 94.4%.

Considering the periphery of nuclei, discrete cosine
transforms and autocorrelation functions indicated a
higher content of high frequencies and smaller struc-
tures in the normal nuclei compared to nuclei from
the tumour class. This supports the finding of higher
fractal dimension in the normal class, and the find-
ing that the GLRLM features Short Run Emphasis
and Run Percentage gave higher values for the nor-
mal+regenerating class than for the noduli and tumour
classes (see Fig. 9). The best two-feature set of Yo-
gesan et al. was Short Run Emphasis and High Gray
Level Runs Emphasis withG = 16 [56].

Transforming the 2D images to 1D curves before es-
timating the fractal features may seem like a waste of

contextual information. However, as we have shown,
this gives us the possibility of separate and indepen-
dent estimates of fractal dimension and lacunarity in
the center and periphery of a cell nucleus.

This separate treatment of center and periphery
would be hard to acheive when using fixed 2D win-
dows or using GLCM or GLRLM matrices based on
orthogonal directions. However, it is straightforward
when using the “peel-off-scanning”. And when assum-
ing a directional isotropy in the local texture of the nu-
clear chromatine, the approximately tangential direc-
tion of the “peel-off-scanning” is the natural choice if
we want to perform a radial differentiation of the tex-
ture description.

The “peel-off scanning” procedure is not start-point
independent. To obtain an invariant description on the
cell level, we could have started at several random
points, and used an average/median result. However, as
we are using the average feature values of about 100
cells to classify each sample, each with a random ori-
entation and thus a random starting point, we have not
adopted this procedure.

In the present study, the 1D features of segment
number two gave higher Bhattacharyya distances than
the corresponding features of the outermost segment.
One possible reason for this may be the uncertainty
caused by the manual segmentation process. When
working with large volumes of cells, a (semi)-automatic
segmentation of cell nuclei will be advantageous, as
it both reduces this uncertainty and ensures the repro-
ducibility of the results.

In conclusion we have shown that several scalar
fractal features estimated from the periphery of nu-
clei in TEM images could discriminate noduli and
tumour samples from normal+regenerating ones in a
controlled mouse liver carcinogenesis experiment.

The spiral-like “peel-off-scanning” is a straight for-
ward venue to separate estimates of fractal features in
the center and periphery of a cell nucleus or any other
object where a radial differentiation of the texture de-
scription is desired. Together with the subsequent vari-
able length polygonization it not only provides several
fruitful fractal texture features, but may also serve as
an analysis tool.

We have demonstrated that the previous implicit as-
sumption of a stationary nuclear texture is suboptimal,
and that a number of texture features benefit from be-
ing applied separately to the outer parts of the cell nu-
clei.

The biological implications of the possibility to
quantify the fractal parameters of the nuclear membrane-
bound heterochromatin need to be investigated.
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Work is in progress on testing the methods presented
here on a larger set of clinical data from light micro-
scopy.
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