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This paper considers matrix inequality procedures to address the robust fault detection and isolation (FDI) problem for linear
time-invariant systems subject to disturbances, faults, and polytopic or norm-bounded uncertainties. We propose a design proce-
dure for an FDI filter that aims to minimize a weighted combination of the sensitivity of the residual signal to disturbances and
modeling errors, and the deviation of the faults to residual dynamics from a fault to residual reference model, using the H∞-norm
as a measure. A key step in our procedure is the design of an optimal fault reference model. We show that the optimal design
requires the solution of a quadratic matrix inequality (QMI) optimization problem. Since the solution of the optimal problem is
intractable, we propose a linearization technique to derive a numerically tractable suboptimal design procedure that requires the
solution of a linear matrix inequality (LMI) optimization. A jet engine example is employed to demonstrate the effectiveness of
the proposed approach.
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1. INTRODUCTION

In the past decade, great attention has been devoted to the
design of model-based fault detection systems and their ro-
bustness [1, 2]. With the rapid development of robust con-
trol theory and H∞ optimization control techniques, more
and more methods have been presented to solve the robust
FDI problem. The H∞-filter is designed such that the H∞-
norm of the estimation error is minimized (see [3–5] and
the references therein). Some of the approaches used for this
problem include frequency domain approaches [6], left and
right eigenvector assignment [7], structure parity equation
[8], and an unknown input observer with disturbances de-
coupled in the state estimation error [9]. Recently devel-
oped LMI approaches offer numerically attractive techniques
[10–12].

A reference residual model is an ideal solution for robust
FDI under the assumption that there are no disturbances or
model uncertainty. The idea is to design a filter for the un-
certain system that approximates the solution given by the
reference model [13]. In [14], a new performance index is
proposed using such a reference residual model. Frisk and

Nielsen [15] give an algorithm to design a reference model
and a robust FDI filter that fits into the framework of stan-
dard robust H∞-filtering relying on established and efficient
methods. However, their framework consists in solving two
optimization problems successively, which results in a sub-
optimal solution.

In this paper, we propose a performance index that cap-
tures the requirements of fault isolation and disturbance re-
jection as well as the design of the optimal reference model.
The fault isolation performance is measured by the size of
the deviation of the fault to residual dynamics from the ref-
erence dynamics model, while the disturbance rejection per-
formance is measured by the size of the input to residual
and disturbance to residual dynamics. In all cases, the H∞
norm is used as a measure. The design of the optimal ref-
erence model is incorporated in the robust FDI framework.
We consider systems subject to norm-bounded or polytopic
uncertainties. For systems described by polytopic and un-
structured norm-bounded uncertainties, we derive an opti-
mal FDI filter obtained as the solution of a QMI optimiza-
tion. For systems described by structured uncertainties, we
derive a suboptimal QMI-based solution. Since the solution
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of a QMI optimization is, in general, intractable, we propose
a linearization technique to derive a suboptimal design pro-
cedure that requires the solution of a numerically tractable
LMI optimization. This note extends our work in [16] by
proposing algorithms for the design of suboptimal reference
dynamics.

The structure of the work is as follows. After defining
the notation, we review filter-based FDI techniques for resid-
ual signal generation and give the problem formulation in
Section 2. Section 3 presents a matrix inequality formulation
for the FDI problem, and gives the solution and the design
of the optimal reference model for both norm-bounded and
polytopic uncertainties in a form of QMI’s. Section 4 gives a
suboptimal solution in both cases through the use of an al-
gorithm that necessitates solving LMI’s. Finally, a numerical
example is presented in Section 5, and Section 6 summarizes
our results.

The notation we use is fairly standard. The set of real n×
m matrices is denoted by Rn×m. For A ∈ Rn×m, we use the
notation AT to denote transpose. ForA = AT ∈Rn×n,A � 0
(A ≺ 0) denotes that A is positive (negative) definite, that is,
all the eigenvalues of A are greater (less) than zero. The n×n
identity matrix is denoted as In and the n×m null matrix is
denoted as 0n,m with the subscripts occasionally dropped if
they can be inferred from context.

Let L2 be the set of square integrable functions. The L2-

norm of u ∈ L2 is defined as ‖u‖2 =
√∫∞

0 u(t)Tu(t)dt. A

transfer matrix G(s) = D + C(sI − A)−1B will be denoted as
G(s)

s= (A,B,C,D) or

G(s)
s=
[
A B

C D

]
, (1)

and dependence on the variable s will be suppressed. For a
stable transfer matrix G, we define

‖G‖∞ = sup
{‖Gu‖2/‖u‖2 : 0 /=u ∈ L2

}
,

‖G‖− = inf
{‖Gu‖2/‖u‖2 : 0 /=u ∈ L2

}
.

(2)

In section 3, we use the following result.

Lemma 1 (see [17]). Let φ(s) = R + BT(−sI − AT)
−1
C +

CT(sI − A)−1B + BT(−sI − AT)
−1
Q(sI − A)−1B with (A,B)

sign controllable, RT = R, and QT = Q. Then φ(s) has a spec-
tral factor G(s) ∈ RL

m×p
∞ (i.e., φ(s) = GT(−s)G(s)) if and

only if there exists symmetric P that satisfies the following lin-
ear matrix inequality:

[
PA + ATP +Q PB + C

(PB + C)T R

]
� 0. (3)

2. PROBLEM FORMULATION

Consider a linear time-invariant dynamic system subject to
disturbances, modeling errors and process, sensor and actu-

ator faults modeled as

[
ẋ(t)

y(t)

]
=

M︷ ︸︸ ︷[
A B Bd B f

C D Dd Df

]
⎡
⎢⎢⎢⎢⎣

x(t)

u(t)

d(t)

f (t)

⎤
⎥⎥⎥⎥⎦

, (4)

where x(t) ∈Rn, u(t) ∈Rnu , and y(t) ∈Rny are the process
state and input and output vectors, respectively, and where
d(t) ∈ Rnd and f (t) ∈ Rn f are the disturbance and fault
vectors, respectively. Here, Bf ∈ Rn×n f and Df ∈ Rny×n f

are the component and instrument fault distribution matri-
ces, respectively, while Bd ∈ Rn×nd and Dd ∈ Rny×nd are the
corresponding disturbance distribution matrices [18].

We consider two types of uncertainties: norm-bounded
and polytopic uncertainties. In the case of norm-bounded
uncertainties,

M ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mo

︷ ︸︸ ︷[
Ao Bo Bod Bof
Co Do Do

d Do
f

]

+

[
FA

FC

]
ΔH

[
EA EB Ed E f

]
: Δ ∈ Δ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
=: MΔ,

(5)

where Mo represents the nominal model,ΔH = Δ(I−HΔ)−1,
where

Δ := {
Δ = diag

(
δ1Iq1, . . . , δlIql,Δl+1, . . . ,Δl+ f

)
: ‖Δ‖≤1,

δi ∈R,Δi ∈Rqi×qi} ⊂RnΔ×nΔ ,
(6)

and where FA, FC , EA, EB, Ed, Ef , and H are known and con-
stant matrices with appropriate dimensions. This linear frac-
tional representation of uncertainty, which is assumed to be
well-posed over Δ (i.e., det (I − HΔ) /= 0 for all Δ ∈ Δ), has
great generality and is widely used in control theories.

In the case of polytopic uncertainties,

M ∈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p∑

i=1

ξi

Mi

︷ ︸︸ ︷⎡
⎣A

i Bi Bid Bif

Ci Di Di
d Di

f

⎤
⎦:

p∑

i=1

ξi = 1, ξi≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=: Mξ ,

(7)

where Mi, i = 1, . . . , p, are known constant matrices with
appropriate dimensions.

A residual signal in an FDI system should represent
the inconsistency between the system variables and the
mathematical model. The objective is to design an FDI filter
of the form

[ ˙̂x(t)

r(t)

]
=
[
Ak Bku Bky

Ck Dku Dky

]
⎡
⎢⎢⎣
x̂(t)

u(t)

y(t)

⎤
⎥⎥⎦ , (8)
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Figure 1: Filter-based robust FDI scheme.

where x̂(t) ∈ Rnk is the filter state and r(t) ∈ Rn f is the re-
sidual signal. Figure 1 illustrates this filter in the robust resid-
ual generation scheme.

By defining an augmented state z(t) = [ x(t)T x̂(t)T ]T the
residual dynamics are given by

[
ż(t)

r(t)

]
=
⎡
⎣Ã B̃ f B̃d B̃u

C̃ D̃ f D̃d D̃u

⎤
⎦

⎡
⎢⎢⎢⎢⎣

z(t)

f (t)

d(t)

u(t)

⎤
⎥⎥⎥⎥⎦

(9)

or
[
TM
r f TM

rd TM
ru

]

s=
⎡
⎣ Ã B̃ f B̃d B̃u

C̃ D̃ f D̃d D̃u

⎤
⎦

=

⎡
⎢⎢⎣

A 0 Bf Bd B

BkyC Ak BkyD f BkyDd Bku + BkyD

DkyC Ck DkyD f DkyDd Dku +DkyD

⎤
⎥⎥⎦ ,

(10)

where TM
r f , TM

rd , and TM
ru denote the dynamics from faults,

disturbances, and inputs to the residual, respectively. Note
that dependence on the uncertain data is indicated by a su-
perscript M.

Ideally, the residual signal is required to be sensitive only
to faults. This corresponds to TM

rd = 0, TM
ru = 0, and TM

r f /= 0.
For fault isolation, it is further required that the fault signa-
ture can be deduced from the residual. This corresponds to
TM
r f ∈ S , where S is a set of transfer matrices with a spe-

cial structure that depends on the nature of the faults, for ex-
ample, if the faults can occur simultaneously, S is the set of
stable diagonal transfer matrices with nonzero diagonal en-

tries. Unfortunately, characterizing a general structured set S
is intractable, and we will assume that we can define a subset

S =
{
Tref

s= (
Aref,Bref,Cref,Dref

)
: Aref ∈ SA ⊆Rnref×nref ,

Bref ∈ SB ⊆Rnref×n f , Cref ∈ SC ⊆Rn f ×nref ,

Dref ∈ SD ⊆Rn f ×n f
}
⊆ S

(11)

such that subsequent optimizations over the structured state-
space data sets SA, SB, SC , and SD are tractable. For example,
if S denotes the set of all stable n f ×n f diagonal transfer ma-
trices with nonzero diagonal entries, we may define SA as the
set of all n f ×n f diagonal matrices with negative entries, and
SB, SC , and SD as the sets of all n f ×n f diagonal matrices. An
example of this simplification procedure is given in Section 5
below. We also replace the requirement of nonzero diagonal
entries for S by a condition of the form ‖Tref‖− ≥ β > 0 for
all Tref ∈ S.

Due to the presence of disturbances and modelling un-
certainties, exact FDI is not possible. For robust FDI, we pro-
pose the following, more realistic, problem formulation.

Problem 1. Assume that the system dynamics in (4) are
quadratically stable. For any γ > 0, find a stable fault ref-
erence dynamics Tref

s= (Aref,Bref,Cref,Dref) ∈ S such that
‖Tref‖− ≥ 1 (to ensure the requirement of nonzero diagonal
entries for S), and find a stable filter of the form given in
(8), if it exists, such that the residual dynamics in (10) are
quadratically stable and

sup
M∈M

∥∥∥
[
TM
r f − Tref TM

rd TM
ru

]∥∥∥
∞ < γ, (12)

where M =MΔ for norm-bounded uncertainties and M =
Mξ for polytopic uncertainties.

Recall that quadratic stability for the dynamics in (4) is
equivalent to the existence of P = PT � 0 such that ATP +
PA ≺ 0 for all A (see [19] for more details).

A modified version of Problem 1 uses a weighted cost
function, say, of the form

∥∥∥
[(
TM
r f − Tref

)
Wf TM

rd Wd TM
ruWu

]∥∥∥
∞, (13)

whereWf ,Wd, andWu are constant or frequency-dependent
weighting functions that can vary the emphasis between fault
detection (small ‖TM

rd ‖∞ and ‖TM
ru ‖∞) and fault isolation

(small ‖TM
r f − Tref‖∞). In the sequel, we assume that any such

weighting functions are absorbed in the system data.

Remark 1. The objective is to find the smallest γ for which
(12) is satisfied. Indeed, by minimizing γ, we will ensure
‖TM

rd ‖∞ (which measures the disturbance rejection level),
‖TM

ru ‖∞ (which measures the effect of uncertainty), and
‖TM

r f − Tref‖∞ (which measures the deviation of the fault to
residual dynamics from the reference dynamics, and hence is
a measure of fault isolation capability) to be small.
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A poorly chosen reference model can result in a residual
generator with poor robustness. Here, we incorporate its de-
sign into our scheme so as to improve the robustness of the
FDI filter.

In some approaches, a common assumption is that Df =
0 and/or CBf has full rank [20, 21]; in others, the assump-
tion Df has full rank and is widely used [22, 23]. Here, we do
not impose any of these assumptions. Note, however, that if
Df does not have full column rank, for example, if Df = 0,
then this will have an adverse effect on the minimum val-
ues of γ since γ≥‖[ TM

r f − Tref TM
rd TM

ru ]‖∞ ≥‖T
M
r f (∞) −

Tref(∞)‖ = ‖DkyDf −Dref‖ = ‖Dref‖≥ 1. This would there-
fore limit the overall performance of the filter, which is mea-
sured by the value of γ.

3. MATRIX INEQUALITY FORMULATION

In this section, we derive a matrix inequality formulation of
Problem 1. The main idea is to express (12) in terms of QMIs
using the bounded real lemma and change of variables tech-
niques, and then to derive necessary and sufficient conditions
for solvability.

The dynamics in (12) can be written as

[
TM
r f − Tref TM

rd TM
ru

]
s=
[
AM
c BM

c

CM
c DM

c

]

:=

⎡
⎢⎢⎣

Aref 0 Bref 0 0
0 Ã B̃ f B̃d B̃u

−Cref C̃ D̃ f −Dref D̃d D̃u

⎤
⎥⎥⎦ .

(14)

It follows from the bounded real lemma that there exists a
stable filter of the form given in (8) such that (12) is satisfied
if and only if there exists Pc = PTc such that Pc � 0 and

⎡
⎢⎢⎢⎣

(
AM
c

)T
Pc + PcAM

c PcBM
c

(
CM
c

)T
(
BM
c

)T
Pc −γI (

DM
c

)T

CM
c DM

c −γI

⎤
⎥⎥⎥⎦ ≺ 0 (15)

for all M (see [24, Theorem 3]). We deal separately with
norm-bounded and polytopic uncertainties.

3.1. Solution with norm-bounded uncertainties

For norm-bounded uncertainties, we separate the terms in-
volving modeling uncertainties from the other terms as

(
AM
c ,BM

c ,CM
c ,DM

c

)=(Aoc + AΔc ,Boc + BΔc ,Coc + CΔc ,Do
c +DΔ

c

)
,

(16)

where

[
Aoc Boc

Coc Do
c

]

=

⎡
⎢⎢⎢⎢⎣

A ref 0 0 B ref 0 0
0 Ao 0 Bof Bod Bo

0 BkyCo Ak BkyD
o
f BkyD

o
d Bku+BkyDo

−C ref DkyCo Ck DkyD
o
f −D ref DkyD

o
d Dku+DkyDo

⎤
⎥⎥⎥⎥⎦

,

(17)
[
AΔc BΔc

CΔc DΔ
c

]
=
[
Fr1
Fr2

]
ΔH

[
Er1 Er2

]

:=

⎡
⎢⎢⎢⎢⎣

0
FA

BkyFC

DkyFC

⎤
⎥⎥⎥⎥⎦
ΔH

[
0 EA 0 Ef Ed EB

]
.

(18)

Using this separation, the inequality (15) can be rewritten as

Toc︷ ︸︸ ︷⎡
⎢⎢⎢⎣

(
Aoc
)T
Pc + PcAoc PcBoc

(
Coc
)T

(
Boc
)T
Pc −γI (

Do
c

)T

Coc Do
c −γI

⎤
⎥⎥⎥⎦

+

TΔc︷ ︸︸ ︷⎡
⎢⎢⎢⎣

(
AΔc

)T
Pc + PcAΔc PcBΔc

(
CΔc

)T
(
BΔc

)T
Pc 0

(
DΔ
c

)T

CΔc DΔ
c 0

⎤
⎥⎥⎥⎦≺ 0.

(19)

A calculation shows that TΔc = F̃ΔHẼ + ẼTΔHF̃T , where

F̃ =
[(
PcFr1

)T
0 FTr2

]T
, Ẽ =

[
Er1 Er2 0

]
. (20)

The next result uses the fact that Δ ∈ Δ to remove explicit
dependence on Δ.

Lemma 2 (see [25]). Let Δ be as described in (6) and define
the subspaces

Σ = {
diag

(
S1, . . . , Sl, λ1Iql+1, . . . , λsIql+ f

)
:

Si = STi ∈Rqi×qi , λj ∈R
}

,

Γ = {
diag

(
G1, . . . ,Gl, 0ql+1, . . . , 0ql+ f

)
:

Gi = −GT
i ∈Rqi×qi}.

(21)

Let R = RT , F, E, and H be matrices with appropriate dimen-
sions. We have det (I − HΔ) /= 0 and R + FΔ(I −HΔ)−1E +
ET(I − ΔTHT)

−1
ΔTFT ≺ 0 for everyΔ ∈ Δ if there exist S ∈ Σ

and G ∈ Γ such that S � 0 and

[
R + ETSE F + ETSH + ETG

FT +HTSE +GE HTSH +HTG +GH − S

]
≺ 0. (22)
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If Δ is unstructured (i.e., if Δ = {Δ ∈ RnΔ×nΔ : ‖Δ‖≤1}),
then (22) becomes

[
R + λETE F + λETH

FT + λHTE λ
(
HTH − I)

]
≺ 0 (23)

for some scalar λ≥ 0. In this case, condition (23) is both neces-
sary and sufficient.

When the uncertainty set is unstructured, then Lemma 2
implies that

(19) ⇐⇒ To
c + F̃ΔHẼ + ẼTΔH

TF̃T ≺ 0

⇐⇒
⎡
⎣T

o
c + λẼTẼ F̃ + λẼTH

F̃T + λHTẼ λ
(
HTH − I)

⎤
⎦ ≺ 0

(24)

for some λ≥ 0. Using a Schur complement argument shows
that (19) is equivalent to

Tc :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
Aoc
)T
Pc +� PcBoc

(
Coc
)T

PcFr1 λETr1

� −γI (
Do
c

)T
0 λETr2

� � −γI Fr2 0

� � � −λI λHT

� � � � −λI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0,

(25)

where � denotes terms readily inferred from symmetry.
Next, we introduce a change of variables to linearize the
above matrix inequality [26]. Assume that nk = nref + n, that
is, the filter order is equal to the order of the system plus the
order of the reference model. Let

Pc =
[
Y N

NT Ŷ

]
, P−1

c =
[
X M

MT X̂

]
,

Π1 =
[

I I

MTZ 0

]
,

(26)

where X ,Y , X̂ , Ŷ ∈ Rnk×nk are symmetric matrices, and
Z = X−1. Define T = diag (Π1, I). Then Tc ≺ 0 if and only if
TTTcT ≺ 0. From PcP−1

c = I , we have the following calcula-
tions, where boldface letters are used to indicate optimization
variables:

L11 := ΠT
1 PcA

o
cΠ1

=
⎡
⎣ ZA + ZE1ArefE

T
1 ZA + ZE1ArefE

T
1

YA+YE1ArefE
T
1 +Â+B̂yC YA+YE1ArefE

T
1 +B̂yC

⎤
⎦,

(27)

L12 := ΠT
1 PcB

o
c

=
⎡
⎣ ZB f + ZE1Bref ZBd ZB

YB f +YE1Bref +B̂yD
o
f YBd+B̂yD

o
d YB+B̂yDo+B̂u

⎤
⎦,

(28)

L13 := (
CocΠ1

)T =

⎡
⎢⎣
(

D̂yC − CrefE2 + Ĉ
)T

(
D̂yC − CrefE2

)T

⎤
⎥⎦ , (29)

L14 := ΠT
1 PcFr1 =

⎡
⎣ ZFA

YFA + B̂yFC

⎤
⎦ , (30)

L15 := ΠT
1 E

T
r1 =

⎡
⎣E

T
A

E
T
A

⎤
⎦ , (31)

LT
23 =

[
D̂yD

o
f −Dref D̂yD

o
d D̂yDo + D̂u

]
, (32)

LT
25 =

[
Ef Ed EB

]
, (33)

where we have defined

[
A E1 B f Bd B FA

]
:=
⎡
⎣ 0 0 Inref 0 0 0 0

0 Ao 0 Bof Bod Bo FA

⎤
⎦,

(34)
⎡
⎢⎢⎢⎣

C

E2

EA

⎤
⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎣

0 Co

Inref 0

0 EA

⎤
⎥⎥⎥⎦ , (35)

⎡
⎣Â B̂y B̂u

Ĉ D̂y D̂u

⎤
⎦ =

⎡
⎣NAkM

TZ NBky NBku

CkMTZ Dky Dku

⎤
⎦ . (36)

If M and N are invertible, the variables Ak, Ck, Bky , Bku, Dky ,

Dku can be replaced by the new variables Â, B̂y , B̂u, Ĉ, D̂y , D̂u

without loss of generality. We can now rewrite (19) as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 + LT
11 L12 L13 L14 λL15

� −γI L23 0 λL25

� � −γI D̂yFC 0

� � � −λI λHT

� � � � −λI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0, (37)

which is nonlinear in the variables. Note that the nonlineari-
ties involve the terms Aref and Bref only. The constraint Pc � 0
can be expressed as an LMI as follows:

Pc � 0 ⇐⇒ ΠT
1 PcΠ1 � 0 ⇐⇒

⎡
⎣Z Z

Z Y

⎤
⎦ � 0. (38)

The constraint ‖Tref‖− ≥ 1 can be expressed as a quadratic
matrix inequality using the next lemma.

Lemma 3. LetTref be as defined above. Then ‖Tref‖− ≥ 1 if and
only if there exists Pref = Pref

T ∈Rnref×nref such that

Tro

:=
⎡
⎣PrefAref +Aref

TPref +Cref
TCref PrefBref +Cref

TDref

Bref
TPref + Dref

TCref Dref
TDref − In f

⎤
⎦

� 0.
(39)
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Proof. Let φ(s) = T∼ref (s)T ref (s)− In f . Then φ(s) � 0 if and
only if ‖Tref‖− ≥ 1. It is easy to show that φ(s) can be written
as follows:

φ(s) = Dref
TDref−In f +Bref

T(−sIn f −Aref
T)−1

Cref
TDref

+
(

Cref
T

Dref
)T(

sIn f − Aref
)−1

Bref

+ Bref
T(− sIn f − Aref

T)−1
Cref

TCref
(
sIn f − Aref

)−1
Bref.
(40)

The result then follows from Lemma 1.

The next lemma summarizes our result so far by giv-
ing necessary and sufficient conditions for the solution of
Problem 1, in the case that the uncertainty set is unstruc-
tured, in the form of a QMI feasibility problem.

Lemma 4. Assume that Δ is unstructured. Then there exist a
stable filter of the form given in (8) and a stable fault refer-
ence dynamics model Tref

s= (Aref, Bref, Cref, Dref) ∈ S, where S
is defined in (11), such that ‖Tref‖− ≥ 1, residual dynamics in
(10) are quadratically stable, and (12) is satisfied for M =MΔ

if and only if there exist Aref ∈ SA, Bref ∈ SB, Cref ∈ SC ,
Dref ∈ SD, Â, B̂y , B̂u, Ĉ, D̂y , D̂u, λ, and symmetric matrices
Pref, Y, and Z such that (37), (38), and (39) are satisfied. If
such variables exist, the filter dynamics are obtained by solving
(36) where M and N are chosen such that NMT = I − YZ−1.

Approximate solutions to these QMIs can be obtained
by using algorithms with guaranteed global convergence
[27, 28], as well as local numerical search algorithms that
converge (without a guarantee) much faster [29, 30]. A re-
lated discussion of the solution algorithms for QMIs can also
be found in [31]. In Section 4 below, we develop an alterna-
tive procedure for the approximate solution of these QMIs.

Remark 2. In the case that Tref is preassigned to a known
value, (37) becomes linear and (39) becomes irrelevant,
therefore, the optimal solution is given in a form of an LMI
optimization. This case has been considered in [16].

When Δ is structured, we proceed as follows. By using
(22) from Lemma 2, we get

(19) ⇐⇒ To
c + F̃ΔHẼ + ẼTΔH

TF̃T ≺ 0

⇐= ∃S ∈ Σ & G ∈ Γ s.t. S � 0 & TSG ≺ 0,
(41)

where

TSG =
⎡
⎣ To

c F̃ + ẼTG

F̃T + GTẼ HTG + GTH − S

⎤
⎦ +

[
ẼT

HT

]
S
[
Ẽ H

]
.

(42)

Using a Schur complement argument and the expression of
Ẽ and F̃ in (20), we get

TSG ≺ 0 ⇐⇒ TSG

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
Aoc
)T
Pc+� PcBoc

(
Coc
)T

PcFr1 +ETr1G ETr1S

� −γI (
Do
c

)T
ETr2G ETr2S

� � −γI Fr2 0

� � � HTG+GTH − S HTS

� � � � −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0.

(43)

As we did for unstructured uncertainties, we use the same
matrix T = diag (Π1, I) to allow to change variables, it fol-
lows that TSG ≺ 0 if and only if T̃SG := TTSGTT ≺ 0. We
multiply T̃SG by K = diag (I , S) and KT from left and right,
respectively, to get TSG ≺ 0 if and only if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 + LT
11 L12 L13 L14 + L15G L15S

� −γI L23 0 L25S

� � −γI D̂yFC 0

� � � HTG + GTH − S HTS

� � � � −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0.

(44)

Therefore, when Δ is structured, we have the following suffi-
cient condition for solvability.

Lemma 5. Suppose that Δ has the structure defined in
(6). Then there exist a stable filter of the form given in
(8) and a stable fault reference dynamics model Tref

s=
(Aref, Bref, Cref, Dref) ∈ S, where S is defined in (11), such
that ‖Tref‖− ≥ 1, the residual dynamics in (10) are quadrat-
ically stable, and (12) is satisfied for M =MΔ if there exist
Aref ∈ SA, Bref ∈ SB, Cref ∈ SC , Dref ∈ SD, Â, B̂y , B̂u, Ĉ, D̂y ,

D̂u, S ∈ Σ, G ∈ Γ, and symmetric matrices Pref, Y, and Z such
that (38), (39), and (44) are satisfied.

3.2. Solution with polytopic uncertainties

In this section, we derive necessary and sufficient conditions
for solvability of the robust FDI problem for a system subject
to polytopic uncertainties, in the form of LMIs. Now,

⎡
⎣ AM

c BM
c

CM
c DM

c

⎤
⎦ ∈

⎧⎨
⎩

p∑

i=1

ξi

⎡
⎣ Aic Bic

Cic Di
c

⎤
⎦ ,

p∑

i=1

ξi = 1, ξi≥ 0

⎫⎬
⎭ ,

(45)

where (Aic,B
i
c,C

i
c,D

i
c) are as defined in (17), but with super-

script (o) replaced by (i). We assume that the polytopic sys-
tem is quadratically stable. Recall that (12) is satisfied if and
only if (15) is satisfied for all M. Now,
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(15) ⇐⇒
p∑

i=1

ξi

Tipol︷ ︸︸ ︷⎡
⎢⎢⎢⎣

(
Aic
)T
Pc + PcAic PcBic

(
Cic
)T

(
Bic
)T
Pc −γI (

Di
c

)T

Cic Di
c −γI

⎤
⎥⎥⎥⎦≺ 0,

∀ξi s.t.
p∑

i=1

ξi = 1, ξi � 0,

⇐⇒ Ti
pol ≺ 0, i = 1, . . . , p.

(46)

Noting that the change of variable defined in (36) is in-
dependent of Mi, we can therefore use it in this scheme as
well. Letting T = diag (Π1, I), it follows that

Ti
pol ≺ 0 ⇐⇒ T

i
pol := TTi

polT
T

=

⎡
⎢⎢⎢⎣

Li
11 +

(
Li

11

)T
Li

12 Li
13

� −γI Li
23

� � −γI

⎤
⎥⎥⎥⎦ ≺ 0,

(47)

where the (Li
jk)Ts are as defined in (27)–(33) and (34)-(35),

but with the nominal model data Mo replaced by Mi. There-
fore, for polytopic uncertainties, we can derive necessary and
sufficient conditions for solvability of Problem 1 in the form
of a QMI feasibility problem as follows.

Lemma 6. Let M =Mξ . Then there exist a stable filter of
the form given in (8) and a stable fault reference dynamics
model Tref

s= (Aref, Bref, Cref, Dref) ∈ S, where S is defined in
(11), such that ‖Tref‖− ≥ 1, the residual dynamics in (10) are
quadratically stable, and (12) is satisfied for M =MΔ if and
only there exist Aref ∈ SA, Bref ∈ SB, Cref ∈ SC , Dref ∈ SD,

Â, B̂y , B̂u, Ĉ, D̂y , D̂u, S ∈ Σ, G ∈ Γ, and symmetric matrices

Pref, Y, and Z such that (38), (39), and T
i
pol ≺ 0 are satisfied

for i = 1, . . . , p.

4. ROBUST FDI FILTER DESIGN USING LMIS

In this section, we give a suboptimal solution to Problem 1.
An optimal solution would necessitate the solution of a
quadratic matrix inequality and is in general intractable.
Here, we propose a linearization procedure to derive an up-
per bound on the optimal solution that requires solving an
LMI optimization problem.

The following general result demonstrates that if we have
one feasible solution to a QMI optimization, then we can
construct an LMI optimization problem whose solution gives
an upper bound on the QMI problem.

Lemma 7. Let Qo,Ro ∈ Rm×n and S = ST ∈ Rm×m be given
and let Eo = Qo − Ro and Fo = Qo + Ro. For Q,R ∈ Rm×n,
define

M(Q,R) = S +QRT + RQT ,

N (Q,R)

=

⎡
⎢⎢⎣
S + EoETo − (Q − R)ETo − Eo(Q − R)T R Q

RT −I 0

QT 0 −I

⎤
⎥⎥⎦ ,

O(Q,R)

=

⎡
⎢⎢⎣
S− FoFTo + (Q + R)FTo + Fo(Q + R)T R Q

RT I 0

QT 0 I

⎤
⎥⎥⎦ .

(48)

Then

N (Q,R) ≺ 0 =⇒M(Q,R) ≺ 0, (49)

M
(
Qo,Ro

) ≺ 0 =⇒ N
(
Qo,Ro

) ≺ 0, (50)

O(Q,R) � 0 =⇒M(Q,R) � 0, (51)

M
(
Qo,Ro

) � 0 =⇒ O
(
Qo,Ro

) � 0. (52)

Proof. Let J(Q,R) = S +QQT + RRT + EoETo − (Q − R)ETo −
Eo(Q − R)T . Then by using a Schur complement argument,
we get

N (Q,R) ≺ 0 ⇐⇒ J(Q,R) ≺ 0. (53)

Let ξ(Q,R) = (Q − R− Eo)(Q − R− Eo)T . Now,

S + ξ(Q,R) = S + (Q − R)(Q − R)T − (Q − R)ETo

− Eo(Q − R)T + EoE
T
o ,

(54)

and it follows that

S +QRT + RQT = S +QQT + RRT + EoE
T
o − (Q − R)ETo

− Eo(Q − R)T − ξ(Q,R).
(55)

That is,

M(Q,R) = J(Q,R)− ξ(Q,R). (56)

Using (53) and noting that ξ(Q,R) � 0 and ξ(Qo,Ro) = 0,
we have

N (Q,R) ≺ 0 =⇒ J(Q,R) ≺ 0 =⇒M(Q,R) ≺ 0,

M
(
Qo,Ro

) ≺ 0 =⇒ J
(
Qo,Ro

) ≺ 0 =⇒ N
(
Qo,Ro

) ≺ 0.
(57)

A similar proof can be used to derive (51) and (52).

In order to simplify the subsequent analysis, we adopt the
convention that variables appended with a subscript “x” de-
note feasible values of the variables for the QMIs (37) and
(39).

In (37), the only nonlinear terms are ZE1ArefE
T
1 ,

YIE1Aref E
T
1 , ZE1Bref, and YE1Bref. We denote the matrix in

(37) by Tr f w, and set Sr f w to be the matrix Tr f w, with the
nonlinear terms removed.

Let Zx = ZTx ∈ Rnk×nk , Yx = YT
x ∈ Rnk×nk , Arefx ∈

Rnref×nref , and Brefx ∈ Rnref×n f be given. We use Lemma 7 to
derive an LMI formulation. We can write Tr f w as

Tr f w = Sr f w +QcRTc + RcQT
c , (58)
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where

Qc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ZE1 0

0 YE1

0 0

0 0

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Rc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1Aref
T 0

E1Aref
T E1Aref

T

Bref
T

Bref
T

0 0

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· (59)

Let Qcx denote the value of Qc when Z and Y are replaced
by Zx and Yx, respectively, let Rcx denote the value of Rc when
Aref and Bref are replaced by Arefx and Brefx , respectively, and
define Ex = Qcx − Rcx . Using (49) from Lemma 7, we get

T lin
r f w ≺ 0 =⇒ Tr f w ≺ 0, (60)

where

T lin
r f w

=

⎡
⎢⎢⎣
Sr f w + ExETx −

(
Qc − Rc

)
ETx − Ex

(
Qc − Rc

)T
Rc Qc

RTc −I 0

QT
c 0 −I

⎤
⎥⎥⎦ .

(61)

To linearize the matrix inequality in (39), we need
Lemma 7 and the following lemma, whose proof is similar
to that of Lemma 7 and is therefore dropped.

Lemma 8. Let Uo ∈ Rm×n and S = ST ∈ Rm×m. For U ∈
Rm×n, define

M(U) = S +UUT =M(U)T ,

N (U) = S +UUT
o +UoUT −UoUT

o = N (U)T .
(62)

Then

N (U) � 0 =⇒M(U) � 0,

M
(
Uo

) � 0 =⇒ N
(
Uo
) � 0.

(63)

Let Prefx = PTrefx ∈ Rnref×nref , Crefx ∈ Rn f ×nref , and Drefx ∈
Rn f ×n f be given. Using (51) from Lemmas 7 and 8, it is easy
to get

T lin
ro � 0 =⇒ Tro � 0, (64)

where

T lin
ro =

⎡
⎢⎢⎢⎢⎣

V � � �
V ′ V ′′ � �
Pref 0 I �
Aref Bref 0 I

⎤
⎥⎥⎥⎥⎦

, (65)

where V = {(Pref + Aref
T)(Prefx + Arefx ) + � − CTrefxCrefx+

Cref
TCrefx +� − (Prefx +ATrefx )(Prefx +Arefx )}, V ′ = {DT

refCrefx+

DT
refxCref − BTrefx (Prefx + Arefx )−DT

refxCrefx + BT
ref(Prefx + Arefx )+

BTrefx (Pref + Aref)}, V ′′ = {Dref
TDrefx + DT

refxDref − BTrefxBrefx−
DT

refxDrefx − I + BT
refBrefx + �}. The next lemma summarizes

the results of this section by giving a linearized formulation
of the optimization problem defined in Lemma 4 using (60)
and (64).

Lemma 9. Assume that Δ is unstructured. Let Zx = ZTx ∈
Rnk×nk , Yx = YT

x ∈ Rnk×nk , Prefx = PTrefx ∈ Rnref×nref , Arefx ∈
SA, Brefx ∈ SB, Crefx ∈ SC , and Drefx ∈ SD be given. Then
there exist a stable filter of the form given in (8) and a stable
fault reference dynamics model Tref

s= (Aref, Bref, Cref, Dref) ∈
S, where S is defined in (11), such that ‖Tref‖− ≥ 1, residual
dynamics in (10) are quadratically stable, and (12) is satisfied
for M =MΔ if there exist Aref ∈ SA, Bref ∈ SB, Cref ∈ SC ,
Dref ∈ SD, Â, B̂y , B̂u, Ĉ, D̂y , D̂u, λ, and symmetric matrices
Pref, Y, and Z such that

T lin
r f w ≺ 0, (66)

T lin
ro � 0, (67)

[
Z Z

Z Y

]
� 0. (68)

Remark 3. This scheme can also be applied to Lemmas 5 and
6 to obtain a suboptimal solution involving linear matrix in-
equalities.

Next, we need to choose the initial parameters (Zx, Yx,
Prefx , Arefx , Brefx , Crefx , and Drefx ) to reduce γ. The idea is to
derive an algorithm where at each iteration, we solve the op-
timization problem given in Lemma 9, using the solution of
this problem at the previous iteration, for initial parameters.
The algorithm will use initial values Z init

x , Y init
x , Pinit

refx , A
init
refx ,

Binit
refx ,C

init
refx , andDinit

refx , which must guarantee that the LMI con-
straints (66) and (67) will be feasible.

From the above discussion, an algorithm for choosing the
initial parameters can be listed as follows.

Algorithm 1. (1) Set initial values Ainit
refx , B

init
refx , C

init
refx , and Dinit

refx

such that T init
ref

s= (Ainit
refx ,B

init
refx ,C

init
refx ,D

init
refx ) satisfies ‖T init

ref ‖− ≥ 1
and T init

ref ∈ S.
(2) Find the solutions Z, Y, and Pref of the optimiza-

tion derived from Lemmas 3 and 4, which is linear since the
matrix inequalities (37), (38), and (39) become linear when
Tref := T init

ref is fixed. (The matrices Z, Y, and Pref always ex-
ist since the cost function in (12) is bounded because Δ is
bounded).

(3) Set Z init
x := Z, Y init

x := Y, and Pinit
refx := Pref.

(4) Start loop.
(5) Since the initial values are feasible for (37), (38), and

(39), the LMIs (66) to (68) have feasible solutions from (50)
and (63) in Lemmas 7 and 8. Compute solutions (Z, Y, etc.)
of (66) to (68) to minimize γ.

(6) Rename Z init
x = Z, Y init

x = Y, Pinit
refx = Pref, Ainit

refx = Aref,
Binit

refx = Bref, Cinit
refx = Cref, and Dinit

refx = Dref, and go to Step 5.
(7) End loop.



Emmanuel Mazars et al. 9

Algorithm 1 is convergent, possibly to a local minimum,
in the sense that the quantity γ is nonincreasing after each
iteration. This can be easily shown using (50) and (52) from
Lemma 7, and (63) from Lemma 8.

Remark 4. Lemmas 7, 8, and Algorithm 1 can also be ap-
plied to other problems involving QMIs and bilinear matrix
inequalities (BMIs). The procedure potentially gives an im-
provement and seems to work well in practice.

Remark 5. In the case that we choose a diagonal structure for
Tref, we may use

Ainit
ref = −Inref , Binit

ref = 0nref×n f ,

Cinit
ref = 0n f ×nref , Dinit

ref = In f ,
(69)

as initial values. This will ensure that Tref is stable and
‖Tref‖− = 1. We can solve the LMI optimization problem
given in Lemma 4. This will give Z init

x ,Y init
x , Pinit

refx , and so forth.
These initial values are not unique and can be chosen using
other criteria.

Remark 6. A more systematic technique for generating valid
initial values is as follows: first, generate any Binit

ref , Cinit
ref , Dinit

ref ,
and a stable Ainit

ref with the structure chosen, then, compute
α = ‖T init

ref ‖−. If α > 0, redefine the matrices as Ainit
ref = Ainit

ref /α,
Binit

ref = Binit
ref /α, Cinit

ref = Cinit
ref /α, and Dinit

ref = Dinit
ref /α, which ful-

fill that the conditions T init
ref are stable and ‖T init

ref ‖− = 1.

Remark 7. The requirement for Tref to be diagonal is to en-
sure fault isolability in the case that all faults may occur si-
multaneously. If we ignore disturbances and uncertainty, and
assuming perfect fault isolation, then r = Tref f so that fault
fi only affects residual ri. If none of the faults can occur si-
multaneously, then we need only to impose the constraint
that Tref is upper (or lower) triangular. While it is not diffi-
cult to modify our analysis under these conditions, we only
consider the case when Tref is diagonal so that all faults may
occur simultaneously since our contribution is focussed on
reducing the effect of disturbances and uncertainties under
the most stringent fault scenarios.

5. NUMERICAL EXAMPLE

In order to illustrate the efficiency of Algorithm 1 and the im-
portance of the choice of Tref, we consider a jet engine state-
space model [32] supplied by NASA Glenn Research Center
given as

ẋ(t) = (
Ao + FAΔHEA

)
x(t) +

(
Bo + FAΔHEB

)
u(t)

+ Bdd(t) + Bf f (t),

y(t) = (
Co + FCΔHEA

)
x(t) +

(
Do + FCΔHEB

)
u(t)

+Ddd(t) +Df f (t),

(70)

where

Ao =

⎡
⎢⎢⎣
−0.9835 −0.0110 −0.0039

−0.0004 −0.9858 −0.0026

0 0.0002 −0.9891

⎤
⎥⎥⎦ ,

Bo =

⎡
⎢⎢⎣

0.0080 0.2397 −0.0383

0.0068 0.1565 0.0248

0.0003 −0.0003 0.0003

⎤
⎥⎥⎦ ,

Co =

⎡
⎢⎢⎣

0.2383 0.4871 0.1390

0 −.0008 0.0004

0.00002 −0.00004 0

⎤
⎥⎥⎦ ,

Do =

⎡
⎢⎢⎣

0.4171 −4.4920 0.4875

0.0008 −0.0050 0.0003

0 0.0005 −0.0021

⎤
⎥⎥⎦ .

(71)

The system is subject to three disturbances and three poten-
tial faults. Here, the setup is given by

Bd =

⎡
⎢⎢⎣

0.1 0 0

0 0.1 0

0 0 0.01

⎤
⎥⎥⎦ ,

Bf =

⎡
⎢⎢⎣

0.0080 0.2397 −0.0383

0.0068 0.1565 0.0248

0.0003 −0.0003 0.0003

⎤
⎥⎥⎦ ,

Dd = 0.1× I3,

Df =

⎡
⎢⎢⎣
−0.0205 0.6217 0.8115

0.2789 −1.7506 0.6363

1.0583 0.6973 1.3101

⎤
⎥⎥⎦ .

(72)

Since no uncertainty parameters were given in this exam-
ple, we assume an unstructured norm-bounded uncertainty,
with matrices FA, FC , EA, EB, and H randomly generated as

H =

⎡
⎢⎢⎣
−0.319 −0.080 0.142

−0.288 0.138 0.258

0.114 0.163 0.133

⎤
⎥⎥⎦ ,

EA =

⎡
⎢⎢⎣
−0.060 −0.008 −0.135

−0.015 0.154 0.047

−0.044 −0.061 −0.090

⎤
⎥⎥⎦ ,

EB =

⎡
⎢⎢⎣

0.134 0.630 0.451

0.207 0.371 0.044

0.607 0.575 0.027

⎤
⎥⎥⎦ ,

FC =

⎡
⎢⎢⎣
−0.055 0.066 −0.012

−0.085 −0.085 −0.007

−0.025 −0.120 0.049

⎤
⎥⎥⎦ ,

FA =

⎡
⎢⎢⎣

0.148 −0.129 −0.084

0.114 −0.007 0.050

−0.068 −0.033 0.149

⎤
⎥⎥⎦ .

(73)
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Figure 2: Time response of the residual before the optimization.

A square and diagonal structure for Tref is necessary to
get fault isolation in the case that the faults occur at the same
time.

Remark 8. If Aref, Bref, and Cref are chosen diagonal, then

Tref(s) = Cref
(
sI − Aref

)−1
Bref +Dref

= Cref Bref
(
sI − Aref

)−1
+Dref.

(74)

The terms in Bref can be incorporated in Cref. It follows that
we can set Bref = I . Therefore, the nonlinearity in (37) comes
only from bilinear terms ZE1Aref E

T
1 and YE1Aref E

T
1 .

To initialize Algorithm 1, T init
ref is generated following

Remark 6 as

Ainit
ref =

⎡
⎢⎢⎣
−1.60 0 0

0 −1.44 0

0 0 −0.57

⎤
⎥⎥⎦ ,

Binit
ref = I3,

Cinit
ref =

⎡
⎢⎢⎣

0.71 0 0

0 1.29 0

0 0 0.67

⎤
⎥⎥⎦ ,

Dinit
ref =

⎡
⎢⎢⎣

1.40 0 0

0 1.69 0

0 0 1.81

⎤
⎥⎥⎦ .

(75)

Then, by following the first two steps of Algorithm 1, we get
the optimal γ as

γ = 0.6273 (76)

and the values given below for Z, Y , and Prefx , which will be
used to initialize the main loop of the algorithm as follows.

Zref

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5010 −0.4385 0.0309 0.6192 −0.4313 0.4861

−0.4385 0.8184 0.0844 −0.3629 −0.6083 −0.8105

0.0309 0.0844 0.0651 0.0986 −0.3323 −0.1397

0.6192 −0.3629 0.0986 1.4722 −1.2716 0.9082

−0.4313 −0.6083 −0.3323 −1.2716 5.7926 −1.5337

0.4861 −0.8105 −0.1397 0.9082 −1.5337 2.5593

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Yref

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.0059 19.1311 2.7518 0.1860 3.0607 0.7016

19.1311 165.3233 12.5435 −13.2886 32.4525 −15.3595

2.7518 12.5435 7.7249 −4.8209 0.6873 −3.4439

0.1860 −13.2886 −4.8209 7.4800 −5.3595 4.9329

3.0607 32.4525 0.6873 −5.3595 22.7920 −4.1575

0.7016 −15.3595 −3.4439 4.9329 −4.1575 8.6769

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Prefx =

⎡
⎢⎢⎣

−0.0492 1.4322 −0.1444

1.4322 −63.1246 8.1628

−0.1444 8.1628 −1.2084

⎤
⎥⎥⎦ .

(77)

Taking into account Remark 8, we implemented Algo-
rithm 1 in Matlab to minimize γ. Table 1 shows the evolution
of the optimization following Algorithm 1.

Algorithm 1 can clearly improve the result in a few iter-
ations; γ is reduced by 33% compared to the one obtained
with a fixed Tref. This shows that the choice of Tref is essential
in our FDI scheme. We get

Aref =

⎡
⎢⎢⎣
−18.1665 0 0

0 −9.2781 0

0 0 −6.0914

⎤
⎥⎥⎦ ,

Bref = I3,

Cref =

⎡
⎢⎢⎣

0.0007 0 0

0 −0.3959 0

0 0 0.0572

⎤
⎥⎥⎦ ,

Dref =

⎡
⎢⎢⎣

1.2438 0 0

0 4.3768 0

0 0 1.8216

⎤
⎥⎥⎦ .

(78)

Remark 9. In our numerical experimentation, other choices
for T init

ref have been used; however, all converged to the same
solution but with different numbers of iterations.

In order to show that our filter is robust against distur-
bances and model uncertainties, we introduce a randomly
generated Δ given by

Δ =

⎡
⎢⎣

0.4058 −0.0534 −0.3600
−0.4097 −0.5466 0.4822
−0.0067 0.0877 −0.2743

⎤
⎥⎦ , (79)



Emmanuel Mazars et al. 11

Table 1

Iterations 0 1 2 5 10 20 50 100

γ 0.6273 0.6248 0.5791 0.5476 0.5253 0.4739 0.4641 0.4641
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Figure 3: Time response of the residual after the optimization.

as well as three disturbances. Simulated through MATLAB
and SIMULINK, these disturbances are three-band-limited
white noises with mean 0 and standard deviation 2. Faults f1
and f2 are both simulated by a unit positive jump connected
from the 14th second. Fault f3, simulated by a soft bias (slope
= 0.2), is connected from the 20th second. Figure 2 gives the
residual responses before the algorithm, where each residual
is dedicated to a particular fault, while Figure 3 gives the op-
timized residual response using our algorithm.

The lines opt1, opt2, and opt3 represent the optimal tra-
jectories that each residual must follow

⎡
⎢⎢⎢⎣

opt1(s)

opt2(s)

opt3(s)

⎤
⎥⎥⎥⎦ = Tref

⎡
⎢⎢⎢⎣

f1(s)

f2(s)

f3(s)

⎤
⎥⎥⎥⎦ . (80)

In both figures, each fault can be distinguished from the
others and the disturbances; however, in Figure 3, the faults
can be more easily distinguished and each residual follows
its optimal trajectory (green line) with more accuracy. Fur-
thermore, the disturbances are more attenuated compared
to Figure 2, and the jumps that indicate faults are clearer in
Figure 3 since their amplitudes are bigger and therefore allow
a better fault detection using thresholds [33, 34]. The isola-
tion performance is clearly effective as each fault produces a
deviation of its residual only, without modifying the trajec-
tory of the others. This example illustrates that the designed
filter satisfies the performance requirement of FDI which is
sufficiently robust against disturbances and modeling errors.

Figure 3 also justifies the efficiency of Algorithm 1 to im-
prove the design of the reference model and therefore the
overall performance of our filter.

6. CONCLUSION

This paper has addressed the problem of fault detection
and isolation for linear time-invariant systems subject to
faults, disturbances, and model uncertainties. We proposed
a performance index that captures the FDI requirements.
Through QMI formulations, we gave the design of an op-
timal filter for polytopic or unstructured norm-bounded
uncertainties, and a suboptimal filter for structured norm-
bounded uncertainties. Suboptimality in the latter case is
inherited from the bounded real lemma, which gives only
sufficient LMI conditions for structured uncertainties (see
Lemma 2). By allowing the reference model Tref to be vari-
able in our formulation, we get its optimal design, which can
be used in other schemes dedicated to fault isolation. The
optimal design of this reference model is initially given in a
form of a QMI optimization, then a suboptimal solution is
obtained by using a linearization procedure which derives an
upper bound on the optimal solution of the QMI formula-
tion that requires the solution of an LMI optimization. Note,
however, that we have no indication concerning the deviation
of our design from the optimal filter. We have also illustrated
the effectiveness of our algorithm using a jet-engine example.
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