
Research Article
The Definition Method and Optimization of Atomic Strain
Tensors for Nuclear Power Engineering Materials

Xiangguo Zeng, Ying Sheng, Huayan Chen, and Tixin Han

College of Architecture and Environment, Sichuan University, Chengdu 610065, China

Correspondence should be addressed to Ying Sheng; shengying 2008@163.com

Received 5 June 2016; Accepted 11 July 2016

Academic Editor: Yan Yang

Copyright © 2016 Xiangguo Zeng et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A common measure of deformation between atomic scale simulations and the continuum framework is provided and the strain
tensors formultiscale simulations are defined in this paper. In order to compute the deformation gradient of any atom𝑚, the weight
function is proposed to eliminate the different contributions within the neighbor atoms which have different distances to atom𝑚,
and the weighted least squares error optimization model is established to seek the optimal coefficients of the weight function and
the optimal local deformation gradient of each atom. The optimization model involves more than 9 parameters. To guarantee
the reliability of subsequent parameters identification result and lighten the calculation workload of parameters identification, an
overall analysis method of parameter sensitivity and an advanced genetic algorithm are also developed.

1. Introduction

Titanium alloys have been largely used as nuclear power engi-
neering materials [1], and it is important and significant to
analyze the atomic-level strain distribution of thesematerials.
The strain tensors are commonly defined by the local defor-
mation of the continuum. Unlike displacement, strain is not a
physical quantity that can be measured directly, and it is cal-
culated fromadefinition that relies on the gradient of the con-
tinuous displacement field. At the microscale, it is difficult to
define the local deformation according to the position of each
atom which is obtained from the adjacent discrete time
interval, so there is no universally accepted definition of
strain tensors of atomic scale so far.

Many engineering problems involving physical phenom-
ena need to calculate strain tensors at atomic scale.Wang et al.
[2] pointed that it was important to analyze the atomic-level
strain distribution and get the atomic stress-strain curve
while studying the mechanical behavior of Zr-based metallic
glass under indentation. Hirth et al. [3] considered that the
computation of the deformation gradient and strain tensors
made the approach useful for evaluation of continuum
models, development of microstructure and mechanical
property relationships, and identification of dislocations and

disclinations, as well as for quantification of plastic spin and
strain gradients.

In recent years, many researchers are challenging to pro-
vide a commonmeasure of deformation between atomic scale
simulations and the continuum framework and define the
strain tensors for multiscale simulations. Zimmerman et al.
[4] defined the slip vector according to the positions of
atoms and successfully identified the lattice distortion and the
formation of dislocation structures, but these measures could
not be utilized in the continuum framework. Mott et al. [5]
presented a definition of the local atomic strain increments
in three dimensions and an algorithm for computing them.
First, an arbitrary arrangement of atoms was tessellated into
Delaunay tetrahedra, and then the deformation gradient
increment tensor for interstitial space was obtained from the
displacement increments of the corner atoms of Delaunay
tetrahedra. However, it was complicated to establish the tetra-
hedral elements of atoms.Gullett et al. [6] proposed an atomic
strain tensor that is based on the definition of a discrete equiv-
alent to the continuum deformation gradient that accounts
for the relative motion of an atom and its neighbors in a
nonlocal fashion.This method was computationally efficient,
because the deformation gradient arose from an optimization
procedure that did not rely on a geometric decomposition,
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and the strain tensors were computed directly from the
deformation gradient and were appropriate for general finite,
multiaxial deformation states. When the deformation gra-
dient at an atom was formed, a weight function should
be built to eliminate the different contributions within the
neighbor atoms which had different distances to the atom.
However, Gullett et al. [6] did not study the establishment and
optimization method of the weight function which played an
important role in the formulation of the discrete deformation
but just used the invariant weight function of the artificial
assumption to calculate the discrete deformation gradient at
the atom.

By summarizing the shortcomings of the existing meth-
ods mentioned above, the work done by this paper can be
categorized into three parts: first, the strain tensors for multi-
scale simulations are defined, and the weighted least squares
error optimization model involving more than 9 parameters
is established to seek the optimal coefficients of the weight
function and the optimal local deformation gradient of each
atom; next, to guarantee the reliability of subsequent param-
eters identification result and also to lighten the calculation
workload of parameters identification, an overall analysis
method of parameter sensitivity, based on Latin Hypercube
Sampling method and Spearman rank correlation method,
is proposed; furthermore, on the fundamentals of the result
of parameter sensitivity and basic genetic algorithm (GA),
an advanced genetic algorithm based on the advanced niche
genetic algorithm, global peak value determination strategy,
and local accurate searching techniques is developed. Finally,
taking alpha titanium as an example, the strain tensors of
atoms are computed bymeans of themethod proposed in this
paper, and the method is proved to be correct and feasible by
comparing with the results got by other methods from the
existing reference.

2. Modeling Approach

2.1. Deformation Gradient and Strain Tensors. In order to
describe the positions of atoms at the initial time 𝑡

0
and at

the current time 𝑡, we assume a fixed Cartesian coordinate
system as shown in Figure 1.

In Figure 1, X and x are, respectively, the coordinate
vectors of atoms in the reference configuration Ω

0
at the

initial time 𝑡
0
and in the current configuration Ω

1
at the

current time 𝑡, and 𝜒maps the atoms from X to x. Consider

X = 𝑋
𝑖
E
𝑖
,

x = 𝑥
𝑖
e
𝑖
,

x = 𝜒 (X) .
(1)

Assuming sufficient continuity, the local deformation at
X is characterized as the gradient of the motion and can be
defined as

F ≡
𝜕𝜒

𝜕X
=

𝜕x
𝜕X

. (2)

The deformation of an infinitesimal segment 𝑑x at one
point in the reference configuration can be expanded in

𝜒
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Xn
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Figure 1: General motion in the neighborhood of a discrete atomic
particle.

a Taylor series. If the higher-order terms are omitted, 𝑑x can
be written as

𝑑x = 𝜒 (X + 𝑑X) − 𝜒 (X)
= 𝜒 (X) + ∇𝜒 (X) ⋅ 𝑑X + 𝑜 (𝑑X) − 𝜒 (X)
≈ ∇𝜒 (X) ⋅ 𝑑X ≈ F ⋅ 𝑑X.

(3)

Then the deformation gradient F can be got by (3) which
is not only applicable to atomic scale but also available for the
continuum framework. Consider an atomic system shown
in Figure 1. The deformation in the neighborhood of atom
𝑚 is characterized by the changes in the relative position of
its neighbors. Atom 𝑚 is located at the position X𝑚 in the
reference configuration Ω

0
and position x𝑚 in the current

configuration Ω
1
. Then the relative position of neighboring

atom 𝑛 and the deformation gradient F𝑚 at atom𝑚 are given
as

ΔX𝑚𝑛 = X𝑛 − X𝑚

Δx𝑚𝑛 = x𝑛 − x𝑚

Δx𝑚𝑛 = F𝑚 ⋅ ΔX𝑚𝑛.
(4)

The deformation gradient of atom 𝑚 is related to its
neighboring atoms, and the deformation gradient of each
neighboring atom with respect to atom 𝑚 is different, so the
deformation gradient F𝑚 of atom 𝑚 cannot generally be got
by a single atom 𝑛. Therefore, we should seek an optimal
local deformation gradient ̂F𝑚, which can make the weighted
squares error 𝑊𝑚 shown in the following equation mini-
mized:

𝑊
𝑚
=

𝑁

∑

𝑛=1

(Δx𝑚𝑛 − ̂F𝑚ΔX𝑚𝑛)
𝑇

(Δx𝑚𝑛 − ̂F𝑚ΔX𝑚𝑛) 𝜔
𝑛
, (5)

where 𝑁 is the number of neighboring atoms and 𝜔
𝑛
is a

weight factor.
The optimal deformation gradient F̂𝑚 of the atom 𝑚 is

determined by the deformation gradients of all the neighbor-
ing atomswith respect to atom𝑚, but the contribution of each
atom 𝑛 to ̂F𝑚 is different and related to the distance between
atom 𝑛 and atom 𝑚. Therefore, the weight function used
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to eliminate the different contributions within the neighbor
atoms which had different distances to the atom. In the cutoff
radius 𝑟cut that specifies the domain around atom𝑚,𝜔

𝑛
of the

nearest neighbor atom is equal to 1.0 and gradually reduced
to 0.0 with the increase of the distance between atom 𝑛 and
atom 𝑚. The weight function 𝜔

𝑛
plays an important role on

calculating the atomic strain. For each material, the weight
function curvemust be uniquely determined, but it is difficult
to get the exact analytic expression of the weight function
corresponding to theweight function curve, somany forms of
𝜔
𝑛
can be assumed and the coefficients of the function should

be optimized to fit the weight function curve. The S-curve
model of biological population growth is proved to be one
of the appropriate forms to fit the weight function curve [7],
so the appropriate weight function 𝜔

𝑛
can be assumed as

𝜔
𝑛
=

2 + 𝑘
1

1 + 𝑘
1

−

1

1 + 𝑘
1
𝑒
−𝑘
2
𝑟

𝑟 =

𝑅
𝑚𝑛

− 𝑟
𝑔1

𝑟cut
,

(6)

where 𝑘
1
and 𝑘

2
are undetermined coefficients, 𝑅

𝑚𝑛
is the

distance between atom 𝑛 and atom𝑚, and 𝑟
𝑔1

is the distance
between the closest neighbor atom and atom𝑚.

The purpose of parameters identification is to find a set of
solutions of discrete design variablesX to satisfy the objective
function𝑊𝑚(X) as shown in

obj: min 𝑊
𝑚
(X)

=

𝑁

∑

𝑛=1

(Δx𝑚𝑛 − ̂F𝑚ΔX𝑚𝑛)
𝑇

(Δx𝑚𝑛 − ̂F𝑚ΔX𝑚𝑛) 𝜔
𝑛

X

= [𝐹̂

𝑚

11
, 𝐹̂

𝑚

12
, 𝐹̂

𝑚

13
, 𝐹̂

𝑚

21
, 𝐹̂

𝑚

22
, 𝐹̂

𝑚

23
, 𝐹̂

𝑚

31
, 𝐹̂

𝑚

32
, 𝐹̂

𝑚

33
, 𝑘
1
, 𝑘
2
]

𝑇

s.t.: 𝑋̃
𝑖min ≤ 𝑋𝑖 ≤ 𝑋̃𝑖max.

(7)

When the objective function 𝑊
𝑚
(X) reaches the min-

imum, the parameters 𝐹̂𝑚
𝑖𝑗

(𝑖, 𝑗 = 1, 2, 3) are the optimal
components of the optimal deformation gradient matrix F̂𝑚.

When ̂F𝑚 is determined by the optimization model as
shown in (7), the Lagrangian Green strain tensor E is defined
with respect to reference coordinates in terms of this quantity
as

E =

1

2

(F𝑇F − I) . (8)

The strain tensor E is a 3 × 3 matrix, and the effective
strain of a point 𝜀eff can be described by the second invariants
of E, shown as

𝜀eff = √3𝐽2

= √3(
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(9)

2.2. Parameter Sensitivity Analysis. The optimization model
(see (7)) involves 11 parameters. To guarantee the reliability
of subsequent parameters identification result and also to
lighten the calculation workload of parameters identification,
an overall analysis method of parameter sensitivity, based
on Latin Hypercube Sampling method and Spearman rank
correlation method, is proposed.

Sensitivity analysis means picking out those sensitive
parameters, which could significantly affect the reliability of
result, among wide range of uncertain factors. A traditional
analysis method is called single factor analysis method. And
the basic procedures are as follows [8].

(1) Build systematic model, meaning function rela-
tion between system feature and factors, 𝑃 =

𝑊(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
), and get the benchmark sets of

parameters.
(2) When analyzing the effect of one particular parameter

𝑥
𝑖
on feature 𝑃, keep the rest of parameters constant

in basic value, and only allow parameter 𝑥
𝑖
to vary

within the proper range. If minor change of 𝑥
𝑖
leads

to drastic changes of 𝑃, that means 𝑃 is very sensitive
to 𝑥
𝑖
, and the sensitivity value of 𝑥

𝑖
is large; if 𝑥

𝑖
varies

within a rather wide range, while the change in 𝑃 is
not obvious, that means 𝑃 is not sensitive to 𝑥

𝑖
, and

the sensitivity value of 𝑥
𝑖
is small.

The optimization model (see (7)) obtained in this paper
is nonlinear, and parameters are related to each other. All
the parameters collectively affect the fitting accuracy of the
objective function 𝑊

𝑚
(X) as shown in (7). Hence, overall

analysis of parameter sensitivity is required, which means
allowing every parameter simultaneously to change within
assigned ranges, to observe the effect of each parameter on
objective function.

To thoroughly analyze all the changing parameters, first,
we need to pick up samples from the whole parameters
space. Latin Hypercube Sampling (LHS) is a uniformed
space sampling method, proposed earliest by McKay et al.
in 1979 [9], which possesses advantages of fewer sampling
times and effectively avoiding repeat sampling, and applies
to complicatedmultidimensional parameters space sampling.
The basic procedures of LHS are as follows.

(1) Set a parameter set consisting of 𝑚 parameters, and
set the value range of each parameter as 𝑛 nonoverlap
zones with equal probability.

(2) Randomly pick a sample of every parameter 𝑥
𝑖
within

its range, meaning each parameter 𝑥
𝑖
consists of 𝑛

sample values.
(3) Randomly arrange the 𝑛 sample values of each 𝑥

𝑖
, to

form𝑚 random arrangements.
(4) Pick up one sample value for each parameter from the

𝑚 arrangements, which could form a sample parame-
ter set X

𝑘
and pick 𝑛 times in sequence, and then one

will get 𝑛 sample parameter sets {X
1
,X
2
, . . . ,X

𝑛
}.

The realization process schematic drawing of LHS
method is shown in Figure 2.
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Sets of sample parameters:
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Figure 2: The realization process schematic drawing of LHS method.

Since the optimization model (see (7)) obtained in this
paper is nonlinear, the output result of random sampling
sample sets is uncertain. Therefore, it is necessary to adopt
nonparameter statistical method to carry out the relativity
analysis among random parameters. Spearman rank corre-
lation method is a nonparameter statistical analysis method,
proposed by Spearman in 1904 [10]. This method applies to
relativity analysis among multiple parameters, to analyze the
effect of input parameters on the output result. This is a very
practicalmethod [11].The basic procedures of Spearman rank
correlation method are as follows.

(1) Definition of rank: by arranging the sample sets
{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} from large to small, an ordered

sequence 𝐴 is formed. Supposing 𝐴
𝑖
is at the order

of 𝑅
𝑖
in the sequence 𝐴, then 𝑅

𝑖
is the rank of 𝐴

𝑖
in

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
}.

(2) By substitution of 𝑛 sets of sample parameters
{X
1
,X
2
, . . . ,X

𝑛
} into (7), the solution sets of objective

function {𝑊
1
,𝑊
2
, . . . ,𝑊

𝑛
} can be obtained.

(3) Supposing the rank of the parameter 𝑥
𝑘

𝑖
in

{𝑥
1

𝑖
, 𝑥
2

𝑖
, . . . , 𝑥

𝑛

𝑖
} is 𝛼
𝑘
and the rank of the parameter

𝑊
𝑘
in {𝑊

1
,𝑊
2
, . . . ,𝑊

𝑛
} is 𝛽
𝑘
, then the sensitivity of

parameter 𝑥
𝑖
equals the absolute value of Spearman

rank correlation coefficient, as shown in

𝑟
𝑖

=

󵄨
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𝑘
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𝑛
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𝑏
𝑘

√𝑛∑
𝑛

𝑘=1
(𝑎
𝑘
)
2
− (∑
𝑛

𝑘=1
(𝑎
𝑘
)
2
)√𝑛∑

𝑛

𝑘=1
(𝑏
𝑘
)
2
− (∑
𝑛

𝑘=1
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)
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(10)

Arrange the sensitivity degree 𝑟
𝑖
of all the parameters

from large to small, the larger sensitivity degreemeans greater
impact on output result, which requires close attention in
subsequent parameter identification analysis.

The result of parameter sensitivity analysis obtained
through this method forms the basic theory for the purpose
of determining the density of optimization model parameter
discrete zone. This method not only reduces calculation
workload of subsequent parameter identification but also
guarantees the reliability of the result of parameter identifi-
cation.

2.3. Parameter Identification Method. Based on the result of
parameter sensitivity analysis, in order to achieve identifi-
cation of the undetermined parameters in the optimization
model (see (7)), one possible method is genetic algorithm
(GA). GA is a self-adapting overall optimization proba-
bility searching algorithm based on biological genetic and
evolution process in the nature. Compared to traditional
optimization algorithms, GA has better overall searching
ability. The basic feature of GA is using overall evolution,
which means to find the best solution through constant
evolution of species.

The controlling condition of basic GA includes individual
coding method, fitness evaluation function, initial group,
group size, the selection operator, the crossover operator,
the mutation operator, and termination condition of genetic
algorithm.

However, there are many drawbacks in basic GA; for
example, the accuracy, reliability, and calculating time cannot
be satisfied simultaneously, and it is likely to encounter
disadvantages such as earliness and poor local searching
ability, so basic GA requires further update.

This paper made a lot of effective update to basic GA,
adopting the advanced niche genetic algorithm, suspicious
peak value determination strategy, and local accurate search-
ing techniques, so that the overall searching ability of genetic
algorithm is improved, which can be shown as follows.

(1) Improvement to Traditional Niche Genetic Algorithm.
First, build optimal individual preservation strategy. Each
niche evolves individually and saves the current optimal
individual after evolution is done for each generation. When
evolution of this generation is done before the evolution of
each generation starts, if the optimal individual is within
the group, then leave it as it is; otherwise, use the copy of
current optimal individual to replace the worst individual in
current generation. This method guarantees that the optimal
individual will not be eliminated during the process of
evolution and will speed up the converge process.

Otherwise, build data exchange mechanism among
niches. Perform optimal individual exchange when each
evolution is completed, meaning use the optimal individual
of the first niche to replace the worst individual in the second
niche. Under the premise of ensuring the diversity of the
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population, this method can improve the proportion of the
good individuals and speed up the convergence.

(2) Building Suspicious Peak Value Determination Strategy.
When independent evolution of each niche is done, it will
converge to a peak value. When the amount of niche is
large, then all the peak values must contain all the global
optimization and local optimization points. Before the final
global optimization point is determined, all the obtained
peak values are considered as “suspicious peak value.” The
optimization point of 𝐴 amount of all the suspicious peak
value point must be the global optimization point, which is
referred to as objective function 𝐹∗, and the corresponding
variables are {𝑥∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
}. Set the objective function of a

suspicious peak value point 𝐵 as 𝐹, and the corresponding
variables are {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
}. The condition that point 𝐵 is

another global optimization point different from 𝐴 is
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 − 𝐹
∗

𝐹
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝛼 (11a)

𝑑
𝑖
= √

𝑛

∑

𝑘=1

(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
> 𝛽
𝑖

(𝑖 = 1, 2, . . . , 𝑚) , (11b)

where 𝛼 (0 < 𝛼 < 1) is a constant, meaning the relative
searching range around the global optimization value; 𝛽

𝑖

is a constant, which is used to judge whether two points
are neighboring; and 𝑑

𝑖
is the Hamming distance between

two points. If 𝑑
𝑖

≤ 𝛽
𝑖
, it means that points 𝐴 and 𝐵

are neighboring, and they are essentially the same global
optimization point with different accuracy. Equation (11a)
is used to determine that 𝐵 is also a global optimization
point, and (11b) is used to determine that 𝐵 is another global
optimization point different from 𝐴.

(3) Local Accurate Searching for All the Different Global Mini-
mum. Supposing the variable sets of one global optimization
point are {𝑥∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
} and the range of each variable is

𝑥
𝑖𝑙
≤ 𝑥
𝑖
≤ 𝑥
𝑖𝑢
, the new searching range of each variable will

be changed to

𝑥
𝑖
∈ [𝑥
𝑖𝑙
, 𝑥
𝑖𝑢
] ∩ [𝑥

∗

𝑖
− 𝛾
𝑖
, 𝑥
∗

𝑖
+ 𝛾
𝑖
] (𝑖 = 1, 2, . . . , 𝑚) , (12)

where 𝛾
𝑖
is the searching range around the variable 𝑥

𝑖
.

Finally, the genetic evolution operation will be performed
to the variables within the new searching range. Until the
termination condition is satisfied, the new solution got must
have higher accuracy.

The program flow diagram of advanced GA is shown in
Figure 3.

3. Results and Discussion

3.1. Example Strain Calculation. In order to compute the
strain tensors of atoms and provide evidence to confirm the
method proposed in this paper to be correct and feasible
by comparing with the result got by another method from
the existing reference [6], the atomic mechanics model of
alpha titanium material is built first. The length, width, and

thickness of the model are separately 250 Å, 100 Å, and 3 Å,
and the tensile displacement load on both upper and lower
surface of the model is 0.025 Å/ps, as shown in Figure 4.

The coordinate vectors of atoms in the reference config-
uration and in the current configuration are separately got
at the time of 𝑡 = 0 and 𝑡 = 10 ps. Taking the center atom
numbered 175 with a cutoff radius of 2 nm as an example, the
number of atoms within the cutoff radius around the center
atom is 146.

The weight function in [6] was assumed as

𝜔 (𝑟) =

{
{
{
{

{
{
{
{

{

1 − 6𝑟
2
+ 6𝑟
3

(𝑟 ≤ 0.5)

2 − 6𝑟 + 6𝑟
2
− 2𝑟
3

(0.5 < 𝑟 < 1.0)

0 (𝑟 ≥ 1.0) .

(13)

Then the optimal deformation gradient matrix F̂ could be
got by

̂F = AD−1

D = ∑

𝑛

ΔX𝑚𝑛 (ΔX𝑚𝑛)𝑇 𝜔
𝑛

A = ∑

𝑛

Δx𝑚𝑛 (Δx𝑚𝑛)𝑇 𝜔
𝑛
.

(14)

According to (14) and (8), the optimal deformation
gradient matrix and strain tensor of atom 146 at the time
𝑡 = 10 ps got by the method in [6] were

̂F175 = [[
[

0.9972 0.0107 −0.1062

0.0042 1.0027 −0.0255

−0.0183 −0.0096 1.0671

]

]

]

,

E175

=
[

[

[

1.1102𝑒 − 016 −5.4210𝑒 − 020 0

−8.1315𝑒 − 020 1.1102𝑒 − 016 0

−1.7347𝑒 − 018 −8.6736𝑒 − 019 1.1102𝑒 − 016

]

]

]

.

(15)

Then the effective strain of atom 175was 𝜀175eff = 3.3×10
−16.

The overall analysis method of parameter sensitivity
based on the Latin Hypercube Sampling (LHS) method and
Spearman rank correlation method proposed in this paper
is useful to determine the range of parameters. According to
the study in [8], the sensitivity of each parameter is related to
its range and sampling times. Therefore, in order to balance
the accuracy of each parameter, we should adjust the range
of each parameter and the sampling times of all parameters
to make all the parameter sensitivity values be close to
each other and be less than 0.2. If a parameter sensitivity
is much smaller than the sensitivities of other parameters,
which means that the parameter accuracy is too high and not
coordinated with the accuracy of the other parameters, then
the computation quantity will be unnecessarily increased; if a
parameter sensitivity is greater than 0.2, the accuracy of this
parameter is insufficient.
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Determine all the global optimization points
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Perform optimal individual 
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Save the current optimal individual

Selection, crossover, and mutation

Satisfy the termination 
condition?

Satisfy the termination 
condition?

...

Figure 3: The program flow diagram of advanced GA.

175

Figure 4: The atomic mechanics model.

Considering the parameter sensitivity of each parameter
in (7), the initial searching range of each parameter is set
separately as F

𝑖𝑗
∈ [−10, 10], 𝑘

1
∈ [1.01, 100], and 𝑘

2
∈

[0.01, 20]. By using the optimization method proposed in
this paper with the weight function of (6), the atomic strain

nephrograms at the time of 𝑡 = 10 ps, 𝑡 = 100 ps, and
𝑡 = 200 ps are shown in Figure 5. In Figure 5, the red dots and
blue dots separately represent the largest and smallest strain
of atoms.

Figure 5 can lead to the following conclusions.
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Figure 5: The atomic strain nephrograms.

(1) With the increase of time, the tensile displacement
load grows linearly, and the maximum strain of
atoms increases. These results are in accord with the
theoretical situation.

(2) When the load is very small, only a small part of the
atomic strains are relatively large, as shown in a small
amount of red dots in Figure 5(a). With the increase
of the load, plenty of metallic bonds break, and more
and more atoms become disordered. The strains of
these disordered atoms are relatively large, as shown
in many red dots in Figures 5(b) and 5(c).

At the time 𝑡 = 10 ps, the optimal deformation gradient
matrix and strain tensor of atom 146 are

F̂175 = [[
[

−0.9101 −0.5269 −0.1619

1.1913 1.1619 −0.3205

0.3983 0.7830 1.9959

]

]

]

,

E175

=
[

[

[

0 −5.5511𝑒 − 017 −5.5511𝑒 − 017

−1.6653𝑒 − 016 −5.5511𝑒 − 017 −1.1102𝑒 − 016

−6.9389𝑒 − 017 −2.7756𝑒 − 017 0

]

]

]

.

(16)

Then the effective strain of atom 175 is 𝜀175eff = 2.2 × 10
−16,

and the weight function is

𝜔
𝑛
=

2 + 44.5593

1 + 44.5593

−

1

1 + 44.5593𝑒
−17.9041𝑟

. (17)

According to (17), the graph of weight function 𝜔
𝑛
about

the nondimensional parameter 𝑟 can be got, as shown in
Figure 6(a). Considering 𝑟

𝑔1
≈ 0, then the change relation

of the weight function 𝜔
𝑛
with respect to the distance 𝑅

𝑚𝑛

between atom 𝑛 and the center atom 𝑚 can be got by (6), as
shown in Figure 6(b).

According to Figure 6(b), it can be found that the values
of 𝜔
𝑛
decrease from 1.0 to 0.0 with the increase of 𝑅

𝑚𝑛
. When

𝑅
𝑚𝑛

→ 𝑟cut, 𝜔𝑛 → 0; when 𝑅
𝑚𝑛

> 𝑟cut, 𝜔𝑛 ≈ 0. Therefore, it
is very convenient to calculate the objective function𝑊𝑚(X)
shown in (5) by programming without judging whether the
neighbor atom 𝑛 is within the cutoff radius.

3.2. Weight Function Effects on Computed Strain. The com-
parison of 𝜔

𝑛
-𝑟 curves (𝑟cut = 2 nm) of this paper and [6] is

shown in Figure 7. The form and coefficients of the weight
function 𝜔

𝑛
play a key role on the atomic strain calculation.

The coefficients of the weight function should be determined
by (7) and cannot be arbitrarily assumed, so it is inappropriate
for [6] to use the invariant weight function (see (13)) of the
artificial assumption to calculate the discrete deformation
gradient at the atom. According to Figure 7, it can be found
that the optimized weight function curve is almost under the
artificially assumed curve, so the effective atom strain got by
the optimization method proposed in this paper is smaller
and more reasonable than the results got in [6].

Then the effect of cutoff radius 𝑟cut on the computed atom
strain will be analyzed. When the cutoff radius is changed,
the effective strain of atom 175 is shown in Table 1, and
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Figure 6: The 𝜔
𝑛
-𝑟 and 𝜔

𝑛
-𝑅
𝑚𝑛

curves.

Table 1: The effect of cutoff radius on the effective strain of atom 175 in Figure 4.

Cutoff radius Atoms included Effective strain of atom 175 𝑘
1

𝑘
2

1 nm 37 1.47 × 10−16 51.8432 16.5200
1.5 nm 84 3.33 × 10−16 59.9867 17.3910
2 nm 146 2.20 × 10−16 44.5593 17.9041
2.5 nm 223 3.40 × 10−16 87.0598 18.4370
3 nm 265 2.72 × 10−16 17.7613 19.2712

𝜔
n

Reference [6]
This paper

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 10
r

Figure 7: Comparison of𝜔
𝑛
-𝑟 curves (𝑟cut = 2 nm) of this paper and

[6].

comparison of 𝜔
𝑛
-𝑟 curves for different cutoff radii is shown

in Figure 8.
According to Table 1 and Figure 8, it can be found

that when the cutoff radius varies from 1 nm to 3 nm, the

𝜔
n

rcut = 1nm
rcut = 1.5nm
rcut = 2nm

rcut = 2.5nm
rcut = 3nm

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 10
r

Figure 8: Comparison of 𝜔
𝑛
-𝑟 curves for different cutoff radii 𝑟cut

by optimization method.

optimized 𝜔
𝑛
-𝑟 curves and effective strain of atom 175 are

close to each other. When the nondimensional parameter 𝑟
shown in (6) is more than 0.5, the effect of cutoff radius on
the computed 𝜔

𝑛
, or atom strain, can be almost neglected.
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The cutoff radius 𝑟cut was recommended to adopt the one of
the potential functions.

4. Conclusions

(1) A common measure of deformation between atomic
scale simulations and the continuum framework is
provided and the strain tensors for multiscale simu-
lations are defined in this paper. In order to compute
the deformation gradient of any atom 𝑚, the weight
function (see (6)) is proposed to eliminate the differ-
ent contributions within the neighbor atoms which
have different distances to atom 𝑚, and the weighted
least squares error optimization model (see (7)) is
established to seek the optimal coefficients of the
weight function and the optimal local deformation
gradient of each atom.

(2) This paper proposed an overall analysis method of
parameter sensitivity based on the Latin Hypercube
Sampling (LHS) method and Spearman rank corre-
lation method. The sensitivity of each parameter is
related to its range and sampling times. In order to
balance the accuracy of each parameter, we should
adjust the range of each parameter and the sampling
times of all parameters to make all the parameter
sensitivity values be close to each other and be less
than 0.2.

(3) The advanced genetic algorithm proposed by this
paper, based on the advanced niche genetic algo-
rithm, suspicious peak value determination strategy,
and local accurate searching techniques, effectively
overcomes the drawbacks of basic genetic algorithm
such as earliness and poor local searching ability,
significantly improves global searching ability of
genetic algorithm, and makes the solving process of
the optimization model (see (7)) fast, accurate, and
reliable.

(4) The form and coefficients of the weight function
𝜔
𝑛
play a key role in the atomic strain calculation,

so the coefficients of the weight function should be
determined for different materials by (7) and cannot
be arbitrarily assumed.

(5) When the nondimensional parameter 𝑟 shown in (6)
is more than 0.5, the effect of cutoff radius on the
computed𝜔

𝑛
, or atom strain, can be almost neglected.

The cutoff radius 𝑟cut was recommended to adopt the
one of the potential functions.

(6) Thedefinition and optimizationmethod of the atomic
strain tensors for multiscale simulations proposed
in this paper can be used for other nuclear power
engineering materials.
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