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The development of discrete-event simulation software was one of the most successful interfaces in operational research with
computation. As a result, research has been focused on the development of new methods and algorithms with the purpose of
increasing simulation optimization efficiency and reliability.This study aims to define optimumvariation intervals for each decision
variable through a proposed approach which combines the data envelopment analysis with the Fuzzy logic (Fuzzy-DEA-BCC),
seeking to improve the decision-making units’ distinction in the face of uncertainty. In this study, Taguchi’s orthogonal arrays were
used to generate the necessary quantity of DMUs, and the output variables were generated by the simulation. Two study objects
were utilized as examples of mono- andmultiobjective problems. Results confirmed the reliability and applicability of the proposed
method, as it enabled a significant reduction in search space and computational demandwhen compared to conventional simulation
optimization techniques.

1. Introduction

Thedevelopment of discrete-event simulation (DES) software
was one of the greatest successes in bringing the realms of
operational research (OR) and computation together, accord-
ing to Fu [1]. Hillier and Lieberman [2] highlight that simu-
lation is an extremely versatile technique which enables the
investigation of practically any type of stochastic system.This
versatility has turned simulation into the most commonly
used OR technique for stochastic systems.

Nevertheless, the simulation optimization integration
grew stronger from the 90s due to the development of com-
mercial software packages which marketed integrated opti-
mization routines, thusmaking it considerably easier to carry
out a decision-making analysis [2–4].

Thus, Azadeh et al. [5] affirm that simulation optimiza-
tion is one of the most important OR tools that has come
about in recent years. Previous methodologies demanded

complex alterations which were frequently economically and
temporally unviable, especially for problems with a large
number of decision variables.

According to Medaglia et al. [6], simulation optimization
aims to find the best values for simulation model input para-
meters in the search of one or more desired outputs. This is
generally a slow process that takes a large amount of time and
the accomplishment of innumerous experiments.

In spite of the advances in simulationmodel optimization
software, a common criticism brought up is that, when deal-
ing with more than one input variable, the optimization pro-
cess becomes very slow [7–9]. Furthermore, according to
Hillier and Lieberman [2], computational simulation pack-
ages may be considered as relatively slow and costly when
applied in studies of stochastic and dynamic systems. In such
systems where a random behavior is prevalent, there is a ten-
dency towards elevated expenses and allocation of qualified
labor and expertise, along with extra time for analysis and
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programming. All these factors lead to a considerably higher
computational demand.

Following this thought, Kleijnen et al. [10] recognize that
simulation optimization problems are generally difficult to be
resolved and present disadvantages such as the fact that the
model outputs are implicit functions and exposed to noise.
These authors highlight the difficulties involved in analyzing
outputs for stochastic simulation models due to the existing
variation in each replication.

Taking all of this into account, this study aims to propose
a procedure for the simulation model optimization which
reduces search space and enables an increase in efficiency,
measured through reduced computational demand bymeans
of efficiency evaluation in the face of uncertainty.

In order to do meet this paper’s premises, the procedure
herein proposed makes use of the Taguchi orthogonal arrays
[11] to represent the experimental region and to test each
scenario and its replications using DES and Fuzzy logic
combined with DEA.The method is called Fuzzy-DEA-BCC
[12, 13] and incorporated the concept of superefficiency. A
further description is offered later on in the paper.

The use of the Taguchi orthogonal arrays [11] as means of
representing the experimental region of a simulation opti-
mization program is justified by the reduced number of
experiments for such experimental designs, given that they
are saturated fractional factorial arrays, thus allowing the
analysis of 𝑘 factors with 𝑛 levels, testing all levels for each
factor in a balanced manner [14].

The arrays for this method were chosen in function of the
number of inputs and outputs to follow the rule which deter-
mines that, in order to utilize classic DEA (CCR and BCC)
models, the minimum number of decision-making units
(DMUs) must be equal to or greater than three times the sum
of the total number of input and output variables [12, 15, 16].

According to Cook and Seiford [17], the DEA provides a
method which allows an identification of the DMUs which
serve as benchmark for the others under analysis, forming
an efficiency boundary. In the specific case of the DES, Weng
et al. [18] assert that the DEA allows the evaluation of relative
efficiency of a group of entities using multiple inputs and
outputs without being aware of their relationship.

For this study, Fuzzy-DEA-BCCmodels were chosen due
to the stochastic and nonlinear nature of the DES and the fact
that the set of DMUs may generally present different charac-
teristics (number of personnel, machines, throughput, profit,
work in progress, leading time, etc.) and tend to have different
yields or outputs on different scales.The latter justifies the use
of the DEA-BCC model [18].

Finally, in order to rank the scenarios generated by the
experimental matrix and reduce search space, the concept of
superefficiency was used, as proposed by Andersen and
Petersen [19]. Xue and Harker [20] point out that supereffi-
ciency is capable of differentiating DMUs, thus permitting a
classification in terms of efficiency.

In order to reach the proposed objectives, this paper
is divided into 5 sections. Section 2 presents the theoret-
ical base, focusing on the DEA, and Section 3 describes
the optimization procedure, integrating the previously pre-
sented tools. Section 4 details the application of the new

optimization procedure and discusses the results. Finally,
Section 5 presents the study conclusions.

2. Data Envelopment Analysis

2.1. Deterministic Data Envelopment Analysis. Classic DEA
models were introduced byCharnes et al. [15], which use con-
stant returns of scale and were denominated as CCR models
in homage to their creators [12]. These models were then
extended by Banker et al. [12] to variable returns of scale, this
time dubbed as BCC, again in reference to their originators.

According to Cook and Seiford [17], DEA is a non-
parametric methodology which comparatively measures the
efficiency of each decision-making unit (DMU). Another fact
that deserves highlighting is that, through its use, it is possible
to avoid the problems created by incommensurability (differ-
ent units of measurement) among the elements of the input
and output matrices.

In the original model from Charnes et al. [15], the input
and output variable weights may be obtained from the Frac-
tional Programming model solution, given by

𝐸𝑗 =
∑
𝑠
𝑟=1 𝑢𝑟 ⋅ 𝑦𝑟0

∑
𝑚
𝑖=1 V𝑖 ⋅ 𝑥𝑖0

(1)

subject to:

∑
𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗

∑
𝑚
𝑖=1 V𝑖𝑥𝑖𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠,

V𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚.

(2)

With DMU0 to DMU being under evaluation, 𝐸𝑗 is the
relative efficiency of DMU0; 𝑦𝑟0 and 𝑥𝑖𝑜 are the input and
output data for DMU0; 𝑗 is the index for the DMU, 𝑗 =

1, 2, . . . 𝑛; 𝑟 is the output index, with 𝑟 = 1, 2, . . . , 𝑠; 𝑖 is the
input index, 𝑖 = 1, 2, . . . , 𝑚; 𝑦𝑟𝑗 is the value of 𝑟th output for
𝑗th DMU; 𝑥𝑖𝑗 is the value of 𝑖th input for 𝑗th DMU; 𝑢𝑟 is the
weight associated with 𝑟th output; V𝑖 is the weight associated
with 𝑖th input.

It is observed that if 𝐸𝑗 = 1, DMU0 is going to be efficient
when compared to the other units considered in the model,
and, if 0 < 𝐸𝑗 < 1, this DMU is deemed inefficient.

This model (1)-(2) is not linear, thus having multiple
solutions; nonetheless, it can be linearized, generating aDEA-
CCD model, given by the following equation:

max 𝐸𝑗 =

𝑠

∑

𝑟=1

𝑢𝑟 ⋅ 𝑦𝑟0

subject to :
𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑜 = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛,
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𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠,

V𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚.

(3)

DEA-BCC models, with variable returns of scale, can be
expressed by the following equations:

max 𝐸𝑗 =

𝑠

∑

𝑟=1

𝑢𝑟 ⋅ 𝑦𝑟0 + 𝑐0 (4)

subject to:
𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑜 = 1 (5)

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 + 𝑐0 ≤ 0,

𝑗 = 1, 2, . . . , 𝑛.

(6)

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠. (7)

V𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚. (8)

𝑐0 free. (9)

A main difference between DEA-BCC and DEA-CCR
models is the addition of 𝑐0 (free) variable which indicates
variable returns of scale. Banker et al. [12] affirm that a DMU
considered efficient in a BCC model will also be considered
efficient in the CCR model; the inverse, however, is not
necessarily true.

According to Cooper et al. [16], in order to provide
a suitable discrimination of the DMUs in traditional DEA
models, the following must be verified: number of DMUs ≥
maximum {(product of the number of inputs and outputs),
3⋅(number of inputs + number of outputs)}.

Classic DEA models consider DMUs with 𝐸𝑗 = 1 as
efficient and DMUs with 0 ≤ 𝐸𝑗 < 1 as inefficient. It is within
the realm of possibility thatmultipleDMUs could be efficient;
that is, this would not be a good discrimination of DMUs.
In order to deal with this limitation, Andersen and Petersen
[19] proposed the concept of superefficiency in order to help
differentiate DMUs which present 𝐸𝑗 = 1.

For the superefficiency evaluation to be employed in
DEA-BCC models, constraint (6) must be removed in order
for the DMU under analysis to attain greater scores than 1,
being that the DMUs considered inefficient in traditional
evaluation models will continue to be inefficient, but those
which posed scores equal to one will be able to demonstrate
scores above 1, thus enabling the elaboration of a ranking.

2.2. Fuzzy-DEA. Hatami-Marbini et al. [21] undertook an
expansive literature review about the FuzzyTheory combined
with DEA models. The authors’ motivations were based on
the fact that, in general, the estimation of input and output
DMU values in real problems is difficult, which could gen-
erate efficiency values with a low level of reliability; one
approach to deal with the aspects of uncertainty involves the
adoption of FuzzyTheory concepts.

Kao and Liu [13] assert thatmeasuring aDMU’s efficiency
is a difficult task which involves complex economic variables
such as interest rates and tax rates and employment levels and
demand. According to these authors, efficiencymeasurement
becomes even more difficult when analyzing multiple inputs
and outputs.

In this context, Wen et al. [22] comment that DMUs
can be classified in two categories: efficient and inefficient.
However, the incorporation of uncertainty as an error inmea-
surement of inputs and outputs can make the calculation of
efficiency more reliable and robust.

Fuzzy Theory has come to be used with the objective of
modeling uncertainty in DEAmodels [23]. Fuzzy-DEAmod-
els are based on Fuzzy Linear Programming, with DEA-BCC
models with Fuzzy coefficients having special emphasis in
this paper (Fuzzy-DEA-BCC), proposed by Kao and Liu [13].
Consider the following:

𝐸𝑗 = Max
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟0 + 𝑐0 (10)

subject to:

𝑚

∑

𝑖=1

𝑥𝑖0 ⋅ V𝑖 = 1 (11)

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 + 𝑐0 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛, (12)

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠, (13)

V𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚. (14)

The value of the objective function (10)may have a greater
value than 1 due to constraints (11)-(12) which involve Fuzzy
parameters and are solved using probability [23]. With the
incorporation of Fuzzy coefficients, DEA-BCC models can-
not be resolved using traditional linear programming (LP)
techniques. Hatami-Marbini et al. [21] list and describe the
following main approaches which deal with Fuzzy-DEA:

(i) the 𝛼-level based approach;
(ii) the tolerance approach;
(iii) the Fuzzy ranking approach;
(iv) the possibility approach.

In this study, the approach based on the 𝛼-level was
adopted and is described afterwards. This 𝛼-level application
is the most common for Fuzzy-DEA models according to
Hatami-Marbini et al. [21]. To apply thismethod, the idea is to
convert the Fuzzy-DEA model into a pair of Parametric
Programming Problems to find upper and lower boundaries
for the DMU efficiency score membership functions [23].

For the purposes of this research, triangular membership
functions were utilized. According to Liang and Wang [24],
such functions well represent human expertise in adequately
judging the behavior of common variables in a range of prac-
tical situations. Along these same lines of thought, Aouni et al.
[25] showmultiple applications for Fuzzy triangular numbers
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which validate and justify the adoption of such a method in
conjunction with goal programming (GP) models. Another
justification arises from the fact that it is a linear function,
thus easing the optimization process through traditional LP
means [21].

To illustrate the process of Fuzzy-DEA modeling, the
example in Kao and Liu’s [13] paper was used, in which they
dealt with a model with a variable return of scale. Figure 1
shows the DEA-CCR and DEA-BCC models with four
DMUs, denominated as A, B, C, and D, with only a single
input and a single output for each DMU and with the output
of DMU B being Fuzzy.

The input values for DMUs A, B, C, and D are 10, 20,
30, and 50, respectively. With these inputs, outputs 5, 9, and
15 from DMUs A, C, and D are also produced, respectively.
These inputs and outputs are associated with points A = (10;
5), C = (30; 9), and D = (50; 15) in Figure 1. For DMU B, the
output associated with input value 20 is represented by the
trapezoidal Fuzzy number (5; 6; 8; 9), which is also illustrated
in Figure 1 by points (20; 5), (20; 6), (20; 7.5), (20; 8), and (20;
9).

Based on Figure 1 and according to the DEA-BCC model
[13], when the output of DMU B is less than or equal to
7.5, the production boundary is defined by the line segments
connecting point (10; 0) to A = (10; 5) and from A to D = (50;
15). The efficiency scores of DMUs A, C, and D are 1, 0.9, and
1, respectively; the efficiency ofDMUB is between 5/7.5 = 0.67
and 7.5/7.5 = 1, depending on its output.

If an increase in the output associated with DMU B went
from 7.5 to 9, the production boundary would be represented
by the line segments linking points (10; 0) to A from A to B =
(20; 9) and from B to D = (50; 15). In this case, DMUs A, B,
and D have an efficient output bound, while the efficiency of
C will be, according to output orientation, between values of
9/10= 0.9 and 9/11 = 0.82.

In this example, regardless of the output value of DMUB,
DMUs A and D are always efficient. In other words, with the
combination (generation of scenarios) of each Fuzzy output
for DMU B, the effects of uncertainty on DMUs A and D are
always the same and present 100% efficiency.

Conducting an analysis under the assumption of constant
return of scale (DEA-CCR model), as seen in Figure 1, the
production boundary will be the solid line which links the
origin point (0; 0) with point A = (10; 6). In this case, only
DMU A will always be efficient (with an efficiency score of
100%), regardless of the output value ofDMUB.However, the
efficiency of DMUBwill vary from 1/2 = 0.5 to 9/10 = 0.9, and
DMUs C and D will have an efficiency of 3/5 = 0.6; that is,
there are not effects of the Fuzzy output of DMU B over the
efficiencies of DMUs C and D.

As a further example, the membership function linked to
the output of DMU B may be illustrated, given that it is a
trapezoidal function, shown by the following equation:

𝜇�̃�𝐵
(𝑦) =

{{

{{

{

𝑦 − 5, 5 ≤ 𝑦 ≤ 6,

1, 6 ≤ 𝑦 ≤ 7,

9 − 𝑦, 8 ≤ 𝑦 ≤ 9.

(15)

(20, 9)
C(30, 9)
(30, 10)

B(20, 5)A(10, 5)
(20, 6)
(20, 7.5)
(20, 8)

10

5

15

CCR
BCC
D(50, 15)

(30, 11)

10 20 504030

Y

X

Figure 1: Production frontier whenDMUB output is Fuzzy. Source:
adapted from Kao and Liu [13].

The 𝛼-level base is defined as the interval [5 + 𝛼, 9 − 𝛼],
being (𝐸𝐵)

𝐿
𝛼𝑒(𝐸𝐵)

𝑈
𝛼 , respectively.The upper and lower bounds

for the variation (uncertainty) of𝛼-level, which are associated
with a scenario generation, vary between pessimistic (𝛼 = 0)
and optimistic (𝛼 = 1) for an efficiency analysis.

As previously stated, the 𝛼-level based approach was
adopted which, according to Hatami-Marbini et al. [21], is
the most popular Fuzzy-DEA model with many referenced
publications [13].The value of 𝛼 ∈ [0, 1] allows the generation
of scenarios, that is, different efficiency values respecting the
variation range determined by the membership function. In
such models,𝑋𝑖𝑗 and �̃�𝑟𝑗 are, respectively, the Fuzzy parame-
ters for 𝑖th input and 𝑟th output of the 𝑗th DMU.These values
are approximately known and can be represented by Fuzzy
sets through means of membership functions 𝜇𝑋𝑖𝑗 and 𝜇�̃�𝑟𝑗.
Thus, Fuzzy-DEA models can be formed using 𝑆(𝑋𝑖𝑗) and
𝑆(�̃�𝑟𝑗) which are the values of these parameters for a given 𝑆
scenario. With the 𝛼-level which generates a set of scenarios
for �̃�𝑟𝑗 and 𝑋𝑖𝑗, the formulas, as defined by Kao and Liu [13],
are as follows:

(𝑋𝑖𝑗) 𝛼 = {𝑥𝑖𝑗 ∈ 𝑆 (𝑋𝑖𝑗) | 𝜇�̃�𝑖𝑗
(𝑥𝑖𝑗) ≥ 𝛼} ,

𝑖 = 1, 2, . . . 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(𝑌𝑟𝑗) 𝛼 = {𝑦𝑟𝑗 ∈ 𝑆 (�̃�𝑟𝑗) | 𝜇�̃�𝑟𝑗
(𝑦𝑟𝑗) ≥ 𝛼} ,

𝑟 = 1, 2, . . . , 𝑠, 𝑗 = 1, 2, . . . , 𝑛.

(16)

Fuzzy-DEA can be transformed into a family of DEA
models with different levels of uncertainty: {(𝑋𝑖𝑗)𝛼 | 0 ≤ 𝛼 ≤
1} and {(𝑌𝑟𝑗)𝛼 | 0 ≤ 𝛼 ≤ 1}. The results for each scenario
identify the uncertainty variation range in the model’s input
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and output data [13, 26–28], with the 𝛼-level being defined by
the following equation, according to Kao and Liu [13]:

(𝑋𝑖𝑗) 𝛼 = [{min
𝑥𝑖𝑗
𝑥𝑖𝑗 ∈ 𝑆 (𝑋𝑖𝑗) | 𝜇�̃�𝑖𝑗

(𝑥𝑖𝑗) ≥ 𝛼} ,

max
𝑥𝑖𝑗

{𝑥𝑖𝑗 ∈ 𝑆 (𝑋𝑖𝑗) | 𝜇�̃�𝑖𝑗
(𝑥𝑖𝑗) ≥ 𝛼}] ,

(𝑌𝑟𝑗) 𝛼 = [{min
𝑦𝑟𝑗
𝑦𝑟𝑗 ∈ 𝑆 (�̃�𝑟𝑗) | 𝜇�̃�𝑟𝑗

(𝑦𝑟𝑗) ≥ 𝛼} ,

max
𝑦𝑟𝑗

{𝑦𝑟𝑗 ∈ 𝑆 (�̃�𝑟𝑗) | 𝜇�̃�𝑟𝑗
(𝑦𝑟𝑗) ≥ 𝛼}] .

(17)

Kao and Liu [13], based on Yager [29], Zadeh [28], and
Zimmermann [30], established that a membership function
which defines the efficiency of DMU 𝑗 can be expressed by

𝜇𝐸𝑗
(𝑧) = sup

𝑥,𝑦
min

= {𝜇�̃�𝑖𝑗
(𝑥𝑖𝑗) , 𝜇�̃�𝑟𝑗

(𝑦𝑟𝑗) , ∀𝑖, 𝑟, 𝑗 | 𝑧 = 𝐸𝑗 (𝑥, 𝑦)} ,

(18)

with 𝐸𝑗(𝑥, 𝑦) obtained by (4)–(9). The approach for con-
structing themembership function𝜇𝐸𝑗 proposed in this study
adopted an 𝛼-level 𝜇𝐸𝑗 as being the value of efficiency in each
scenario𝐸𝑗 obtained by (10)–(14). For further details, Kao and
Liu [13], Hatami-Marbini et al. [21], and Kao and Lin [31] are
recommended reading materials.

Based on the models developed by Banker et al. [12], in
accordance with (4)–(9), and Kao and Liu [13], in accordance
with (10)–(14), the Fuzzy-DEA-BCC model was developed.
Afterwards, the indices, parameters, auxiliary variables and
decision variables, objective functions, andmodel constraints
are proposed, considering DMU0 as the one under analysis.

(i) Indices:

(a) 𝑗 is the DMU index.
(b) 𝑟 is the output index.
(c) 𝑖 is the input index.

(ii) Parameters:

(a) 𝑦𝑟0 and 𝑥𝑖0 are, respectively, the upper and
lower bounds in the definition intervals of the
triangular membership function for the rth
Fuzzy output and the 𝑖th Fuzzy input for DMU0,
considering the average as the most probable
value without uncertainty.

(b) �̃�𝑟0 and 𝑋𝑖0 are, respectively, the upper and
lower bounds in the definition intervals of the
triangular membership function for the 𝑟th
Fuzzy output and the 𝑖th Fuzzy input for DMU0,
considering the average as the most probable
value without uncertainty.

(c) 𝑦𝑟𝑗 is the lower bound for the definition interval
of the triangular membership function of the
𝑟th Fuzzy output for the 𝑗th DMU, considering
the average as the most probable value without
uncertainty.

(d) �̃�𝑟𝑗 is the upper bound of the triangular mem-
bership function definition interval of the 𝑟th
Fuzzy output for the 𝑗th DMU, considering the
average as the most probable value without
uncertainty.

(e) 𝑥𝑖𝑗 is the lower bound of the triangularmember-
ship function definition interval of the 𝑟th Fuzzy
output for the 𝑗thDMU, considering the average
as the most probable value without uncertainty.

(f) 𝑋𝑖𝑗 is the upper bound of the triangular mem-
bership function definition interval of the 𝑖th
Fuzzy input for the 𝑗th DMU, considering the
average as the most probable value without
uncertainty.

(g) 𝛼 is the value chosen for the 𝛼-level based
approach, with 𝛼 ∈ variation [0, 1].

(h) Ψ𝑖𝑜 is the 𝛼 coefficient in constraints linked to
the 𝑖th Fuzzy input for DMU0.

(i) 𝜌𝑗0 is the 𝛼 coefficient in constraints linked to
the 𝑗th Fuzzy output for DMU0.

(j) 𝑃𝑟𝑗 is the 𝛼 coefficient for constraints linked to
the 𝑟th Fuzzy output of the 𝑗th DMU.

(k) Ψ𝑖𝑗 is the 𝛼 coefficient for constraints linked to
the 𝑖th Fuzzy input of the 𝑗th DMU.

(iii) Decision variables:

(a) 𝑢𝑟 is the weight associated with the 𝑟th output.
(b) V𝑖 is the weight associated with the 𝑖th input.

The Fuzzy-DEA-BCC model 𝐿𝛼 for an efficiency analysis
of the DMUs in a pessimistic scenario is as follows:

max 𝐸𝑗 =

𝑠

∑

𝑟=1

𝑢𝑟 (�̃�𝑟0 − 𝜌𝑟0 ⋅ 𝛼) + 𝑐0

subject to :
𝑚

∑

𝑖=1

V𝑖 (𝑥𝑖𝑜 + 𝜓𝑖0 ⋅ 𝛼) = 1

𝑠

∑

𝑟=1

𝑢𝑟 (�̃�𝑟𝑗 − 𝜌𝑟𝑗 ⋅ 𝛼)

−

𝑚

∑

𝑖=1

V𝑖 (𝑥𝑖𝑗 + 𝜓𝑖𝑗 ⋅ 𝛼) + 𝑐0 ≤ 0,

𝑗 = 1, 2, . . . , 𝑛,

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠,

V𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚,

𝑐0 free.

(19)
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The Fuzzy-DEA-BCC model 𝑈𝛼 for an efficiency analysis
of the DMUs in an optimistic scenario is as follows:

max 𝐸𝑗 =

𝑠

∑

𝑟=1

𝑢𝑟 (𝑦𝑟0 + 𝜌𝑟0 ⋅ 𝛼) + 𝑐0

subject to :
𝑚

∑

𝑖=1

V𝑖 (𝑋𝑖𝑜 − 𝜓𝑖0 ⋅ 𝛼) = 1

𝑠

∑

𝑟=1

𝑢𝑟 (𝑦𝑟𝑗 + 𝜌𝑟 𝑗 ⋅ 𝛼) −

𝑚

∑

𝑖=1

V𝑖 (𝑋𝑖𝑗 − 𝜓𝑖𝑗 ⋅ 𝛼) + 𝑐0 ≤ 0,

𝑗 = 1, 2, . . . , 𝑛,

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠,

V𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚,

𝑐0 free.
(20)

Figure 2 geometrically contemplates the position of the
DEAmodels parameters via the triangularmembership func-
tion. 𝑥𝑖0 or 𝑥𝑖𝑗 and 𝑦𝑟0 or 𝑦𝑟𝑗 correspond to the lower varia-
tion bound associated with inputs and outputs of the DMUs.
𝑋𝑖0 or 𝑋𝑖𝑗 and �̃�𝑟0 or �̃�𝑟𝑗 correspond to the upper variation
bound of the DMU’s inputs and outputs. The mean value
of the triangular membership function is associated with the
values of these parameters in a scenario without uncertainty.

3. Problem Description and Modeling

3.1. Proposal of Integrating Fuzzy-DEA with Simulation Opti-
mization Problems. This paper’s proposal of integrating
Fuzzy-DEA-BCC models in simulation optimization prob-
lems is based on the following four techniques:

(i) discrete-event simulation to represent the real system
to be optimized and conduct scenario simulation and
data collection;

(ii) the Taguchi orthogonal arrays to generate experimen-
talmatrices and define simulation runs to be executed
in order to represent the search space;

(iii) Fuzzy-DEA-BCC to analyze the efficiency of each
generated scenario, taking into account the uncer-
tainty present in each of them and classifying them in
terms of the most efficient DMUs;

(iv) an optimization procedure via simulation which can
perform searches for optimal solutions.

The use of optimization assumes that the simulation
model is constructed, verified, and validated, thus assuring
that the model adequately simulates the reality of the phe-
nomenon under study. It is also suggested that the response
variables are either discrete or integers.The steps for their use
are presented in Figure 3.

The application phases for the proposed procedure are
described below.
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Figure 2: Variation limits for the incorporation of uncertainty.

Step 1. Define the simulation model decision variables
(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) and the variation ranges for each variable
(lower level ≤ 𝑥𝑖 ≤ upper level, com 1 ≤ 𝑖 ≤ 𝑛).

Step 2. Determine the output variables (one or more) to be
optimized (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑚).

Step 3. Select the Taguchi orthogonal arrays in function of the
number of decision variables and their variation limits. This
selection must obey the fundamental rule established for the
minimum number of DMUs to be analyzed through Fuzzy-
DEA-BCC analysis [16]. After the arrays selection, generate
an experimental matrix which represents themost diversified
solution region as possible and explore all levels of each
decision variable, if possible.

Step 4. Execute the experiments in a discrete-event simulator
and store themaximum,minimum, andmean values for each
output variable to be optimized for analysis.

Step 5. Fuzzy analysis is as follows. Based on the experiments
carried out in the previous step, insert the minimum, max-
imum, and mean values for each experiment in the trian-
gular membership function. The choice of this membership
function is based on comments by Liang and Wang [24]
who justify the use of Fuzzy triangular functions, given that
they suitably mirror human judgments. Thus, according to
these authors, the advantage of using triangular Fuzzy num-
ber lies in the fact that not only human expertise can be suit-
ably represented, but also themodel additionally accounts for
uncertainty in the involved data and parameters. The opti-
mization models dealing with uncertainty which contain
present and future information cannot be perfectly accounted
for and should be considered as uncertain [32]. This study
utilized the 𝛼-level based approach given that, according to
Wang and Liang [32], it is the most popular Fuzzy-DEA
model due to the great number of publications using Fuzzy-
DEA in current scientific literature [21]. For more informa-
tion on these approaches, please see Hatami-Marbini et al.
[21].

Step 6. Determination of efficiency for each scenario by
means of Fuzzy-DEA-BCC for the simulated results is as
follows. Upon the definition of maximum, minimum, and
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Step 1: determine decision variables (x1, x2, . . . , xn) Step 0: verify and
and their respective bounds validate simulation

(lower level ≤ xi ≤ upper level, with 1 ≤ i ≤ n) model

Step 2: determine output variables to be optimised
(y1, y2, y3, . . . , ym)

Step 3: select the Taguchi array (L4, L9, L25, L32,
L54, . . . ) and generate experimental matrix

Step 4: execute
Step 5: Fuzzy analysis experiments

Step 6: determine scenario superefficiency
(Fuzzy-DEA-BCC)

Step 7: rank the most efficient DMUs

Step 8: define new variation range for decision
variables

Step 9: optimise
Step 10: make decision simulation model

Figure 3: Procedure proposed for an optimization via simulation utilizing Fuzzy-DEA-BCC and superefficiency.

mean values linked to each membership function associated
with each analyzed condition, the Fuzzy-DEA-BCC model
was applied using the 𝛼-level based approach, varying the 𝛼
value (0, 0.1, 0.2, . . . , 1), carrying out 11 scenarios with differ-
ent superefficiency values for both pessimistic and optimistic
scenarios.

Step 7. Ranking the most efficient DMUs based on the
concept of superefficiency is as follows. Given that there are
11 pessimistic scenarios and 11 optimistic scenarios, it was
necessary to lump them together into a global scenario. The
adopted method was to extract the geometric average of each
scenario, thus arriving at a global scenario.Thus, the geomet-
ric averages of all linked scenarios were obtained and ranked
from greatest to lowest. The first and second positions in
the rank were chosen to reduce the range for each decision
variable and, in turn, carry out the optimization simulation.

Step 8. Reducing the variation range of each decision variable
is as follows. The first and second positions of the rank were
chosen to carry out the range reduction of each variable, thus
taking out those variables with equal values for both DMUs.
This was the value adopted for that variable.

Step 9. Optimize the simulation model with a new variation
range for each decision variable.

Step 10. Analyze the results of the optimization and make
decisions based on the results found.

In order to exemplify the application of the proposed pro-
cedure, real situations involving the optimization of two sim-
ulation models are presented in the following sections. The
utilized models were previously verified and validated, thus
proving to be apt for optimization of the simulation.

4. Application and Data Analysis

4.1. Monoobjective Case. Themodeled situation corresponds
to a quality control cell in a fiber-optic transponder company.
The cell is responsible for a series of tests whichwill ensure the
approval or failure of the equipment produced at the plant. All
verification and validation phases were appropriately under-
taken, thus providing a consistent model.

For this study object, the decision variables were defined
as the number of operators responsible for carrying out qual-
ity control tests, denoted by (𝑥1, 𝑥2, 𝑥3), and the number of
pieces of equipment for test types 1, 2, and 3, denoted by
(𝑥4, 𝑥5, 𝑥6). All variables were defined as integers, with a
lower bound equal to one and an upper one equal to five.
Table 1 presents this information.

The optimization objective was to find the combination of
decision variables whichwouldmaximize the total number of
inspected products in the quality control center, denoted by
(𝑦1). For the problem in question, considering the number
of decision variables (6) and their maximum variation (1–5),
there are a total of 15.625 = (56) possible scenarios for the
search space.



8 Mathematical Problems in Engineering

Table 1: Decision variables, types, and limits for the study object.

Variable Type Lower bound Upper bound
𝑥1 Number of operators, type 1 Integer 1 5
𝑥2 Number of operators, type 2 Integer 1 5
𝑥3 Number of operators, type 3 Integer 1 5
𝑥4 Number of pieces of equipment for test, type 1 Integer 1 5
𝑥5 Number of pieces of equipment for test, type 2 Integer 1 5
𝑥6 Number of pieces of equipment for test, type 3 Integer 1 5

Table 2: Experimental matrix and results.

DMU Input variables Output variables
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑦1 minimum 𝑦1 average 𝑦1 maximum

1 1 1 1 1 1 1 3,922 3,977 4,032
2 1 2 2 2 2 2 3,936 3,979 4,022
3 1 3 3 3 3 3 3,919 3,978 4,037
4 1 4 4 4 4 4 3,932 3,985 4,038
5 1 5 5 5 5 5 3,939 3,982 4,025
6 2 1 2 3 4 5 3,939 3,982 4,025
7 2 2 3 4 5 1 3,925 3,978 4,031
8 2 3 4 5 1 2 3,930 3,982 4,034
9 2 4 5 1 2 3 3,938 3,979 4,020
10 2 5 1 2 3 4 3,920 3,983 4,046
11 3 1 3 5 2 4 3,918 3,982 4,046
12 3 2 4 1 3 5 3,910 3,979 4,048
13 3 3 5 2 4 1 3,924 3,983 4,042
14 3 4 1 3 5 2 3,926 3,981 4,036
15 3 5 2 4 1 3 3,937 3,983 4,029
16 4 1 4 2 5 3 3,938 3,980 4,022
17 4 2 5 3 1 4 3,930 3,978 4,026
18 4 3 1 4 2 5 3,932 3,982 4,032
19 4 4 2 5 3 1 3,922 3,981 4,040
20 4 5 3 1 4 2 3,921 3,982 4,043
21 5 1 5 4 3 2 3,937 3,980 4,023
22 5 2 1 5 4 3 3,932 3,982 4,032
23 5 3 2 1 5 4 3,930 3,982 4,034
24 5 4 3 2 1 5 3,933 3,982 4,031
25 5 5 4 3 2 1 3,933 3,982 4,031

Considering the quantity of decision variables, the varia-
tion of levels of each variable, and the rule for the minimum
number of DMUs proposed by Cooper et al. [16], the orthog-
onal array L25 was chosen. Seeing that there are six input
variables and one output variable, there would be aminimum
of 21 DMUs (runs) by following the classic rule, justifying
the use of array L25. With a defined array, the experimental
matrix was generated and presented in Table 2.

In the following, 25 scenarios were simulated from array
L25 with 30 replications of a month’s time of operation
in quality control. The simulations were carried out on a
computer with an Intel processor (Core 2 Duo) 1.58GHZ,
a 2GB RAM, and a 64-bit Microsoft operational system
platform.

Data for each output variable were stored for the superef-
ficiency calculations. Nearly 26minutes were spent to process
the 25 scenarios, considering all replications. Maximum,
minimum, and average values were stored for 30 replications
for each scenario with the goal of using them in the triangular
membership function. Results for output variable 𝑦1 are
shown in Table 2.

For the calculation of superefficiency related to each
DMU with a Fuzzy-DEA-BCC model, the softwareThe Gen-
eral AlgebraicModeling (GAMS) [33] was used, version 22.8.1,
using the solver CPLEX, version 11.0, adapted for the specific
calculation.

With these results, the superefficiency value of the DMU
can be related to each scenario for the pessimistic and
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Table 3: Superefficiency under uncertainty for a pessimistic scenario.

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
𝛼 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DMU 1 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
DMU 2 1.750 1.742 1.733 1.715 1.691 1.625 1.535 1.407 1.253 1.079 1.000
DMU 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.207 6.000 6.714 2.833
DMU 5 2.000 2.000 2.000 2.000 2.000 2.000 2.000 1.000 1.000 1.000 1.000
DMU 6 5.000 5.000 5.000 5.000 5.000 5.000 5.000 4.000 2.929 2.462 1.446
DMU 7 1.014 1.012 1.010 1.007 1.004 1.000 1.000 1.000 1.000 1.000 1.000
DMU 8 1.023 1.033 1.044 1.057 1.074 1.094 1.121 1.156 1.202 1.268 1.316
DMU 9 2.222 2.178 2.133 2.089 2.044 1.976 1.883 1.676 1.528 1.330 1.052
DMU 10 1.000 1.000 1.000 1.000 1.000 1.000 1.047 1.161 1.306 1.480 2.000
DMU 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.064 1.294 1.571
DMU 12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 13 1.000 1.000 1.000 1.000 1.000 1.000 1.067 1.156 1.280 1.475 2.000
DMU 14 1.000 1.000 1.000 1.000 1.000 1.021 1.049 1.085 1.128 1.181 1.200
DMU 15 1.933 2.037 2.208 2.625 3.111 3.500 3.750 4.167 3.182 2.500 2.000
DMU 16 1.333 1.329 1.323 1.316 1.307 1.296 1.282 1.263 1.233 1.161 1.074
DMU 17 1.222 1.207 1.190 1.168 1.143 1.111 1.071 1.018 1.000 1.000 1.000
DMU 18 1.308 1.310 1.313 1.315 1.319 1.323 1.327 1.332 1.328 1.296 1.250
DMU 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.063 1.139 1.224 1.318
DMU 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.011 1.167 1.288 1.357
DMU 21 1.318 1.320 1.322 1.325 1.329 1.333 1.351 1.367 1.367 1.346 1.211
DMU 22 1.263 1.271 1.280 1.290 1.303 1.319 1.341 1.352 1.367 1.389 1.400
DMU 23 1.222 1.246 1.275 1.311 1.356 1.415 1.494 1.611 1.676 1.711 1.400
DMU 24 1.231 1.238 1.245 1.255 1.267 1.281 1.300 1.325 1.360 1.430 1.500
DMU 25 1.683 1.698 1.714 1.732 1.758 1.800 1.882 2.026 1.769 1.442 1.333

optimistic scenarios by means of an 𝛼 variation, summing up
to 11 scenarios. These values are presented in Tables 3 and 4.

For the calculation of superefficiency for each scenario,
the average geometric value was extracted for both pessim-
istic and optimistic scenarios.The results found are presented
in Table 5. With these data, it was possible to calculate the
average of eachDMU and then rank them in function of their
superefficiency values (see Table 5).

Through a superefficiency analysis, it was possible to rank
the DMUs in order of efficiency. For the problem in question,
DMU 1 is the most efficient, followed by DMU 6. Both are
highlighted in Table 5.

With the identification of the two most efficient DMUs
and based on the experimental matrix in Table 2, a new inter-
val can be identified for each decision variable in which a
better set of solutions is expected. The new intervals for each
decision variable are presented in Table 6. Variable 𝑥2 stands
out, as its value was already defined, being equal to 𝑥2 = 1,
reducing the number of decision variables to 5.

With the reduction of the variation interval for each
decision variable, the search space for the best solution was
reduced from 15,625 to 240—a reduction of 98.4%.

To confirm the efficiency of search space reduction, the
optimizer SimRummer [34] was utilized for the simulation

model optimization. SimRunner stands as popular optimiza-
tion software [35] in operation and being sold in conjunction
with the ProModel simulator. According toKimet al. [36] and
Banks et al. [4], this optimization software finds an optimal
solution using as its search method a metaheuristic called
Genetic Algorithm that as pointed by Ólafsson [37] mimics
the process of natural selection.

The optimizer was set to the same conditions and objec-
tives; however, two optimizations were conducted for the
same problem. One used a reduction in the variation interval
(Table 6), and the other one used the original problem
(Table 1) conditions.The results found can be seen in Table 7.

The responses presented by the optimizer for the decision
variableswere only equal for variables𝑥4 and𝑥5. For the other
variables, the optimizer arrived at different values. As for the
solution of 𝑦1, with search space reduction, the optimizer
reached a value statistically equal to both optimized cases.

The optimizer for the optimization problemwith its range
being reduced carried out 88 experiments before converging,
which is equal to 36.67% of the experimental area (240
scenarios), taking a little more than 2.25 hours. For the prob-
lem with original range settings, the optimizer carried out
183 experiments, equal to slightly more than 1.17% of the total
experimental area (15,625 scenarios), taking 4.8 hours.
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Table 4: Superefficiency under uncertainty for an optimistic scenario.

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
𝛼 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DMU 1 2.441 2.424 2.403 2.377 2.345 2.304 2.249 2.171 2.054 2.000 2.000
DMU 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 3 1.081 1.040 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 4 1.111 1.186 1.268 1.359 1.459 1.571 1.697 1.839 2.000 2.333 2.833
DMU 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.137 1.446
DMU 7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 8 1.143 1.176 1.210 1.243 1.284 1.314 1.351 1.399 1.397 1.356 1.316
DMU 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.052
DMU 10 3.000 3.067 3.200 3.600 3.125 3.182 3.261 3.378 4.000 3.091 2.000
DMU 11 1.875 1.897 1.924 1.958 2.000 3.500 3.875 3.833 3.000 2.575 1.571
DMU 12 2.667 30.500 10.500 3.833 2.207 2.000 1.765 1.595 1.382 1.164 1.000
DMU 13 1.667 1.714 1.769 1.833 1.909 2.000 2.222 2.500 2.857 2.727 2.000
DMU 14 1.000 1.000 1.000 1.009 1.029 1.053 1.080 1.111 1.149 1.194 1.200
DMU 15 1.000 1.000 1.000 1.000 1.000 1.035 1.128 1.221 1.331 1.476 2.000
DMU 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.074
DMU 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMU 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.022 1.137 1.250
DMU 19 1.500 1.500 1.500 1.500 1.500 1.500 1.474 1.447 1.419 1.389 1.318
DMU 20 1.389 1.399 1.411 1.425 1.441 1.460 1.482 1.529 1.611 1.493 1.357
DMU 21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.211
DMU 22 1.000 1.000 1.000 1.000 1.000 1.000 1.079 1.174 1.278 1.354 1.400
DMU 23 1.000 1.000 1.000 1.000 1.000 1.000 1.008 1.062 1.140 1.257 1.400
DMU 24 1.000 1.000 1.000 1.008 1.068 1.145 1.246 1.359 1.407 1.454 1.500
DMU 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.069 1.159 1.247 1.333

4.2. Multiobjective Cases. The second study object represents
a production cell in a Brazilian telecommunications company
which produces fiber-optical equipment. This model, which
is similar to the previous case, had already passed through the
phases of verification and validation prior to being used for
this paper in the simulation optimization technique. For the
presented study object, the decision variables were defined
as the number of pieces of inspection equipment, types 1
and 2, denoted by (𝑥1, 𝑥2), and the number of employees,
types 1, 2, and 3, denoted by (𝑥3, 𝑥4, 𝑥5), who carry out the
activities presented in the model. The variables were defined
as integers, with a lower bound of 1 and an upper bound of 5.
Table 8 presents this information.

The optimization objective was to find the combination
of decision variables which would maximize throughput (𝑦1)
and production cell profit (𝑦2). It can be seen for the problem
in question that, considering the number of variables (5) and
their maximum variation (1–5), there are a total of 3,125 =
(55) possible scenarios for the search space for the best
configuration.

In order to meet the fundamental rule for the number of
DMUs, an L25 orthogonal array was used. An experimental
matrix was generated which is presented in Table 9. The
scenarios for the experimental matrix were simulated in
ProModel.

Thirty replications were simulated for each scenario,
which corresponded to a month of operation in the produc-
tion cell, and the data for each output variable were stored for
the superefficiency calculation. Simulation of the 25 scenarios
and their 30 replications took slightly more than 16.25
minutes. The results (minimum, maximum, and mean val-
ues) for the outputs 𝑦1 and 𝑦2 for each DMU are shown in
Table 9.

For the calculation of superefficiency related to each
DMU for the Fuzzy-DEA-BCC model, the same procedure
was employed.With the output variable results, each scenario
can be related to each DMU superefficiency value for pes-
simistic and optimistic scenarios. In the following, the sce-
narios are lumped into a geometric average.The final result is
presented in Table 10. Thus, the average can be calculated for
each DMU, making it possible to rank them in terms of
superefficiency.

Based on the superefficiency value rankings (Table 3) in
this study, DMU 2 proved to be the most efficient followed by
DMU 17. Both are highlighted in Table 10.

Once these two DMUs are identified as the most efficient,
a new interval for each decision variable can be redefined. In
doing so, the optimization search space is reduced. Table 9
shows that variable 𝑥2 presented the same value for the most
efficient DMUs, thus causing its value to be defined as 𝑥2 = 2,
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Table 5: Global matrix for geometric averages for pessimistic and optimistic scenarios.

DMU S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Average
superefficiency Ranking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 2.210 2.202 2.192 2.180 2.166 2.147 2.121 2.084 2.027 2.000 2.000 2.121 1
2 1.323 1.320 1.317 1.310 1.300 1.275 1.239 1.186 1.119 1.039 1.000 1.221 16
3 1.040 1.020 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.005 24
4 1.054 1.089 1.126 1.166 1.208 1.254 1.303 1.489 3.464 3.958 2.833 1.813 5
5 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.000 1.000 1.000 1.000 1.264 11
6 2.236 2.236 2.236 2.236 2.236 2.236 2.236 2.000 1.711 1.673 1.446 2.044 2
7 1.007 1.006 1.005 1.004 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.002 25
8 1.081 1.102 1.124 1.147 1.174 1.199 1.231 1.272 1.296 1.311 1.316 1.205 18
9 1.491 1.476 1.461 1.445 1.430 1.406 1.372 1.295 1.236 1.153 1.052 1.347 10
10 1.732 1.751 1.789 1.897 1.768 1.784 1.847 1.980 2.286 2.139 2.000 1.907 4
11 1.369 1.377 1.387 1.399 1.414 1.871 1.969 1.958 1.786 1.825 1.571 1.630 7
12 1.633 5.523 3.240 1.958 1.486 1.414 1.328 1.263 1.176 1.079 1.000 1.918 3
13 1.291 1.309 1.330 1.354 1.382 1.414 1.540 1.700 1.912 2.006 2.000 1.567 8
14 1.000 1.000 1.000 1.005 1.015 1.037 1.064 1.098 1.138 1.188 1.200 1.068 22
15 1.390 1.427 1.486 1.620 1.764 1.903 2.057 2.255 2.058 1.921 2.000 1.807 6
16 1.155 1.153 1.150 1.147 1.143 1.139 1.132 1.124 1.110 1.078 1.074 1.128 21
17 1.106 1.099 1.091 1.081 1.069 1.054 1.035 1.009 1.000 1.000 1.000 1.049 23
18 1.144 1.145 1.146 1.147 1.148 1.150 1.152 1.154 1.165 1.214 1.250 1.165 19
19 1.225 1.225 1.225 1.225 1.225 1.225 1.214 1.240 1.271 1.304 1.318 1.245 14
20 1.179 1.183 1.188 1.194 1.200 1.208 1.218 1.244 1.371 1.387 1.357 1.248 13
21 1.148 1.149 1.150 1.151 1.153 1.155 1.162 1.169 1.169 1.160 1.211 1.162 20
22 1.124 1.127 1.131 1.136 1.142 1.149 1.203 1.260 1.321 1.372 1.400 1.215 17
23 1.106 1.116 1.129 1.145 1.164 1.189 1.227 1.308 1.382 1.466 1.400 1.239 15
24 1.109 1.112 1.116 1.125 1.163 1.211 1.273 1.342 1.383 1.442 1.500 1.252 12
25 1.297 1.303 1.309 1.316 1.326 1.342 1.372 1.472 1.432 1.341 1.333 1.349 9

Table 6: Decision variables, types, and new limits for the study object.

Variable Type Lower bound Upper bound
𝑥1 Number of operators, type 1 Integer 1 2
𝑥3 Number of operators, type 3 Integer 1 2
𝑥4 Number of pieces of equipment for test, type 1 Integer 1 3
𝑥5 Number of pieces of equipment for test, type 2 Integer 1 4
𝑥6 Number of pieces of equipment for test, type 3 Integer 1 5

Table 7: Optimization results.

Decision variables Solution
New range Original range

𝑥1 2 5
𝑥2 1 3
𝑥3 1 2
𝑥4 2 2
𝑥5 1 1
𝑥6 3 5

Output variable Responses
New range Original range

𝑦1 3,986 3,987
Confidence interval for 𝑦1 (95%) (3,974–3,998) (3,977–3,997)

reducing the number of variables from five to four. The new
intervals for the other decision variables are presented in
Table 11.

By reducing the variation interval for each decision vari-
able, the search space for the optimal solution was reduced
from 3,125 to 64—a reduction of nearly 98%.

To test the efficiency and robustness of the new search
space, SimRunner was set to carry out the simulation model
optimization, aiming to maximize total cell production (𝑦1)
and total profit (𝑦2), for both the original variation range
(Table 8) and the reduced variation range (Table 11). Results
are seen in Table 12.

The responses presented by the optimizer for the decision
variables were only equal for variable 𝑥1 = 1. For the other



12 Mathematical Problems in Engineering

Table 8: Decision variables, types, and limits for the second study object.

Variable Type Lower bound Upper bound
𝑥1 Number of pieces of inspection equipment, type 1 Integer 1 5
𝑥2 Number of pieces of inspection equipment, type 2 Integer 1 5
𝑥3 Number of employees, type 1 Integer 1 5
𝑥4 Number of employees, type 2 Integer 1 5
𝑥5 Number of employees, type 3 Integer 1 5

Table 9: Experimental matrix and results.

DMU Input variables Output variables
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 minimum 𝑦1 average 𝑦1 maximum 𝑦2 minimum 𝑦2 average 𝑦2 maximum

1 1 1 1 1 1 643 863 1,083 381,096 682,082 983,067
2 1 2 2 2 2 1,295 1,395 1,495 826,452 1,097,340 1,368,228
3 1 3 3 3 3 1,188 1,381 1,574 852,107 1,080,373 1,308,639
4 1 4 4 4 4 1,235 1,399 1,563 726,952 1,091,904 1,456,857
5 1 5 5 5 5 1,148 1,403 1,658 690,053 1,088,349 1,486,646
6 2 1 2 3 4 1,064 1,286 1,508 748,800 1,007,407 1,266,015
7 2 2 3 4 5 1,219 1,383 1,547 842,802 1,067,833 1,292,864
8 2 3 4 5 1 1,175 1,391 1,607 783,439 1,081,793 1,380,148
9 2 4 5 1 2 573 868 1,163 465,318 681,706 898,094
10 2 5 1 2 3 895 1,140 1,385 515,279 896,302 1,277,326
11 3 1 3 5 2 1,153 1,404 1,655 862,630 1,095,382 1,328,135
12 3 2 4 1 3 736 847 958 425,035 660,137 895,239
13 3 3 5 2 4 1,129 1,383 1,637 804,861 1,077,000 1,349,140
14 3 4 1 3 5 894 1,167 1,440 532,523 911,184 1,289,846
15 3 5 2 4 1 1,275 1,397 1,519 840,255 1,096,732 1,353,210
16 4 1 4 2 5 1,178 1,396 1,614 704,903 1,084,938 1,464,973
17 4 2 5 3 1 1,178 1,409 1,640 710,034 1,101,006 1,491,979
18 4 3 1 4 2 1,013 1,123 1,233 516,328 871,771 1,227,214
19 4 4 2 5 3 1,215 1,385 1,555 727,103 1,071,027 1,414,953
20 4 5 3 1 4 586 828 1,070 426,589 638,185 849,782
21 5 1 5 4 3 1,264 1,406 1,548 720,561 1,093,357 1,466,152
22 5 2 1 5 4 974 1,157 1,340 582,466 888,310 1,194,154
23 5 3 2 1 5 561 829 1,097 406,997 635,928 864,860
24 5 4 3 2 1 1,109 1,301 1,493 738,318 1,014,712 1,291,106
25 5 5 4 3 2 1,214 1,379 1,544 834,734 1,068,090 1,301,447

decision variables, the optimizer arrived at different values.
In the case of the original variation range, the responses
indicated the need to hire more employees and purchase
more equipment, except for variable𝑥4. As for the solutions of
𝑦1 and 𝑦2, the results were statistically equal for a confidence
level of 95%.

Continuing the analysis, the optimizer took 38.25minutes
to execute 51 experiments before converging in the case of the
reduced range problem which is equal to approximately 80%
of the reduced experimental area. In the case of the original
variation range, the optimizer took 2.1 hours to carry out 168
experiments before converging, which is equal to about 5.3%
of the total experimental area.

As it can be seen in Figure 4 for both models tested with
the proposed optimization procedure, the output variable

responseswere statistically identical, while the time needed to
reach these results dropped considerably for reduced ranges.

5. Conclusions and Recommendations for
Future Research

This paper has proposed a method for reducing search space
for simulation optimization problems which has provided
search space reductions of roughly 98% and significant
reductions in convergence time without compromising the
response quality.

These results were reached through the proposal of using
the Fuzzy Theory along with a DEA-BCC model which
enabled scenario analysis in the face of uncertainty, which
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Table 10: Global matrix for geometric average for pessimistic and optimistic scenarios.

DMU S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Average
superefficiency Ranking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 4
2 3.803 3.661 3.512 3.360 3.203 3.043 3.006 2.915 2.758 2.700 2.792 3.159 1
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 18
4 1.019 1.022 1.024 1.028 1.036 1.055 1.168 1.085 1.051 1.021 1.000 1.046 16
5 1.008 1.010 1.012 1.016 1.067 1.285 1.432 1.547 1.591 1.674 2.200 1.349 8
6 1.281 1.278 1.269 1.258 1.248 1.238 1.228 1.219 1.209 1.200 1.191 1.238 11
7 0.805 0.808 0.811 0.811 0.810 0.811 0.814 0.815 0.813 0.812 0.812 0.811 24
8 1.270 1.271 1.271 1.271 1.271 1.271 1.271 1.271 1.271 1.271 1.271 1.271 10
9 1.016 1.015 1.014 1.013 1.012 1.010 1.009 1.009 1.009 1.009 1.009 1.011 17
10 1.030 1.046 1.066 1.087 1.108 1.130 1.153 1.176 1.189 1.188 1.188 1.124 15
11 1.952 2.000 2.069 2.178 2.353 2.691 7.030 1.683 1.665 1.647 1.431 2.427 3
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 19
13 0.977 0.982 0.982 0.983 0.984 0.984 0.985 0.986 0.987 0.987 0.988 0.984 22
14 1.652 1.614 1.574 1.535 1.495 1.455 1.414 1.316 1.213 1.126 1.086 1.407 7
15 1.539 1.555 1.566 1.582 1.614 1.649 2.709 1.953 1.854 1.655 1.578 1.750 5
16 1.448 1.461 1.481 1.500 1.496 1.493 1.494 1.493 1.491 1.491 1.490 1.485 6
17 1.694 1.704 1.719 1.739 3.999 2.856 2.873 3.015 3.138 2.808 2.009 2.505 2
18 1.106 1.114 1.123 1.132 1.142 1.152 1.164 1.169 1.173 1.176 1.176 1.148 14
19 0.847 0.858 0.868 0.877 0.887 0.900 0.902 0.919 0.961 0.971 0.975 0.906 23
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 20
21 1.313 1.316 1.318 1.318 1.315 1.316 1.318 1.322 1.337 1.352 1.400 1.330 9
22 1.123 1.126 1.138 1.150 1.164 1.179 1.195 1.213 1.232 1.240 1.240 1.182 13
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 21
24 1.235 1.231 1.227 1.224 1.220 1.216 1.213 1.210 1.207 1.205 1.205 1.218 12
25 0.750 0.753 0.756 0.755 0.757 0.757 0.757 0.758 0.758 0.758 0.758 0.756 25

Table 11: Decision variables, types, and new limits for the second study object.

Variable Type Lower bound Upper bound
𝑥1 Number of pieces of inspection equipment, type 1 Integer 1 4
𝑥3 Number of employees, type 1 Integer 2 5
𝑥4 Number of employees, type 2 Integer 2 3
𝑥5 Number of employees, type 3 Integer 2 1

Table 12: Optimization results.

Decision variables Solution
New range Original range

𝑥1 1 1
𝑥2 2 5
𝑥3 2 4
𝑥4 3 2
𝑥5 1 2

Output variable Responses
New range Original range

𝑦1 1,402 1,403
Confidence Interval
for 𝑦1 (95%) (1,395–1,409) (1,397–1,410)

𝑦2 1,103,794 1,103,595
Confidence Interval
for 𝑦2 (95%) (1,096,972–1,110,617) (1,095,465–1,111,727)

is a common reality for discrete-event simulation models,
considering that they most commonly deal with stochastic,
dynamic, and interrelated environments.

With an output variable analysis taking uncertainty into
account, the use of Fuzzy-DEA-BCC allowed an efficiency
analysis of pessimistic and optimistic scenarios.This, in turn,
enabled the ranking of the most efficient DMUs.

Upon determining the two most efficient DMUs, a new
range for each decision variable was established, permitting
the optimization software to concentrate on the region of the
greatest efficiency, according to the analysis conducted with
Fuzzy-DEA-BCC.

As a means of validating this paper’s proposal, a widely
used commercial optimizer was used to check whether the
method was indeed able to limit the search region to the area
containing the best solutions or not. In order to do so, the
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Figure 4: Results comparison with optimization of both simulation models.

optimizer ran the simulation model under both variations:
original and reduced with Fuzzy-DEA-BCC. For both study
objects, the method was able to provide a response of equal
quality from the reduced search space when both variation
ranges were compared. There was a significant reduction in
convergence time with reduced search space.

Finally, it is worth mentioning that the Taguchi arrays
proved to be practical and reliable, as they represented the
search space, exploring the maximum possible diversity of
levels present in each decision variable, which would have
been difficult using classical experimental techniques that use
two or three levels.

The possibilities for future research include

(i) utilizingGPDEA-BCC [38] which improvesDEAdis-
crimination even without a number of DMUs tomeet
Cooper, Seiford, and Tone’s rule [16];

(ii) conducting tests with continuous decision variables;

(iii) applying other arrays or strategic experiments which
substitute the necessity for orthogonal arrays;

(iv) testing themethod proposed in this paper, using other
optimizers, such as multiple comparison procedure,
optimal computing budget allocation, and nested
partitions that seek to increase the efficiency of the
optimization process.
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