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This paper proposes a new approach to identify time varying sparse systems. The proposed approach uses Zero-Attracting Least
Mean Square (ZA-LMS) algorithmwith an adaptive optimal zero attractor controller which can adapt dynamically to the sparseness
level and provide appreciable performance in all environments ranging from sparse to nonsparse conditions. The optimal zero
attractor controller is derived based on the criterion that confirms largest decrease in mean square deviation (MSD) error. A simple
update rule is also proposed to change the zero attractor controller based on the level of sparsity. It is found that, for nonsparse
system, the proposed approach converges to LMS (as ZA-LMS cannot outperform LMS when the system is nonsparse) and, for
highly sparse system, as the proposed approach is based on optimal zero attractor controller, it converges either similar to ZA-LMS
or even better than ZA-LMS (depending on the value of zero attractor controller chosen for ZA-LMS algorithm).The performance
of the proposed algorithm is better than ZA-LMS and LMS when the system is semisparse. Simulations were performed to prove
that the proposed algorithm is robust against variable sparsity level.

1. Introduction

A sparse system is characterized by an impulse response with
more number of zero and near to zero magnitude coefficients
and a few large coefficients. In other words, it is the impulse
response with large fraction of energy concentrated in a small
region. For example, in underwater acoustics, the channels
impulse has sparse structure with multipath in such a way
that most of the energy is concentrated only in small regions
[1]. Another example of sparse system is acoustic echo signal
measured in a loudspeaker enclosed microphone (LEM)
system. Here, the echo path is made of only 9–12% of
active coefficients due to the large propagation delay and it
varies with respect to the movement of objects, speakers,
temperature, and so forth [2]. Other prominent examples
of sparse systems are network echo channel [3] where only
90–100 filter coefficients have large magnitude among 1024
sequence length impulse responses and wireless multipath
channels which are made of multipath with only few active
paths [4]. The impulse response not only is sparse but also

is said to be time varying [1–4]. If the algorithms used
for identifying such systems can be made to make use of
sparseness, then an improved performance can be obtained.

Traditional adaptive filters like LeastMean Square (LMS),
Normalized LMS (NLMS), and Affine Projection Algorithms
(APA) fail to make use of sparsity level to improve their
performance [5]. Literatures reveal that several variants were
developed to make use of sparsity to improve their perfor-
mance. Some of the well-known ones are the proportionate
type algorithms and their variants [6–8], partial update [9],
𝑙
1
norm [10–12], 𝑙

0
norm [13, 14] based, and exponentiated

gradient algorithms [15]. Among these variants, 𝑙
1
norm

based algorithms are very popular due to their convex
property and they provide uniform attraction to all filter
taps [16]. They work by including an extra term called zero
attractor term into the original cost function and thus they
have improved performance in terms of faster convergence
and lower steady state mean square error (MSE) than their
conventional counterparts when the system is sparse [10, 11].
The chief advantage of ZA-LMS is that its computational
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complexity is comparatively lesser than proportionate type
adaptive filters [17], ZA-APA and ZA-NLMS algorithms, and
their variants [16] which act as a major criterion especially
when the system is long such as echo cancellation application.
However, themajor drawback of ZA-LMS is that it works well
only when the system is highly sparse and the performance
deteriorates when the sparsity level is decreased and it
becomes worse than LMS under nonsparse condition [18,
19]. Another difficulty of ZA-LMS is that the convergence
and steady state error depend on the value of zero attractor
controller [18] which motivates for a proper selection rule.

Several attempts were made to improve the performance
of ZA-LMS under nonsparse condition. One such approach
is the reweighted ZA-LMS (RZA-LMS) [10]. Here, the zero
attractor value is changed in such a way that the attraction
is applicable for zero taps only. The RZA-LMS suffers from
the difficulty of selecting an appropriate shrinkage factor
especially for time varying sparse system [16, 20]. Combina-
tional approach is found to be another alternate. In convex
combination of ZA-LMS and LMS proposed in [21], the
mixing parameter is updated in such a way that the algorithm
follows the one that provide fast convergence and lower
steady state MSE always. Computational complexity is the
major drawback of this approach.Moreover, the performance
of the algorithm depends on the zero attractor controller
which again necessitates the requirement of an optimal
zero attractor controller. Several selection rules for the zero
attractor controller were proposed for ZA-LMS but they are
not practically feasible [18, 19].

Thus, this paper proposes an alternate approach to deal
with time varying sparse systems. Here, the optimal zero
attractor controller is first found by choosing a criterion that
provides largest decrease in theMSD error from one iteration
to the other. In order to adapt to the time varying sparsity, a
simple rule for the update of the zero attractor controller is
proposed. It is found from [10] that the difference between
optimal weights and 𝑙

1
norm of filter weights becomes posi-

tive only if the system is highly sparse and it becomes negative
for nonsparse system. Therefore this is used as a metric to
update the zero attractor controller. Thus, robustness in the
context of variable sparsity is achieved and is further proved
by simulations.

The rest of the paper is organized as follows. Section 2
reviews ZA-LMS algorithm. This is followed by Section 3, in
which the adaptive zero attractor controller based ZA-LMS
is proposed. An optimal zero attractor controller based on
MSD is obtained. A practical optimal zero attractor controller
is also derived. Further, an update rule is proposed in this
section. Section 4 deals with simulations and conclusions are
provided in Section 5.

2. Review of ZA-LMS Algorithm

Consider an unknown system with input x(𝑛) = [𝑥(𝑛), 𝑥(𝑛 −
1), 𝑥(𝑛 − 2), . . . , 𝑥(𝑛 − 𝑁 + 1)]

𝑇 of length 𝑁. The desired
response 𝑑(𝑛) is modeled as a multiple linear regression
model given by 𝑑(𝑛) = w𝑇

𝑜
x(𝑛) + V(𝑛)wherew

𝑜
is the optimal

weight vector of length𝑁 that need to be estimated and V(𝑛)

is the noise source. Let 𝑦(𝑛) = w𝑇(𝑛)x(𝑛) be the estimated
output for the given input x(𝑛) and estimated weightsw(𝑛). If
𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) denotes the error signal which is obtained
as the difference between desired and estimated response, the
ZA-LMS updates the weights by the recursion given by [10]
as

w (𝑛 + 1) = w (𝑛) + 𝜇𝑒 (𝑛) x (𝑛) − 𝜌 sgn (w (𝑛)) , (1)

where 𝜇 is the step size and sgn(w(𝑛)) is the component-wise
sign function given by

sgn (𝑤 (𝑛)) =
{

{

{

𝑤 (𝑛)

|𝑤 (𝑛)|
, if 𝑤 (𝑛) ̸= 0,

0, if 𝑤 (𝑛) = 0.
(2)

From (1), it is found that the update equation consists of
three terms. The first two terms are similar to that of the
conventional LMS and the third term is the zero attractor
term which is responsible for attraction of coefficients to zero
thereby accelerating the convergence speed and 𝜌 is the zero
attractor controller which decides the strength of attraction.

Convergence analysis of ZA-LMS [18] indicates that the
zero attractor controller parameter plays a major role in
reducing the convergence and steady state error tradeoff. For
sparse system, a small value of 𝜌 lowers the steady state error
at the cost of slower convergence and if faster convergence
is required, then 𝜌 is increased but at the same time steady
state error also increases when the system is sparse. This
urges for an optimal 𝜌. Also, it is evident from [18] that ZA-
LMS cannot outperform standard LMS when the system is
nonsparse. Besides, 𝜌 should be as per the sparsity level when
the system changes from sparse to semisparse or nonsparse.
Thus, constant value of 𝜌 is not suitable especially for time
varying sparse system and robust algorithm can only be
achieved by changing the value of zero attractor controller as
per the level of sparsity. Therefore, an adaptive zero attractor
controller based ZA-LMS in order to improve its robustness
against variable sparsity level is proposed.

3. Proposed Algorithm

This section proposes an adaptive ZA-LMS algorithm. Then,
a theoretical optimal zero attractor controller is deduced
based on largest decrease in MSD. A practical optimal zero
attractor controller is obtained and a simple update rule for
the proposed algorithm is proposed.

Theproposed algorithm is based on varying zero attractor
controller. Thus, by replacing 𝜌 by a time varying function,
the update recursion of adaptive ZA-LMS becomes

w (𝑛 + 1) = w (𝑛) + 𝜇𝑒 (𝑛) x (𝑛)

− 𝜌 (𝑛 + 1) sgn (w (𝑛)) .
(3)

Here, 𝜇 is assumed to be constant in order to have stable
operation [18].
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4. Assumptions

The following are the assumptions used in this work:
(A.1) The input is assumed to be independent and identi-

cally distributed (i.i.d.) and is white with zero mean
and variance 𝜎2x .

(A.2) The noise is also i.i.d. and is assumed to be white with
zero mean and variance 𝜎2V .

(A.3) The weight error vector w̃(𝑛) is independent of the
input.

These assumptions are commonly used in analyzing all
adaptive filters [22]. Using these assumptions, the optimal
zero attractor controller is derived.

5. Optimal Zero Attractor Controller

The optimal value is based on the objective of

𝜌
𝑜
= min𝐸 {‖w̃ (𝑛 + 1)‖2 − ‖w̃ (𝑛)‖2} , (4)

where w̃(𝑛) is the weight error vector given by w̃(𝑛) = w
𝑜
−

w(𝑛). The update recursion in terms of weight error vector
can be written as

w̃ (𝑛 + 1) = w̃ (𝑛) − 𝜇𝑒 (𝑛) x (𝑛)

+ 𝜌 (𝑛 + 1) sgn (w (𝑛)) .
(5)

Squaring on both sides of (5) and if expectation is taken,
we obtain (6) after substituting 𝑒(𝑛) = w𝑇(𝑛)x(𝑛) + V(𝑛) ≡
x𝑇(𝑛)w(𝑛) + V(𝑛) as

𝐸 ‖w̃ (𝑛 + 1)‖2

= 𝐸 ‖w̃ (𝑛)‖2 + 2𝜌 (𝑛 + 1) 𝐸 [w̃𝑇 (𝑛) sgn (w (𝑛))]

− 2𝜌 (𝑛 + 1) 𝜇𝜎
2

x𝐸 [w̃
𝑇
(𝑛) sgn (w (𝑛))]

+ 𝜌
2
(𝑛 + 1) 𝐸 [sgn (w (𝑛))𝑇 sgn (w (𝑛))]

− 2𝜇𝜎
2

x𝐸 ‖w̃ (𝑛)‖
2
+ 𝜇
2
(𝑁 + 2) 𝜎

4

x𝐸 ‖w̃ (𝑛)‖
2

+ 𝜇
2
𝑁𝜎
4

x𝜎
2

V .

(6)

As 𝜇 is constant which is assumed as 0 < 𝜇 < 2/(𝑁 + 2)𝜎2x
[18, 22], the optimal zero attractor controller is obtained by
differentiating (6) with respect to 𝜌(𝑛 + 1) on both sides and
equating it to zero.Thus, the optimal zero attractor controller
is given by

𝜌
𝑜
(𝑛 + 1)

= −
𝐸 [w̃𝑇 (𝑛) sgn (w (𝑛))]

(𝐼 − 𝜇𝜎2x)
−1

𝐸 [sgn (w (𝑛))𝑇 sgn (w (𝑛))]
.

(7)

The optimal value obtained consists of nonlinear terms. In
order to find a feasible solution, let

−𝐸 [w̃𝑇 (𝑛) sgn (w (𝑛))] = 𝛽
1
(𝑛) ,

𝐸 [sgn (w (𝑛))𝑇 sgn (w (𝑛))] = 𝛽
2
(𝑛) .

(8)

The value of 𝛽
2
(𝑛) is always positive and is equal to𝑁 [10, 21].

The step size is chosen such that 𝜇 < 1/(𝑁+2)𝜎2x [18] in order
to have stability.Thus, (𝐼 − 𝜇𝜎2x)

−1

𝐸[sgn(w(𝑛))𝑇 sgn(w(𝑛))] =
𝑁. In order to find 𝛽

1
(𝑛), the filter weights are divided as

nonzero (NZ) and zero (Z) filter coefficients such that NZ ∪
Z = 𝑁 and NZ ∩ Z = 0 [10, 18, 21]. If w̃(𝑛) = w

𝑜
− w(𝑛) is

substituted in 𝛽
1
(𝑛) and if the weights are assumed to follow

Gaussian distribution, then

𝛽
1
(𝑛) = ∑

𝑖∈Z
− 𝐸 [[w

𝑜
− w
𝑖
(𝑛)]
𝑇 sgn (w (𝑛))]

+ ∑

𝑖∈NZ
− 𝐸 [[w

𝑜
− w
𝑖
(𝑛)]
𝑇 sgn (w (𝑛))] .

(9)

For 𝑖 ∈ Z, 𝐸[w
𝑜
] = 0, if Price’s Theorem is used

(𝐸[w(𝑛)] sgn(w(𝑛)) = √2𝜎2w/𝜋) then

𝛽
1
(𝑛) = ∑

𝑖∈Z

√
2𝜎
2

w𝑖
𝜋

− ∑

𝑖∈NZ
𝐸 [[w
𝑜
− w
𝑖
(𝑛)] sgn (w (𝑛))] ,

(10)

where 𝜎2w is the variance of the weights. Hence, the first term
varieswith respect to zeros of the filter coefficients and second
term varies with respect to nonzero filter coefficients. If the
number of nonzero coefficients is high then the value of 𝛽

1
(𝑛)

will be negative as more bias is obtained on nonzero terms in
ZA-LMS algorithm. On the other hand, if the number of zero
coefficients is high, then a positive value of 𝛽

1
(𝑛) is obtained

as the first term in (10) dominates the second term [10].
Thus, the rule for updating zero attractor controller term of
ZA-LMS is given by

𝜌 (𝑛 + 1) =

{{

{{

{

√2𝜎
2

w(𝑛)/𝜋

𝑁
, ∀𝛽

1
(𝑛) > 0,

0, ∀𝛽
1
(𝑛) < 0.

(11)

Since the update equation for 𝜌 includes 𝛽
1
(𝑛) which is a

nonlinear term and which involves w̃(𝑛) which is not known
in advance, time average method is adopted to find the value
of 𝛽
1
(𝑛). Thus,

𝛽
1
(𝑛) = 𝛼𝛽

1
(𝑛 − 1) + (1 − 𝛼) w̃𝑇 (𝑛) sgn (w (𝑛)) , (12)

where 𝛼 is the smoothing factor which varies as 0 < 𝛼 < 1.

6. Justification of Adaptive Rule

The update rule for the zero attractor controller must be in
such a way that the zero attractor controller works at optimal
value in case of sparse and semisparse system and to zero
in case of nonsparse system. Equation (11) shows the update
rule. It can be seen that in the case of highly sparse and
semisparse systems the value of 𝛽

1
(𝑛) is positive as the first

term in (10) is higher than the second one. The optimal zero
attractor controller is obtained as a function of variance of the
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weights. A large value of 𝜎2w is obtained if the system is highly
sparse due to the presence of large zero and small nonzero
coefficients and small value is obtained for semisparse system
as the system has more or less equal number of zero and
nonzero coefficients. On the other hand, if the nonzero taps
dominate, then 𝛽

1
(𝑛) is said to be negative as the second term

is higher than the first term.Thus, the zero attractor controller
becomes zero which is the required criterion for nonsparse
system. Thus, the proposed algorithm is found to be robust
under variable sparsity conditions.

7. Simulations

Theproposed algorithm is further tested through simulations
which are made for identification of the unknown systems.
The adaptive filter and the unknown system are assumed to
have the same lengths.The input x(𝑛) and noise V(𝑛) are both
white Gaussian source with zero mean variance unity and 𝜎2V ,
respectively, such that the SNR = 30 db. It is also assumed
that the variance of the noise source is known. The results
are averaged over 100 independent runs. Normalized MSD
is used to evaluate the performance of the algorithm. The
Normalized MSD is defined as 10 log

10
(‖w
𝑜
− w‖
2
/‖w
𝑜
‖
2
).

In the first experiment, an unknown system with 32
coefficients is taken. In order to evaluate the performance
of the proposed algorithm, the performance of LMS [5],
ZA-LMS [10] is also simulated with our proposed adaptive
ZA-LMS algorithm. All the three conditions, namely, sparse,
semisparse, and nonsparse, are taken for analysis. The sparse
system has one nonzero coefficient and the position is chosen
randomly. The semisparse system has equal number of zero
and nonzero filter coefficients and the nonsparse system has
32 nonzero filter coefficients. The step sizes is chosen as 𝜇 =
0.01 for all the algorithms and 𝜌 is set as 7 × 10−5 (as per (42)
of [18]) for ZA-LMS algorithm and 𝛼 = 0.99 for adaptive ZA-
LMS algorithm.The simulation results are shown in Figure 1.

For the first 3000 iterations, the system is said to be
sparse and, for the next 3000 iterations, the system changes
to semisparse and for the last 3000 iterations the nonsparse
condition is applied.When the system is highly sparse during
the first 3000 iterations, adaptive ZA-LMS performs better
than standard LMS and ZA-LMS with constant 𝜌 whereas
when the system is semisparse, adaptive ZA-LMS maintains
the best performance with lesser steady state error among
the three filters. After 6000 iterations, when the system
is nonsparse, the performance of ZA-LMS decreases while
the proposed adaptive ZA-LMS maintains the performance
comparable with the standard LMS. The same experiment is
repeated for a step size of 𝜇 = 0.03 for all the algorithms and
𝜌 = 6 × 10

−4 for ZA-LMS and similar performance curve is
plotted in Figure 2.

Several interesting findings can be observed from Figures
1 and 2. First of all, in all different environmental conditions,
the proposed algorithm gives lowest steady state error with
faster convergence which confirms the robustness of the
algorithm against variable sparsity conditions. This is an
expected occurrence since, as per (11), 𝜌 is changed based
on 𝛽
1
(𝑛). If the present weights result in positive value of
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𝛽
1
(𝑛), then the optimal value of 𝜌 is obtained from the

variance of weights. On the other hand, if the system changes
to nonsparse, then, 𝛽

1
(𝑛) is negative; thus (11) makes the

algorithm work with 𝜌 ≅ 0 so as to have convergence similar
to LMS. Thus, it is found that our proposed algorithm gives
lower steady state error than LMS andZA-LMS in both sparse
and semisparse conditions that are seen in Figures 1 and 2.
Secondly, as per (4), the proposed algorithm should behave
similar to LMS algorithmunder nonsparse condition and this
is satisfied in Figures 1 and 2.
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In order to prove that the proposed algorithm works
with an optimal value of zero attractor controller, the second
experiment is conducted and the results are plotted in Fig-
ure 3. Here, the system and the parameters chosen are similar
to the ZA-LMS algorithm as discussed in previous literatures
[10, 18]. The unknown system has 16 filter coefficients with
one nonzero coefficient for a sparse system and 10 for a
semisparse system. The nonsparse system has all nonzero
filter coefficients. The step size is chosen as 𝜇 = 0.05 and
𝜌 = 5 × 10

−4 [10, 18] and all other parameters are the same
as the first experiment.

Thus, from Figure 3, it is evident that the proposed
adaptive ZA-LMS under sparse condition adapts itself and
converges to ZA-LMS when it is operated under optimal
condition and to LMS under semisparse and nonsparse
condition. Thus, the effectiveness of (11) in selecting an
optimal zero attractor controller under all conditions of
sparsity ranging from sparse to nonsparse is proved.

Another interesting way to analyze the performance of
the proposed algorithm is to plot the time evolution of 𝜌
for the above three environmental conditions with different
sparsity levels. For this, 𝐸[𝜌(𝑛)] versus samples and 𝜎2w versus
samples are plotted as shown in Figures 4 and 5 for the first
experiment. From Figures 4 and 5 it could be observed that
𝐸[𝜌(𝑛)] and 𝜎2w converge to 0 when the system is nonsparse
as predicted. This is because as ZA-LMS cannot outperform
LMS during nonsparse condition any value of 𝜌 yields higher
steady state error. In case of highly sparse and semisparse
systems 𝐸[𝜌(𝑛)] and 𝜎2w converge to an optimal value with
higher value for highly sparse system and to an intermediate
value for semisparse system, respectively.

Next, the proposed approach is tested to evaluate the
performance of the proposed approach for different values
of SNR. For this, the SNRs 10 db and 20 dB are chosen and
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the MSD analysis is made as shown in Figures 6 and 7. As
expected, the proposed algorithm is robust against different
SNR also.

The next experiment is done to evaluate the performance
of the proposed approach for echo cancellation application
with 512 coefficients [3]. The sparse system consists of 40
nonzero filter coefficients as it is one of the real time situation
that prevails in echo cancellation application [3] and the
semisparse system is made of equal number of nonzero and
zero filter taps. The nonsparse system is made of 512 nonzero
filter coefficients.The value of 𝜌, 𝜇 and SNR are chosen to be
1 × 10

−6 (criterion 1 from [18] gives 𝜌 < 5 × 10−6), 0.001,
and 30 dB, respectively. Thus as seen from Figure 8, when
the system is highly sparse, the performance of the proposed
algorithm is similar to ZA-LMS as it is operated based on cri-
terion 1 of [18]. However criterion 1 specifies only the upper
limit but there is no procedure to select the optimal value
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which can be found only by trial and error. Moreover in case
of semisparse and nonsparse systems, the performance of
ZA-LMS deteriorates as constant value of zero attractor
controller is used. These disadvantages are eliminated in our
proposed algorithm where the algorithm adapts itself to the
optimal value at all level of sparsity thus claiming to be
suitable for echo cancellation applicationwhich ismore prone
to time varying sparsity.

Figure 9 evaluates the tracking capability of the proposed
algorithms. For the first 3000 samples, the highly sparse sys-
temof the first experiment is taken and the system is suddenly
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Figure 8: Normalized MSD analysis of proposed algorithm for a
512 length filter coefficients under different sparsity conditions with
SNR = 30 dB.
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Figure 9: Tracking analysis of proposed algorithm under different
sparse systems with SNR = 30 db.

changed from 1 zero to 3 zero filter taps after 3000 samples and
to 5 zero taps after 6000 samples. It is found that the algorithm
also has good tracking capability.

8. Conclusions

An adaptive ZA-LMS is proposed in this paper.The proposed
algorithm has an adaptive zero attractor controller term
which is changed based on the characteristics of the filter
coefficients. A simple update rule is also proposed which
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makes the algorithm work with optimal zero attractor con-
troller depending on the number of zero and nonzero filter
coefficients.Thus, the algorithm provides better performance
than LMS in highly sparse system by exploiting the sparse
nature and behaves like LMS under nonsparse condition
thus providing robustness against variable sparsity which is
proved through simulations in the context of identification
of an unknown system.
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