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This study presents a technique for detecting fatigue cracks based on a hybrid sensormonitoring system consisting of a combination
of intelligent coating monitoring (ICM) and piezoelectric transducer (PZT) sensors. An experimental procedure using this hybrid
sensor system was designed to monitor the cracks generated by fatigue testing in plate structures. A probability of detection (POD)
model that quantifies the reliability of damage detection for a specific sensor or the nondestructive testing (NDT) method was
used to evaluate the weight factor for the ICM and PZT sensors. To estimate the uncertainty of model parameters in this study, the
Bayesian method was employed. Realistic data from fatigue testing was used to validate the overall method, and the results show
that the novel damage detection technique using a hybrid sensor can quantify fatigue cracks more accurately than results obtained
by conventional sensor methods.

1. Introduction

Fatigue damage for complex structures has become a crucial
subject in the study of structural safety, and it is an important
influencing factor on the costs of life-cycle management in
civil, aviation,marine, and power generation structures [1–3].
Structural healthmonitoring (SHM) is an effectivemethod of
diagnosing fatigue damage. In order to detect fatigue damage,
the following NDT methods have been applied in SHM:
ultrasonic inspection, magnetic particle inspection, electro-
magnetic inspection, radiographic inspection, and visual
inspection [4–6]. Devices for traditional NDT methods are
usually complex and expensive. In recent years, several new
monitoring methods have been proposed, including Lamb-
wave-based PZT sensors [7], fibre Bragg gratings (FBGs) [8],
and intelligent coating monitoring (ICM) [9, 10].

In SHMsystems, a single sensor or one indicator is usually
applied to diagnose the damage in structures. Different sen-
sors offer different features in damage detection. For example,
the use of Lamb waves with PZT sensors has drawn extensive
attention from the SHM community. Many studies have dealt
with the practical applications of PZTwafers in specific target
systems, for example, plates and beam structures [11, 12].

FBGs are immune to electromagnetic interference (EMI) and
loop influences.They are lightweight and have small physical
dimensions, which suits their need to be embedded into, or
attached to, a structure [8]. Strain and temperature have so far
been the dominating measurements of interest for FBG [13].
Acoustic emission techniques (AET) have a great potential in
structural health monitoring. For example, AET can detect
cracks and wire breaks [14].

However, different sensor techniques applied in SHM
systems suffer from their physical limitations, such as oper-
ation requirement and measurement range [15–17]. The use
of hybrid sensors is a new technique that combines different
sensors. This technique overcomes the limitations of every
single sensor technique and can provide accurate and reliable
structural health monitoring results. A hybrid sensor system
was developed to detect the elastic waves launched by a PZT
actuator using a high-speed and high-accuracy FBG sensor
[18]. The hybrid sensor system with simplified devices can
detect the debonding and delamination at the interfaces of
the laminate in bonded structures with high accuracy. A
hybrid PZT/fibre optic scheme was proposed that used a PZT
to generate a controlled excitation to a structure and fibre
optic sensors to capture the response of the corresponding
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structure [19]. Hybrid sensor systems have been applied to
aerospace vehicles and structures for quick nondestructive
evaluation and long-term health monitoring. The reliability
of the monitoring system is enhanced as the hybrid sensor
system combines the information obtained from different
sensors. Furthermore, comparison of time series obtained by
recording different physical quantities resulted in a drastic
improvement of reliability and lowered the detection thresh-
old of deterioration [14].

ICM is a type of intelligent material that adheres to the
surface of a structure [20]. It can directly indicate the damage
in a structure based on the attached feature of coating and
has no effect on the integrity of the structure. One of the
major advantages for ICM is that it can detect damage in
locations with poor accessibility (e.g., inside the fuel tank
of an aircraft). Numerous applications in difficult-to-access
locations on commercial and military aircraft have validated
the effectiveness and reliability of ICM for structural health
monitoring [21]. Nevertheless, there are also some limitations
for ICM-based damage detection; it can only be applied on
the condition that the damage location has been evaluated
beforehand. Moreover, it can only offer an approximation
of crack size due to its sensor configuration. The problems
of missing detection and false alarms also widely restrict its
application [21].

Unlike ICM, a Lamb-wave-based PZT sensor can locate
and quantify structural damage. Studies show that Lamb-
wave-based PZT sensor detection has great potential in
SHM systems [22–24]. The propagation of Lamb waves in
a structure results in the mode conversion of wave energy
into different modes, and the changes in Lamb wave signals
can be used to interrogate structural integrity [25, 26]. In
particular, it is very suitable to detect material discontinuity
on components with a simple geometry, such as a plate with a
centre hole. With a designed PZT sensor layout, the location
and severity of the damage can be estimated by specific
algorithms. Many advanced signal-processing techniques
have been used to process Lamb wave data, such as wavelet
and Hilbert transforms [27, 28]. The remaining challenge
for the Lamb-wave-based PZT sensor is how to accurately
locate and quantify damage [29, 30]. In this study, a novel
hybrid sensor system using both ICM and PZT is proposed
to detect cracks for structural health monitoring. A crack
quantification model using signal features and POD results
from both ICM and PZT sensors is proposed to perform
damage detection. The Bayesian method was employed to
evaluate uncertainties for the hybrid sensor damage detection
method.

The paper is organized as follows. First, a brief intro-
duction about the ICM and PZT sensors is presented,
and the POD method for each sensor is established. Then
the Bayesian method is proposed to estimate the POD
model parameters. Then, a crack quantification model using
damage-sensitive features from both ICM and PZT sensors
is developed to perform damage detection. Finally, a hybrid
sensor monitoring experiment is included and the exper-
imental data are applied to verify the effectiveness of the
hybrid sensor monitoring strategy.

2. Methodology Development

In this study, a novel hybrid sensor system using both
ICM and PZT is proposed to detect cracks for structural
health monitoring. The POD concept is used to quantify
the reliability of damage detection using ICM and PZT
methods separately. After that, the weight factor is proposed
to represent the reliability of detection based on POD results
from both sensor techniques. A crack quantification model
using signal features from both ICM and PZT sensors is
proposed to perform damage detection based on the weight
factor. Ideally, a large amount of experimental data is desired
for an accurate and reliable POD model. However, the field
structural health monitoring data in real-time is sparse for
most of the engineering cases. In order to establish a reliable
and comprehensive crack quantification model in view of
sparse data, the Bayesian method is employed to estimate
POD model parameters. An experimental procedure of the
hybrid sensor is designed to validate the overall method.
The overall flowchart of the proposed damage detection
technique using a hybrid sensor is shown in Figure 1.

2.1. Intelligent Coating Sensor. The intelligent coating mon-
itoring (ICM) sensor is a new functional gradient material
characterized by a thin-film material, which when applied
to a structure can directly detect any existing damage in
the structure by sensing layers of resistance in the coating
[10]. The intelligent coating sensor consists of three layers: a
driving layer, a sensing layer, and a protective layer [20, 21].
The driving layer is made up of insulating materials that play
two roles: (1) a crack will appear on the driving layer when the
substrate is damaged, and the crack will split the sensing layer
at the same time, and (2) the highly insulated driving layer can
separate the substrate and the sensing layer.The sensing layer
is made up of a conductive material. As cracks appear in the
substrate, the resistance value of the sensing layer increases.
The protective layer is used to protect the internal sensing
layer. The structure of intelligent coating sensor is shown in
Figure 2.

A crack is indicated when the resistance of the coated
area is larger than a predefined threshold value. ICM-based
damage detection can only be applied when the damage
location has been previously identified. Formost ICM-related
damage detection research, changes in the features of the
coating material are used to reveal the existence of damage
[9]; very little research has been performed on crack size
quantification using ICM.

2.2. Lamb Wave Data for the PZT Sensor. Lamb-wave-based
PZT sensors have shown great potential in nondestructive
evaluations and structural health monitoring systems. Lamb
waves allow for the evaluation of large areas in a short
time period for both isotropic and anisotropic materials [31].
The mechanism for Lamb wave damage quantification is to
identify discontinuities in the wave propagation paths that
alter the characteristics of transmitted/deflected waves [32].
Compared with the 𝐴

0
mode, the fundamental symmetrical

mode (𝑆
0
) of Lamb waves can detect the through-thickness
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Figure 1: The overall diagram of the POD model-based hybrid sensor monitoring method.
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Figure 2: The structure of the ICM sensor.

cracks more accurately [24, 33–35]. The first wave package of
the 𝑆
0
mode is chosen to extract damage-sensitive features

from the data.The group velocity is verified in an undamaged
specimen by measuring the time of flight (ToF) between
two sensors with a known distance. The signal envelope is
calculated using the Hilbert transform. The calculated time
window is the time duration between 𝑇start and 𝑇end; the two
terms are given, respectively, as follows:

𝑇start = 𝑇
1
+ ToF −

1

2
𝑇
0
, (1)

𝑇end = 𝑇
1
+ ToF +

1

2
𝑇
0
, (2)

where 𝑇
1
represents wave excitation time of an actuator, ToF

is the time of flight from an actuator to a receiver, and 𝑇
0
is

the period of excitation wave envelope. The time window is
illustrated in Figure 3.
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Figure 3: Schematic illustration for the time window calculation.

As mentioned in [36], a single feature is not sufficient
to develop the crack quantification model using specimens
with the same geometry and configuration due to the inter-
specimen variability. In this study, two features of Lamb wave
data are proposed to quantify the damage; namely, signal
normalized amplitude and signal phase change based on
the following hypothesis. The wave amplitude reflects the
energy retained after transmission over a discontinuity. A
large discontinuity is expected to disperse more amplitude
of the wave. The phase change due to a change of traveling
path and distance of the wave is affected by different dis-
continuities, that is, different crack sizes. Based on the two



4 Mathematical Problems in Engineering

damage-sensitive features, the crack quantificationmodel can
be illustrated as

𝑎̂ = 𝜑
0
+ 𝜑
1
𝑁 + 𝜑

2
𝑃 + 𝜑
3
𝑁 ⋅ 𝑃, (3)

where 𝑎̂ represents the predicted crack size,𝑁 represents the
normalized amplitude, 𝑃 represents the phase change, and
𝜑
𝑖
, 𝑖 = 0, 1, 2, 3, are fitting parameters.
The ICM sensor technique indicates the existence of

cracks in structures based directly on a structure’s effect on
the attached coating. On the other hand, a PZT sensor eval-
uates a crack size based on changes of Lamb wave signals. In
order to combine the two sensors, a weight factor is proposed
to represent the reliability of detection based on the POD
results from both sensor techniques. A crack quantification
model using signal features from both is proposed to perform
damage detection based on the weight factor.

2.3. POD Modelling. The POD is a rational way to assess the
performance of the detection reliability of a given inspection
technique. There are two methods to produce POD curves,
which are functions of flaw size [37, 38]. First, NDT results
were only recorded to indicate whether the flaw was detected
or not. This type of data is called Hit/Miss data. This way of
recording data is appropriate for some NDT methods (e.g.,
penetrant testing ormagnetic particle testing); however, there
is more information in the NDT response in many NDT
systems (e.g., peak voltage in eddy current NDT and the
signal amplitude in ultrasonic NDT). Since the NDT signal
response can be interpreted as a perceived flaw size or defect
severity, the data is called signal response data. For the ICM
method, the measured data belong to the Hit/Miss data,
while the measured data of the PZT sensor belong to signal
response data. This study establishes POD models for ICM
and PZT sensors.

2.3.1. Hit/Miss Data for ICM. The ICM method only records
the resistance of layer sensing, assuming thatwhen a recorded
resistance value is larger than a predefined threshold, a
crack is detected. However, the accuracy of measurements is
questionable due to the uncertainties associated with sensor
manufacturing, specimen properties, and human factor. The
PODmodel of ICMwas established to quantify the reliability
of the ICM method when used to detect the specified size of
a crack.

The experimental data of ICM only records whether a
crack has or has not been reported.Thus, the PODmodelling
forHit/Miss datawas adopted for ICM. ForHit/Miss data, the
log-odd model [39], lognormal model [40], and exponential
model [41, 42] are commonly used. Considering this factor,
the modified log-odd POD model is expressed as

POD (𝑎) =
exp (𝛾

1
+ 𝛾
2
ln (𝑎 − 𝑎th))

1 + exp (𝛾
1
+ 𝛾
2
ln (𝑎 − 𝑎th))

, (4)

where 𝛾
1
and 𝛾
2
are the fitting parameters, 𝑎 is the actual crack

size, and 𝑎th is the minimum crack size detected (for the ICM
sensors used in this study, the width was 0.5mm). The ICM
sensor gave an alarm when a crack propagated through the

sensor.Therefore, the theoretic minimum crack size detected
by the intelligent coating sensor was set to 0.5mm.

2.3.2. Signal Response Data for the PZT Sensor. Generally,
there are two configurations for PZT sensors, namely, pulse-
echo configuration and pitch-catch configuration [36]. The
pitch-catch configuration was chosen in this study. In the
pitch-catch configuration, the actuator and the receiver are
placed across the potential damage region. When a crack
exists in the potential damage region, the discontinuities
in the wave propagation paths will alter the characteristics
of the transmitted/deflected waves. Two signal features of
Lamb waves are extracted in this study (normalized ampli-
tude and phase change). Based on the changes of the two
signal features, a data-driven crack quantification model was
established; therefore, the measurement data of Lamb wave
analysis are regarded as signal response data.

The POD model for signal response data can be derived
from the correlation of the predicted crack size 𝑎̂ and the
actual crack size 𝑎. It has been reported that ln 𝑎 and ln 𝑎̂ are
usually log linearly correlated through the following equation
[43, 44]:

ln 𝑎̂ = 𝛼 + 𝛽 ln 𝑎 + 𝜀, (5)

where 𝛼 and 𝛽 are fitting parameters and 𝜀 is a normal
random variable with zero mean and standard deviation 𝜎

𝜀
.

A predefined term 𝑎̂th is used to represent the detection
threshold, which is usually determined by the measured
noises and physical limits of the measuring devices.

This detection threshold affects the minimum detectable
size and the probability of false positive detection [45, 46].
The crack is considered to be detected when the reported
value 𝑎̂ is larger than the threshold value 𝑎̂th. The probability
of detection can then be expressed as

POD (𝑎) = Pr (𝛼 + 𝛽 ln 𝑎 + 𝜀 > ln 𝑎̂th)

= Φ(
ln 𝑎 − (ln 𝑎̂th − 𝛼) /𝛽

𝜎
𝜀
/𝛽

) ,

(6)

where Pr(⋅) represents the probability of event (⋅) and Φ(⋅)

represents the standard normal cumulative distribution func-
tion.

Ideally, a large amount of experimental data is desired
for an accurate and reliable POD model. However, the field
structural health monitoring data in real-time was sparse for
most of the engineering cases. In order to establish a reliable
and comprehensive crack quantification model in view of the
sparse data, the Bayesian method was employed to estimate
the POD model parameters.

2.4. Bayesian Method. Conventional crack quantification
methods are based on existing knowledge about the exper-
imental data, while the sparse existing knowledge is not
sufficient to fit the parameters of themodel.The uncertainties
of many factors may cause errors in existing knowledge. For
many engineering problems, usage monitoring or inspection
data are usually available at a regular time interval in
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either SHM systems or nondestructive inspections. As new
information is gathered, it can be used to update the initial
estimation of the quantification model and POD model. The
critical issue is how to combine historical data with new data.
The Bayesian method is a method of statistical inference in
which Bayes’ theorem is used to update the probability for a
hypothesis.

Consider a quantification model 𝐹(X;Y) to quantify the
variable 𝑑, where X is an uncertain parameter vector that
needs to be updated by the Bayesian method and Y is
an independent variable vector. In an ideal condition, one
obtains 𝑑 = 𝐹(X;Y). Due to the natural uncertainties, an
error 𝑒 needs to be included to describe the quantification
model.

Using the Bayesian method to incorporate the error 𝑒, a
prior distribution 𝑝(X | 𝐹) and likelihood function 𝑝(𝑑 |

X, 𝐹) are used to deduce the posterior distribution

𝑝 (X | 𝑑, 𝐹) =
𝑝 (X | 𝐹) 𝑝 (𝑑 | X, 𝐹)

𝑝 (𝑑 | 𝐹)
. (7)

The model error has intrinsic uncertainty: modelling
uncertainty and measurement uncertainty for the probabilis-
tic modelling. For the purpose of illustration, themodel error
𝑒 is assumed to be a zero-mean normal variable with standard
deviations of 𝜎

𝑒
[47]:

𝑝 (𝑑 | X) =
1

√2𝜋𝜎2
𝑒

exp{

− [𝑑 − 𝐹 (𝑋; 𝑌)
2
]

2𝜎2
𝑒

} . (8)

2.4.1. Noninformation Prior. If no information is known
about the value of a parameter, then a noninformative prior
is used. The expression for noninformation prior is

𝑝 (X, 𝜎
𝑒
| 𝑑, 𝐹)

∝
1

𝜎
𝑒

𝑛

∏

𝑖=1

1

√2𝜋𝜎2
𝑒

exp{

− [𝑑
𝑖
− 𝐹
𝑖
(X; 𝑌)

2
]

2𝜎2
𝑒

} ,

(9)

where 𝑑
𝑖
and 𝐹
𝑖
are the 𝑖th real testing data and predicted data

and 𝑛 is the total number of measurements.

2.4.2. Informative Prior. Theprior distribution gives numeri-
cal information that is crucial to the estimation of the model.
This would be a traditional informative prior, which might
come from a literature review or explicitly from an earlier
data analysis. With prior information andmeasured data, the
posterior distribution of (X, 𝜎

𝑒
) reads

𝑝 (X, 𝜎
𝑒
| 𝑑, 𝐹) ∝ 𝑝

0
(X, 𝜎
𝑒
| 𝑑, 𝐹)

⋅

𝑛

∏

𝑖=1

1

√2𝜋𝜎2
𝑒

exp{

− [𝑑
𝑖
− 𝐹
𝑖 (𝑋; 𝑌)

2
]

2𝜎2
𝑒

} .

(10)

For the prior information 𝑝
0
(X, 𝜎
𝑒

| 𝑑, 𝐹), a maximum
likelihood estimator can be used to fit, and X is an indepen-
dent multivariate normal distribution:

𝑝
0
(X, 𝜎
𝑒
| 𝑑, 𝐹) =

1

2𝜋√
󵄨󵄨󵄨󵄨Σ0

󵄨󵄨󵄨󵄨

⋅ exp {−
1

2
[(X, 𝜎

𝑒
) − 𝜇
0
] Σ
−1

0
[(X, 𝜎

𝑒
) − 𝜇
0
]
𝑇
} ,

(11)

where 𝜇
0
is a mean vector and Σ

0
is a covariance matrix for

the estimated vector.

2.5. Hybrid Sensor Monitoring Method. With a predefined
threshold, ICM can indicate a crack with a specified size that
exists in the substrate. Based on signal response data, the PZT
sensor can predict the crack size bymeasuring signal features.
The POD concept is used to quantify the reliability of damage
detection using the ICM and PZT methods separately. In
order to incorporate the ICM and PZT sensors data, a weight
factor is proposed to represent the reliability of detection
based on POD results from both sensor techniques. A crack
quantification model using signal features from the ICM and
PZT sensors is proposed to perform damage detection based
on the weight factor

𝑎 = 𝜉
1
𝑎
1
+ 𝜉
2
𝑎
2
, (12)

where 𝑎
1
is the crack size reported by the ICM, 𝑎

2
is the crack

size predicted by the PZT sensor, and 𝜉
1
and 𝜉

2
are weight

factors calculated by POD models:

𝜉
1
=

POD (ICM)

POD (ICM) + POD (PZT sensor)
,

𝜉
2
=

POD(PZT sensor)
POD (ICM) + POD (PZT sensor)

.

(13)

3. Hybrid Sensor Damage
Detection Experiment

In order to validate the effectiveness of the proposed damage
detection method by a hybrid sensor, an experiment with
naturally generated fatigue crack was designed. Both ICM
and PZT sensors were used to monitor the crack propagation
produced by cyclic fatigue loading.

3.1. Specimen. In this study, the material of specimen was
Al 7050-T6, and its density, elasticity modulus, and Poisson
ratio were 2.83 g/cm3, 71.7 GPa, and 0.33, respectively. The
geometry of the specimen was 600 × 300 × 2mm with a
10mm through-hole in the centre. Parallel to the shorter side
of the specimen, on each side of the hole, a 3mm notch
was introduced using electrical discharge machining (EDM).
Figure 4 provides a schematic of the specimen.

3.2. Sensor Layout. Both the ICM and PZT sensors were
used on the specimen to build the hybrid sensor network for
damage detection using combined damage-sensitive features.
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Table 1: Actual crack sizes when 16 ICM sensor alarms are activated.

Number 1 2 3 4 5 6 7 8
Crack size (mm) 5.332 5.523 5.713 6.501 7.144 9.104 10.137 11.400
Number 9 10 11 12 13 14 15 16
Crack size (mm) 14.15 16.106 17.017 17.541 19.024 20.322 21.425 22.174

Thickness is 2mm

Φ10mm

300mm

600mm

Fabricate a 3mm notch by EDM

Figure 4: Specimen schematic.

The ICM sensor was applied on front side of the specimen,
while the back side was monitored by the PZT sensor.

ICM only reveals the existence of a crack. Its accuracy
is dependent on many factors, such as the thickness of
the specimen and the preset threshold of resistance value.
In order to detect different crack sizes, 16 ICM sensors
were uniformly installed with a centre-to-centre distance
of 1.4mm. The first ICM sensor was placed next to the
EDM notch, and the layout of the ICM sensor is shown in
Figure 5(a).

The PZT sensor network design is critical for Lamb-
wave-based damage detection. In general, the strategy of
sensor network for the Lamb wave method can be classified
into two categories: pulse-echo configuration and pitch-catch
configuration [7]. For pulse-echo configuration, the actuators
and the receivers need to be placed on one side of the test
area. This configuration is not suitable for remote detection
of damage due to the superposition by reflection signals of
boundary. The actuators and the receivers were therefore
placed on both sides of the test area in the pitch-catch
configuration. Since less-reflected signals of boundaries are
superimposed, the pitch-catch configuration provides more
sensitivity to detect cracks in remote areas. Therefore, the
pitch-catch configuration was used in this study, and the
layout of the PZT sensors is shown in Figure 5(b).

3.3. Experiment Process. The overall experimental setup of
the hybrid sensor consists of three parts: the hybrid sensor
monitoring system, the hydraulic fatigue testing system, and
the data acquisition and process system. The experimental
flowchart is shown in Figure 6.

The hybrid sensor monitoring system contains the ICM
system and PZT sensor monitoring system. The hydraulic
fatigue testing system includes the MTS testing machine,
the MTS control system, a hydraulic clamping device, and a
microscope. The microscope was used to measure the crack

surface length, and, in this study, the average value of crack
sizemeasured bymicroscopewas regarded as the actual crack
size. The data acquisition and process system was applied to
acquire the measurements, which include Lamb wave data
of the PZT sensors and the resistance values of ICM. At the
same time, crack sizes and their corresponding fatigue cycles
were recorded as well. Figure 7 shows the experimental test
equipment used.

A hydraulic fatigue machine was used to generate cyclic
loads. Before crack initiation, the maximum stress was set to
90MPa. When a crack appeared, the maximum stress was
reduced to 75MPa. The cycling frequency was 5Hz, and the
stress ratio was 0.1.

Existing literature has shown that when the product of
frequency and plate thickness is 0.32MHz mm, the group
velocity of the 𝑆

0
mode for Lamb wave is almost a constant

with slight dispersion [48]. Since the thickness of the speci-
men was 2mm, the centre frequency was set to 0.16MHz in
this study. AHamming-windowed sinusoidal tone burst with
3.5 cycles was used as the excitation signal. Baseline signals
(without the presence of damage) and signals with damage
were obtained using this configuration.The group velocity of
𝑆
0
mode used in this study was calculated as 5,252m/s [31].

4. Crack Size Quantification Using
the Hybrid Sensor Method

4.1. POD Modelling for ICM. In this study, 16 ICM sensors
were installed at each side of an EDM notch as illustrated
in Figure 5(a). When an ICM sensor alarm was activated, it
indicated that a crack had propagated through the sensor. In
order to report cracks with different sizes, ICM sensors were
uniformly installed 1.4mm between the centres of sensors.
The ICM sensors and the actual crack size for 16 sensors are
shown in Table 1. When the ICM sensor alarm was activated,
the crack increment was equal to the real detected crack size
minus the distance between the EDM notch and sensor’s
location. The crack increments of each ICM sensor were
calculated using the same procedure in order to formulate
the PODmodel.The ICM sensor could only indicate whether
a crack did or did not exist in the substrate. Theoretically,
an ICM alarm can report the occurrence of a constant crack
increment due to the ICM sensor layout design of this study.

For ICM, no historical data is available for POD mod-
elling. In order to establish a POD model for ICM, as
mentioned above, the nonprior Bayesian method was used.
Data of ten sensors were used to estimate the POD model
for ICM by the Bayesian method, as expressed in (14). As
illustrated in Figure 8, when the crack size was larger than
8mm, almost all of the cracks can be detected by ICM.
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300mm

600mm

(a)

Actuator
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300mm
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Figure 5: Sensors layout on specimen. (a) ICM in front side. (b) PZT sensors in back side.
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However, the POD is only 0.4 when the crack size is 2mm.
It can be seen from the results that the missing detection is a
main problem in ICM system. Consider

POD (𝑎) =
exp (−1.7953 + 2.9205 ln (𝑎 − 0.5))

1 + exp (−1.7953 + 2.9205 ln (𝑎 − 0.5))
. (14)

In order to formulate an accurate and reliable POD
model, a large amount of experimental data is desired;
however, in actual engineering cases, the experimental data
for ICM is sparse.When newmeasurements are included, the
PODmodel for ICM can be updated by the Bayesianmethod.

4.2. POD Modelling for a PZT Sensor

4.2.1. Information from a Previous Study. In order to establish
a reliable and comprehensive PODmodel, experimental data
from a previous study was employed as prior information.
The data from hybrid sensor damage detection experiments
was used as additional information to reduce the uncertain-
ties from different sensor techniques due to the Bayesian
method.

In a previous study, the in situ Lamb wave data from
fatigue testing on an actual lap-joint component were
obtained [36]. PZT sensors were employed to perform NDT
during fatigue cyclical loading. The two signal features of
Lamb wave (normalized amplitude and phase change) were
extracted in order to quantify the crack. The crack initiation
and propagation were monitored by optical microscope with
a Charge Coupled Device (CCD) camera during the fatigue
testing process. The details of the fatigue test can be found
in [36]; the data of five specimens were used as prior
information to establish the crack size quantification model
and POD model.

The signal features of Lamb wave (normalized amplitude
and phase change) in [36] were used to establish a crack
quantification model, and this model was regarded as prior
information. The least-square-fit method was used to esti-
mate the fitting parameters in crack quantificationmodel (see
(3)):

𝑎̂ = 7.9846 − 7.2906𝑁 − 2.143𝑃 + 7.8598𝑁 ⋅ 𝑃, (15)

where 𝑁, 𝑃, and 𝑎̂ have the same physical definitions as in
(3).
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Figure 8: The results of POD models for ICM with nonprior
information.

4.2.2. POD Model Parameter Updating Using the Bayesian
Method. All 13 Lamb wave measurements were obtained
from the hybrid sensor damage detection experiment
described in Section 3 (illustrated in Figure 9 with the
scattering in the data by error bars).

For each point illustrated in Figure 9, the 𝑆
0
wave package

of the Lamb wave had been extracted according to (1)-(2), as
shown in Figure 10.

The same signal features (normalized amplitude and
phase change) of Lamb waves recorded in the plate fatigue
experiment were also used here, as shown in Figure 11.

The crack quantification model (see (15)) based on the
previous study was used to predict the experimental data of
the Lamb waves obtained in this study. The actual crack size
and the predicted crack size based on (15) are illustrated in
Figure 12(a). The results demonstrated in Figure 12(a) show
that the crack quantification model obtained from previous
study could not be directly applied to new measurement
data.The poor performance of the crack quantificationmodel
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Figure 10:The 𝑆
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would yield an inaccurate POD model. In order to establish
a reliable and comprehensive POD model, the Bayesian
method was employed to reduce the uncertainties caused by
factors such as different specimen geometry, different fatigue
testing environment, and human factors. First, five new
measurements were used to update the crack quantification
model and results are shown in Figure 12(b). Figure 12(c)
demonstrates the prediction results when parameters were
updated by ten measurements. As a result, as shown in
Figure 12(c), the performance of the crack quantification
model was significantly improved.
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Figure 11: The crack size and damage-sensitive features of Lamb waves: (a) normalized amplitude and (b) phase change.

Updated by tenmeasurements, the parameters for (15) are
expressed as

𝑎̂ = 9.4528 − 12.7810𝑁 + 8.6646𝑃 + 10.6268𝑁 ⋅ 𝑃, (16)

where 𝑁, 𝑃, and 𝑎̂ have the same physical definitions as in
(3).

The predicted crack size can be calculated by (16). Based
on the predicted crack size and actual crack size, the POD
model can be expressed as

POD (𝑎) = Φ(
ln 𝑎 − 0.4094

0.14
) . (17)

Figure 13 is the POD curve after updating with ten
measurements.

According to Figure 13, the probability of detection is
close to 1 when the crack size is larger than 2mm. Comparing
the POD results for ICM (Figure 8) with that of the PZT
sensor (Figure 13), the Lamb-wave-based damage detection
method performed better in identifying small cracks.

4.3. Crack Quantification Using the Hybrid Sensors Strategy.
In this section, a crack quantification model using signal
features and POD results from both ICM and PZT sensors is
proposed.The results of the two PODmodels in (14) and (17)
were used as weight factors, which can be evaluated by (13).
The crack quantification model using the proposed hybrid
sensor strategy is

𝑎 =
exp (−1.7953 + 2.9205 ln (𝑎

1
− 0.5)) / (1 + exp (−1.7953 + 2.9205 ln (𝑎

1
− 0.5))) ,

exp (−1.7953 + 2.9205 ln (𝑎
1
− 0.5)) / (1 + exp (−1.7953 + 2.9205 ln (𝑎

1
− 0.5))) + Φ ((ln 𝑎

2
− 0.4094) /0.14)

𝑎
1

+
Φ ((ln 𝑎

2
− 0.4094) /0.14)

exp (−1.7953 + 2.9205 ln (𝑎
1
− 0.5)) / (1 + exp (1.7953 + 2.9205 ln (𝑎

1
− 0.5))) + Φ ((ln 𝑎

2
− 0.4094) /0.14)

𝑎
2
,

(18)

where 𝑎
1
and 𝑎
2
have the same physical definitions as in (12).

As illustrated in Figure 14, the last three data points, which
are monitored by ICM and PZT sensors simultaneously, are
used to validate the overall proposed method. The relative
error applies to evaluate the accuracy of the crack quantifi-
cation model, and the relative error 𝜑 is defined in (19) as

𝜑 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎̂ − 𝑎

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100%, (19)

where 𝑎̂ is the predicted crack size and 𝑎 is the actual crack
size.

The predicted results for single sensors and hybrid sen-
sors are illustrated in Table 2. Results show that the novel
damage detection technique using a hybrid sensor can predict

the crack size more accurately as the relative errors are all
below 6%.

The novel damage detection method combines the data
measured by ICMand PZT sensors based on the POD results.
There are two aspects that may affect the prediction per-
formance of the proposed method: (1) the damage-sensitive
features which are identified by each single sensor and the
physical models which are chosen to correlate the damage-
sensitive features and crack size and (2) the reliability of
damage detectionmethods for each type of sensorsmeasured
by POD results. The key idea of the proposed method is
to perform crack size prediction using damage-sensitive
features and POD results from both ICM and PZT sensors.
The proposed method is not limited to a specific crack size



10 Mathematical Problems in Engineering

Data
Benchmark

0

5

10

15

Pr
ed

ic
te

d 
cr

ac
k 

siz
e (

m
m

)

5 10 150
Actual crack size (mm)

(a)

Updated data
Benchmark
Data

5 10 150
Actual crack size (mm)

0

5

10

15

Pr
ed

ic
te

d 
cr

ac
k 

siz
e (

m
m

)
(b)

Updated data
Benchmark

5 10 150
Actual crack size (mm)

0

5

10

15

Pr
ed

ic
te

d 
cr

ac
k 

siz
e (

m
m

)

(c)

Figure 12: Bayesian updated results with experiment data of hybrid sensor. (a) No data was used for updating, (b) updating with five
measurements, and (c) updating with ten measurements.

Table 2: Predicted results for single sensors and hybrid sensors.

Data Actual crack size ICM PZT Hybrid sensor
Reported crack size Relative error Predicted crack size Relative error Predicted crack size Relative error

I 17.541mm 19.15mm 9.17% 16.532mm 5.75% 17.405mm 0.78%
II 19.024mm 20.55mm 8.02% 16.661mm 12.42% 17.958mm 5.6%
III 22.174mm 24.75mm 11.62% 18.936mm 14.6% 20.875mm 5.86%

quantification model for each sensor. Any damage-sensitive
feature and the physical model which are suitable for a
target system can be used. Therefore, the underestimation of
predicted results in Table 2 is not caused by the proposed
method. Take Data I in Table 2 as an example; when the

phase change of Lamb-wave-based PZT sensor increased by
0.1 microseconds, the crack size predicted by PZT sensor is
16.768mm. Based on calculations, the crack size predicted by
hybrid sensor is 17.563mm, which is larger than the actual
crack size (17.541mm).
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Figure 13: POD model after updating with ten measurements.
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Figure 14: Data used to validate the proposed method.

5. Conclusion

This study presents a novel damage detection technique using
a hybrid sensor that combines ICM and PZT sensors. POD
models were established to evaluate the detection reliability
of each sensor. A crack quantification model using damage-
sensitive features and POD results from both ICM and PZT
sensors was proposed. The Bayesian method was used to
estimate andupdate the required but uncertainmodel param-
eters. The ICM and PZT sensors were used simultaneously
to monitor the cracks produced by natural fatigue testing
and the overall method was validated by natural fatigue
testing data. Results demonstrated that the hybrid sensor
method can quantify fatigue crackmore accurately than those
methods where only one type of sensors was used.
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