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Neutrino oscillation experiments presently suggest that neutrinos have a small but finite mass. If neutrinos have mass, there should
be a Lorentz frame in which they can be brought to rest. This paper discusses howWigner’s little groups can be used to distinguish
betweenmassive andmassless particles.We derive a representation of the 𝑆𝐿(2, 𝑐) group which separates out the two sets of spinors:
one set is gauge dependent and the other set is gauge invariant and represents polarized neutrinos.We show that a similar calculation
can be done for theDirac equation. In the large-momentum/zero-mass limit, theDirac spinors can be separated into large and small
components. The large components are gauge invariant, while the small components are not. These small components represent
spin-1/2 non-zero-mass particles. If we renormalize the large components, these gauge invariant spinors represent the polarization
of neutrinos. Massive neutrinos cannot be invariant under gauge transformations.

1. Introduction

Whether or not neutrinos have mass and the consequences
of this relative to the Standard Model and lepton number
are the subject of much theoretical speculation [1, 2], as
well as cosmological [3–5], nuclear reactor [6, 7], and high
energy experimentation [8–11]. Neutrinos are fast becoming
an important component of the search for dark matter and
dark radiation [12, 13]. Their importance within the Standard
Model is reflected in the fact that they are the only particles
which seem to exist with only one direction of chirality; that
is, only left-handed neutrinos have been confirmed to exist
thus far. It was speculated some time ago that neutrinos in
constant electric and magnetic fields would acquire a small
mass and that right-handed neutrinos would be trapped
within the interaction field [14]. Additionally there are several
physical problems which right-handed neutrinos might help
solve [15–17]. Solving generalized electroweak models using
left- and right-handed neutrinos has also been discussed [18].
Today right-handed neutrinos which do not participate in

weak interactions are called “sterile” neutrinos [19]. A com-
prehension discussion of the place of neutrinos in the present
scheme of particle physics has been given by Drewes [12].

In this paper, we use representations of the Lorentz
group to understand the physical implications of neutrinos
having mass. In Section 2, two-by-two representations of
the Lorentz group are presented. In Section 3, the internal
symmetries of massive and massless particles are derived.
A representation of the 𝑆𝐿(2, 𝑐) group, which separates
out the two sets of spinors contained therein, is presented
in Section 4. One set of spinors is gauge dependent and
represents massive particles.The other is gauge invariant and
represents polarized neutrinos. In Section 5, we show how,
in the large-momentum/zero-mass limit, the Dirac spinors
can be separated into two components, one of which can
represent a spin-1/2 non-zero-mass particle. The question of
gauge invariance is then discussed. In Section 6, we discuss
the zero-mass limit and gauge invariance in the Lorentz
transformation framework. Some concluding remarks are
made in Section 7.
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2. Representations of the Lorentz Group

The Lorentz group starts with a group of four-by-four
matrices performing Lorentz transformations on the four-
dimensional Minkowski space of (𝑡, 𝑧, 𝑥, 𝑦) which leaves
the quantity (𝑡

2
− 𝑧
2
− 𝑥
2
− 𝑦
2
) invariant. Since there are

three generators of rotations and three boost generators, the
Lorentz group is a six-parameter group.

Einstein observed that the Lorentz group is also appli-
cable to the four-dimensional energy and momentum space
of (𝐸, 𝑝

𝑧
, 𝑝
𝑥
, 𝑝
𝑦
). He derived the Lorentz-covariant energy-

momentum relation commonly known as 𝐸 = 𝑚𝑐
2. As this

transformation leaves (𝐸2−𝑝2
𝑧
−𝑝
2

𝑥
−𝑝
2

𝑦
) invariant, the particle

mass is a Lorentz invariant quantity.
In his 1939 paper [20], Wigner studied the symmetry

properties of free particles by using operators which com-
mute with the specified four-momentum of the particle. His
“little groups” were defined to be those transformations that
do not change this four-momentum. For massive particles,
the little group is isomorphic to 𝑂(3); indeed the 𝑂(3)-like
little group’s kinematics is well understood.Massless particles
are isomorphic to the Euclidean group commonly known as
𝐸(2). Wigner noted that the 𝐸(2)-like subgroup of 𝑆𝐿(2, 𝑐) is
isomorphic to the Lorentz group of transformations [21], but
the kinematics of this group is not as well established as that
of the 𝑂(3)-like little group as there is no Lorentz frame in
which a massless particle is at rest.

It is possible to construct the Lie algebra of the Lorentz
group from the three Pauli spin matrices [22–25] as

𝐽
𝑖
=

1

2
𝜎
𝑖
,

𝐾
𝑖
=

𝑖

2
𝜎
𝑖
.

(1)

These two-by-two matrices satisfy the following set of com-
mutation relations:

[𝐽
𝑖
, 𝐽
𝑗
] = 𝑖𝜖
𝑖𝑗𝑘
𝐽
𝑘
,

[𝐽
𝑖
, 𝐾
𝑗
] = 𝑖𝜖
𝑖𝑗𝑘
𝐾
𝑘
,

[𝐾
𝑖
, 𝐾
𝑗
] = −𝑖𝜖

𝑖𝑗𝑘
𝐽
𝑘
,

(2)

where the generators 𝐽
𝑖
represent rotations and the generators

𝐾
𝑖
represent boosts. There are six generators of the Lorentz

group which satisfy the three sets of commutation relations
given in (2). The Lie algebra of the Lorentz group consists of
these sets of commutation relations.

These commutation relations are invariant under Hermi-
tian conjugation; however, while the rotation generators are
Hermitian, the boost generators are anti-Hermitian:

𝐽
†

𝑖
= 𝐽
𝑖
,

while 𝐾
†

𝑖
= −𝐾
𝑖
.

(3)

Thus, it is possible to construct two representations of the
Lorentz group, one with 𝐾

𝑖
and the other with −𝐾

𝑖
. For this

purpose, we will use the notation [24, 26, 27]

�̇�
𝑖
= −𝐾
𝑖
. (4)

To demonstrate that this set of generators do perform
Lorentz transformations, let us consider a point 𝑋 in four-
dimensional space such as the Minkowskian four-vector
(𝑡, 𝑧, 𝑥, 𝑦). A Hermitian matrix of the form

𝑋 = (
𝑡 + 𝑧 𝑥 − 𝑖𝑦

𝑥 + 𝑖𝑦 𝑡 − 𝑧
) , (5)

with determinant

𝑡
2
− 𝑧
2
− 𝑥
2
− 𝑦
2
, (6)

can bewrittenwhere all the components of𝑋 are real. Indeed,
every Hermitian matrix can be written this way with real
components. Consider next a matrix of the form

𝐺 = (
𝛼 𝛽

𝛾 𝛿
) , (7)

with four complex matrix elements, thus eight real parame-
ters, and require that the determinant be equal to one. If

𝐺
†
= (

𝛼
∗

𝛾
∗

𝛽
∗

𝛿
∗
) (8)

is the Hermitian conjugate of 𝐺, then

𝑋

= 𝐺𝑋𝐺

† (9)

defines a linear transformationwith real coefficients such that
the determinant of 𝑋 is equal to the determinant of 𝑋. This
constitutes a real Lorentz transformation.The transformation
of (9) can be explicitly written as

(
𝑡

+ 𝑧


𝑥

− 𝑖𝑦


𝑥

+ 𝑖𝑦


𝑡

− 𝑧

)

= (
𝛼 𝛽

𝛾 𝛿
)(

𝑡 + 𝑧 𝑥 − 𝑖𝑦

𝑥 + 𝑖𝑦 𝑡 − 𝑧
)(

𝛼
∗

𝛾
∗

𝛽
∗

𝛿
∗
) .

(10)

It is important to note that the transformation of (9) is
not a similarity transformation. In the 𝑆𝐿(2, 𝑐) regime, not
all the matrices are Hermitian [25]. Moreover, since the
determinants of 𝐺 and 𝐺

† are one, the determinant of 𝐺𝐺
†

is also one. As

Tr (𝐺𝐺
†
) = (𝛼𝛼

∗
+ 𝛽𝛽
∗
+ 𝛾𝛾
∗
+ 𝛿𝛿
∗
) ≥ 1, (11)

(9) is a proper Lorentz transformation [25, 28, 29].
Since the determinant of 𝐺 is fixed and is equal to one,

there are six independent parameters. This six-parameter
group is commonly called 𝑆𝐿(2, 𝑐). As the Lorentz group
has six generators, this two-by-two matrix can serve as a
representation of the Lorentz group.

Likewise, the two-by-twomatrix for the four-momentum
of the particle takes the form

𝑃 = (

𝑝
0
+ 𝑝
𝑧

𝑝
𝑥
− 𝑖𝑝
𝑦

𝑝
𝑥
+ 𝑖𝑝
𝑦

𝑝
0
− 𝑝
𝑧

) (12)
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with 𝑝
0

= √𝑚2 + 𝑝2
𝑧
+ 𝑝2
𝑥
+ 𝑝
2

2
. The transformation of this

matrix takes the same form as that for space-time given in
(9) and (10).Thedeterminant of thismatrix is𝑚2 and remains
invariant under Lorentz transformations.The explicit form of
the transformation is

𝑃

= 𝐺𝑃𝐺

†
= (

𝑝


0
+ 𝑝


𝑧
𝑝


𝑥
− 𝑖𝑝


𝑦

𝑝


𝑥
+ 𝑖𝑝


𝑦
𝑝


0
− 𝑝


𝑧

)

= (
𝛼 𝛽

𝛾 𝛿
)(

𝑝
0
+ 𝑝
𝑧

𝑝
𝑥
− 𝑖𝑝
𝑦

𝑝
𝑥
+ 𝑖𝑝
𝑦

𝑝
0
− 𝑝
𝑧

)(
𝛼
∗

𝛾
∗

𝛽
∗

𝛿
∗
) .

(13)

It is this Lorentz invariant mass that is important for dis-
cussing neutrino oscillation. In the next section, the internal
symmetry of particles will be discussed using Wigner’s little
groups.

3. Internal Symmetries of Massive and
Massless Particles

When special relativity was formulated, the main focus was
point particles, without internal space-time structures. How
these particles look to moving observers can be studied using
Wigner’s little groups [20] where the subgroup of the Lorentz
group whose transformations leave the particle momentum
invariant are considered. However, the little groups can
transform the internal space-time structure of the particles.
Since the particle momentum is fixed and remains invariant,
it is possible to consider that the particle momentum is along
the 𝑧 direction.

This momentum is thus invariant under rotations around
the 𝑧-axis. In addition, these rotations commute with the
Lorentz boost along the 𝑧-axis because, according to the Lie
algebra of (2),

[𝐽
3
, 𝐾
3
] = 0. (14)

In Section 2, it was shown that the Lorentz transformation
of the four-momentum can be represented by two-by-two
matrices and an explicit form for this transformation was
given. If the particle moves along the 𝑧 direction, the four-
momentum matrix becomes

𝑃 = (
𝐸 + 𝑝 0

0 𝐸 − 𝑝
) , (15)

where 𝐸 and 𝑝 are the energy and the magnitude of momen-
tum, respectively.

Let 𝑊 be a subset of matrices which leaves the four-
momentum invariant; then we can write

𝑃 = 𝑊𝑃𝑊
†
. (16)

These matrices constitute Wigner’s little groups dictating the
internal space-time symmetry of the particle.

If the particle is massive, it can be brought to the system
where it is at rest with 𝑝 = 0. The four-momentum matrix is
then proportional to

𝑃 = (
1 0

0 1
) . (17)

Since the momentum matrix is proportional to the unit
matrix, the𝑊matrix forms a unitary subset of the𝐺matrices
and is Hermitian.The corresponding little group is the 𝑆𝑈(2)

subgroup of the Lorentz group. It is sufficient to consider
rotations around the 𝑦-axis, as rotations around the 𝑧-axis do
not change the momentum.Thus the rotation matrix

𝑅 (𝜃) = (

cos(𝜃

2
) − sin(

𝜃

2
)

sin(
𝜃

2
) cos(𝜃

2
)

) (18)

can be used. This forms a representation of Wigner’s 𝑂(3)-
like little group for massive particles which describes the spin
orientation of the particle in the rest frame.

For the massless particle, 𝐸 = 𝑝. Thus the four-
momentum matrix is proportional to

𝑃 = (
1 0

0 0
) , (19)

and the Wigner matrix is necessarily triangular and should
take the form

𝑇 (𝛾) = (
1 −𝛾

0 1
) . (20)

Thismatrix cannot be diagonalized. Its inverse andHermitian
conjugate are

𝑇
−
(𝛾) = (

1 𝛾

0 1
) ,

𝑇
†
(𝛾) = (

1 0

−𝛾 1
) ,

(21)

respectively. Since the inverse is not the same as the Her-
mitian conjugate, 𝑇 is not a Hermitian matrix. In order
to preserve the Lorentz properties of the boosted four-
momentum, 𝛾must be real.

To understand this better, consider that as the𝑂(3) group
is contracted into the Euclidean group (𝐸(2)) group, one can
think of 𝐸(2) as a plane tangent to the North Pole. Since 𝐸(2)
consists of two translation operators and a rotation operator,
the rotation around the 𝑧-axis remains unchanged as the
radius becomes large and rotations around the 𝑥- and 𝑦-axes
become translations in the 𝑥 and −𝑦 directions, respectively,
within the tangent plane. For a massless particle, the 𝐸(2)-
like little group bears the same relation to the 𝐸(2) group
as the 𝑂(3)-little group does to 𝑂(3) for a massive particle.
Thus (20) is the representation of Wigner’s 𝐸(2)-like little
group [21, 27, 30] for massless particles. It is now possible to
apply this formalism to spin-1/2 particles by considering the
𝑆𝐿(2, 𝑐) representation of the Lorentz group.

4. 𝑆𝐿(2, 𝑐) and Spinors

In the case of 𝑆𝐿(2, 𝑐), or spin-1/2 particles, it is necessary to
consider both signs of the boost generators 𝐾

𝑖
. In Section 2,
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we considered that 𝑆𝐿(2, 𝑐) consists of nonsingular two-by-
two matrices which have the form defined in (7). This matrix
is applicable to spinors that have the following form:

𝑈 = (
1

0
) ,

𝑉 = (
0

1
) ,

(22)

for spin-up and spin-down states, respectively.
Among the subgroups of 𝑆𝐿(2, 𝑐), there are 𝐸(2)-like little

groups which correspond tomassless particles. If we consider
a massless particle moving along the 𝑧 direction, then the
little group is generated by 𝐽

3
,𝑁
1
, and𝑁

2
, where

𝑁
1
= 𝐾
1
− 𝐽
2
,

𝑁
2
= 𝐾
2
+ 𝐽
1
,

𝐽
3
= (

1

2
) 𝜎
3
.

(23)

As usual, 𝐽
3
is the generator of rotations and 𝑁

𝑖
generate

translation-like transformations where

𝐷 (𝑢, V) = 𝐷 (𝑢, 0)𝐷 (0, V) = 𝐷 (0, V) 𝐷 (𝑢, 0) . (24)

As these 𝑁 operators have been shown to be the generators
of gauge transformations in the case of the photon [21],
they will be referred to as the gauge transformation in the
𝑆𝐿(2, 𝑐) regime [20, 31–33].Their role with respect tomassless
particles of spin-1/2 will now be discussed [25].

For massless spin-1/2 particles, 𝐽
𝑖
are still the generators

of rotations. However, because of the sign change allowed for
𝐾
𝑖
, it is necessary to have two sets of𝑁

𝑖
operators designated

as 𝑁
(+)

𝑖
and 𝑁

(−)

𝑖
, where, as defined in (23), 𝑁(+)

𝑖
have the

explicit form

𝑁
(+)

1
= (

0 𝑖

0 0
) ,

𝑁
(+)

2
= (

0 1

0 0
) .

(25)

TheHermitian conjugates of the above𝑁(+)
𝑖

provide𝑁(−)
1

and
𝑁
(−)

2
. Thus, there are two sets of boost generators involved.
The transformation matrices defined in (24) can then be

written as [34]

𝐷
(+)

(𝑢, V) = exp (−𝑖 [𝑢𝑁
[+]

1
+ V𝑁[+]
2

])

= (
1 𝑢 − 𝑖V

0 1
) ,

𝐷
(−)

(𝑢, V) = exp (−𝑖 [𝑢𝑁
[−]

1
+ V𝑁[−]
2

])

= (
1 0

−𝑢 − 𝑖V 1
) .

(26)

Since there are two sets of spinors in 𝑆𝐿(2, 𝑐), the spinors
whose boosts are generated by 𝐾

𝑖
= 𝑖/2𝜎 will be written as 𝛼

for spin in the positive direction and𝛽 for spin in the negative
direction. For the boosts generated by𝐾

𝑖
= −𝑖/2𝜎, we will use

�̇� and �̇�. These spinors are gauge invariant in the sense that

𝐷
(+)

(𝑢, V) 𝛼 = 𝛼,

𝐷
(−)

(𝑢, V) �̇� = �̇�.

(27)

However, if we carry out the explicit multiplication, these
spinors are gauge dependent in the sense that

𝐷
(+)

(𝑢, V) 𝛽 = 𝛽 + (𝑢 − 𝑖V) 𝛼,

𝐷
(−)

(𝑢, V) �̇� = �̇� − (𝑢 + 𝑖V) �̇�.
(28)

The gauge invariant spinors of (27) appear as polarized
neutrinos [21, 30, 35].

Let us examine further the gauge dependent spinors
of (28). To accomplish this, we construct unit vectors in
Minkowskian space by taking the direct product of two
𝑆𝐿(2, 𝑐) spinors:

−𝛼�̇� = (1, 𝑖, 0, 0) ,

𝛽�̇� = (1, −𝑖, 0, 0) ,

𝛼�̇� = (0, 0, 1, 1) ,

𝛽�̇� = (0, 0, 1, −1) .

(29)

This combines two half integer spins into integer spins. To
make𝐷(𝑢, V) consistent with (29), it is necessary to choose

𝐷 (𝑢, V) = 𝐷
(+)

(𝑢, V) 𝐷(−) (𝑢, V) , (30)

where 𝐷
(+) and 𝐷

(−) apply to the first and second spinors of
(29), respectively. Since the plane wave photon four-potential
does not depend on 𝛽�̇� because of the Lorentz condition [21,
30, 31, 34, 35], we have

𝐷 (𝑢, V) (−𝛼�̇�) = −𝛼�̇� + (𝑢 + 𝑖V) 𝛼�̇�,

𝐷 (𝑢, V) (𝛽�̇�) = 𝛽�̇� + (𝑢 − 𝑖V) 𝛼�̇�,

𝐷 (𝑢, V) 𝛼�̇� = 𝛼�̇�.

(31)

The first two equations in (31) correspond to gauge trans-
formations of the photon polarization vectors. The third
equation corresponds to the effect of the𝐷 transformation of
the four-momentum.This shows that𝐷(𝑢, V) is an element of
the little group.We look next at howwe can apply this analysis
to Dirac spinors.

5. Dirac Spinors and Massless Particles

TheDirac equation is applicable tomassive particles. Here we
will consider the massless particle as the limiting case of the
massive particle by considering the large-momentum/zero-
mass limit of the Dirac spinors.
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Starting with the spin operators defined in (1), a boost
along the 𝑧 direction will take the form

𝐽


𝑖
= 𝐵 (𝑃) 𝐽

𝑖
𝐵
−1

(𝑃) . (32)

This is a similarity transformation. Here the boost matrix is
given by

𝐵 (𝑃) = (
𝑒
𝜂/2

0

0 𝑒
−𝜂/2

) , (33)

where

𝑒
𝜂/2

= (
𝐸 + 𝑃

𝐸 − 𝑃
) . (34)

In the large-momentum or large-mass limit for a massive
particle we obtain

𝑒
𝜂
→

2𝐸

𝑀
. (35)

Using the similarity transformation of (32), 𝐽
3
is invariant, but

𝐽
1
and 𝐽
2
take the form

𝐽


1
= (

0
1

2
𝑒
𝜂

1

2
𝑒
−𝜂

0

) ,

𝐽


2
= (

0 −
𝑖

2
𝑒
𝜂

𝑖

2
𝑒
−𝜂

0

) .

(36)

In the large-momentum or large-mass limit for a massive
particle, we can obtain the𝑁

𝑖
matrices of (23) as

𝑁
1
= −

𝑀

𝐸
𝐽


2
,

𝑁
2
=

𝐸

𝑀
𝐽


1
.

(37)

Remembering that we have to consider both signs of the
boost generators, the generators of 𝑆𝐿(2, 𝑐) can take the form

𝐽
𝑖
= (

(
1

2
) 𝜎
𝑖

0

0 (
1

2
) 𝜎
𝑖

),

𝐾
𝑖
= (

(
𝑖

2
) 𝜎
𝑖

0

0 (−
𝑖

2
) 𝜎
𝑖

)

(38)

which is applicable to Dirac wave functions in the Weyl rep-
resentation [14, 24]. Using the gauge transformationmatrices
from (26), we can write

𝐷 (𝑢, V) = (
𝐷
(+)

(𝑢, V) 0

0 𝐷
(−)

(𝑢, V)
) . (39)

This matrix is applicable to the Dirac spinors. To evaluate the
result of applying the𝐷matrix from (39), we first look at the
eigenspinors given in (22) applied to a massive Dirac particle
that is at rest. Thus we have

𝑈 (0) = (
𝛼

±�̇�
) ,

𝑉 (0) = (

±𝛽

�̇�

) ,

(40)

where the positive and negative energy states are denoted by
the + and − signs, respectively. If these spinors are boosted
along the 𝑧-axis using the operator generated by 𝐾

3
, then

𝑈 (𝑃) = (
𝑒
(+𝜂/2)

𝛼

±𝑒
(−𝜂/2)

�̇�

) ,

𝑉 (𝑃) = (
±𝑒
(−𝜂/2)

𝛽

𝑒
(+𝜂/2)

�̇�

) .

(41)

In the large-momentum/zero-mass limit, the large compo-
nents, 𝑒(+𝜂/2), are, according to (27), gauge invariant, while the
small components, according to (28), are gauge dependent.
This again shows that non-zero-mass, spin-1/2 particles are
not invariant under gauge transformations. Furthermore, in
this limit, the spinors of (41) can be renormalized as

𝑈 (𝑃) = (
𝛼

0
) ,

𝑉 (𝑃) = (

0

�̇�

) .

(42)

It is clear that the 𝐷 transformation leaves these spinors
invariant. It is this invariance, as shown before, that is
responsible for the polarization of neutrinos [30, 35].

Additionally, one could interpret the results of (41) in
terms of 𝐸(2) translations on free Weyl neutrino states. In
this case, the gauge invariant transformations leave the left-
handed neutrino invariant but translate the right-handed
neutrino into a linear combination of left-handed and right-
handed neutrinos [14, 30]. These coupled states could have
implications requiring that in a constant electric and mag-
netic field neutrinos should acquire a small effective mass
[14].

6. Neutrino Mass and Lorentz
Transformations

In Section 3, we introduced the fact that Wigner [20]
proposed that his “little groups” be defined as those Lorentz
transformations that do not change the four-momentum of
the free particle. Because there is no Lorentz frame in which
a massless particle is at rest, we had to consider a momentum
four-vector of the form given in (19). From this we were able
to write down the transformation matrix given in (20) which
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left the four-momentum invariant. In this section, we begin
with amassive particle with fixed energy𝐸.Thenwe canwrite
the Lorentz boost along the 𝑧 direction as

𝑧 → (cosh 𝜉) 𝑧 + (sinh 𝜉) 𝑡,

𝑡 → (sinh 𝜉) 𝑧 + (cosh 𝜉) 𝑡.

(43)

As we saw in Section 5, the limiting case of 𝑒𝜉 is given in
(35) for the large-momentum limit. Within the framework of
Lorentz transformations, 𝐸 can become large and thus 𝜉 can
also become large. This has been discussed in the literature
[24].

In addition, 𝜉 can become large when the mass becomes
very small. This cannot be achieved by Lorentz boosts,
because the mass is a Lorentz-invariant quantity. With this
point in mind, we can consider what happens when the mass
is varied but the energy is held fixed.We canwrite the energy-
momentum four-vector as

𝐸 (0, 0, cos𝜒, 1) . (44)

Then the mass becomes

𝑀 = 𝐸√1 − cos2𝜒 = 𝐸 sin𝜒. (45)

Hence, the mass can be increased by increasing 𝜒 from 𝑧𝑒𝑟𝑜

[36].
While the four-by-four matrix which makes the transfor-

mation of (43) is

(

1 0 0 0

0 1 0 0

0 0 cosh 𝜉 sinh 𝜉

0 0 sinh 𝜉 cosh 𝜉

) , (46)

its two-by-two equivalent to the spinor is

(
𝑒
𝜉/2

0

0 𝑒
−𝜉/2

) (47)

as seen in (33) [36].The two-by-two matrix corresponding to
a rotation around the 𝑦-axis is

(

cos(𝜃

2
) − sin(

𝜃

2
)

sin(
𝜃

2
) cos(𝜃

2
)

) . (48)

Thus we can now perform the Lorentz boost by making a
similarity transformation:

(
𝑒
𝜉/2

0

0 𝑒
−𝜉/2

)(

cos(𝜃

2
) − sin(

𝜃

2
)

sin(
𝜃

2
) cos(𝜃

2
)

)(
𝑒
−𝜉/2

0

0 𝑒
𝜉/2

) , (49)

which becomes

(

cos(𝜃

2
) −𝑒

𝜉 sin(
𝜃

2
)

𝑒
−𝜉 sin(

𝜃

2
) cos(𝜃

2
)

) . (50)

For this matrix to remain finite in the large 𝜉 limit, we can
let 𝑒𝜉 sin 𝜃 = 𝛾. For 𝛾 to remain finite as 𝜉 increases, 𝜃 must
approach zero. Then, in the limiting case, the matrix given in
(50) becomes

(
1 −𝛾

0 1
) . (51)

It has been shown that the 𝛾 parameter performs gauge
transformations on the photon case and its equivalent
transformation on massless neutrinos [24, 30, 35]. If the
neutrino indeed has mass, then we should observe neutrinos
participating in gauge transformations.

7. Concluding Remarks

As there is currently much interest in massive neutrinos, it
would be interesting to see if therewas indeed a Lorentz frame
in which neutrinos could be brought to rest. Additionally,
it would be useful to understand if neutrinos participate
in gauge transformations. The issue of whether or not the
neutrino is a Dirac particle as opposed to aMajorana particle
will be settled only if lepton number violation is observed.
Furthermore, if right-handed neutrinos could be found
separated from left-handed neutrinos, and if these right-
handed neutrinos did not participate in weak interactions,
this would have implications for physics beyond the Standard
Model.
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