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The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and
frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP)
lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

1. Introduction

Absolute stability of nonlinear systems has been investigated
comprehensively for the past several decades [1–12]. It is well
known that the Popov criterion and the circle criterion are
two classical results with the forms of frequency-domain
inequalities (FDIs), which are turned out to be equivalent to
some linear matrix inequalities (LMIs). This not only gives
the opportunity to use the powerful LMI toolbox [13] to study
absolute stability, but also gives the opportunity to consider
the controller design problems. In [14], absolute stability of
single-input and single-output Lur’e systemswith a sector and
slope restricted nonlinearity is brought forward. It is pointed
out that the slope restriction on the nonlinearity strengthens
the Popov criterion by adding an additional term to the
original FDI of the criterion. Much work [15–22] on the slope
restricted and multivariable problem has been done by using
a Lur’e-Postnikov function or an extended Lur’e-Postnikov
function.

In this paper, both time-domain criterion and frequency-
domain criterion for absolute stability of Lur’e systems with
sector and slope restricted nonlinearities are presented based
on the Lyapunov method and the KYP lemma. Some mathe-
matical tools are used through the derivation of the absolute
stability criterion. Compared with some existing results, the
proposed results are less conservative. This should be owed

to the effect of the slope restricted conditions on the non-
linearities. The rest of the paper is organized as follows. In
Section 2, the system description and some preliminaries are
presented. Time-domain and frequency-domain criteria for
absolute stability of the system are given in Section 3. Numer-
ical examples are given in Section 4 and some concluding
remarks are given in Section 5.

Throughout this paper, the superscript∗means transpose
of real matrices and conjugate transpose of complexmatrices.
For a Hermitian matrix𝑊,𝑊 > 0 (𝑊 ≥ 0) denotes that𝑊 is
a positive definite (semidefinite) matrix and𝑊 < 0 denotes
that𝑊 is a negative definite matrix. Re{𝑌} means (1/2)(𝑌 +

𝑌
∗

) for any real or complex square matrix 𝑌.

2. Problem Statement

Consider the following multi-input and multioutput Lur’e
system

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝜑 (𝜎 (𝑡)) ,

𝜎 (𝑡) = 𝐶
∗

𝑥 (𝑡) ,

(1)

where 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, and 𝐶 ∈ R𝑛×𝑚 are real matrices,

𝜑(0) = 0, 𝜎(𝑡) = [
𝜎
1
(𝑡)

...
𝜎
𝑚
(𝑡)

] is the output, 𝜑(𝜎(𝑡)) = [

[

𝜑
1
(𝜎
1
(𝑡))

...
𝜑
𝑚
(𝜎
𝑚
(𝑡))

]

]
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is piecewise continuously differentiable on R𝑚, and
𝜑
𝑖
(𝜎
𝑖
(𝑡)) (𝑖 = 1, 2, . . . , 𝑚) are assumed to satisfy

𝛾
1𝑖
𝜎
2

𝑖
(𝑡) ≤ 𝜑

𝑖
(𝜎
𝑖
(𝑡)) 𝜎
𝑖
(𝑡) ≤ 𝛿

1𝑖
𝜎
2

𝑖
(𝑡) , (2)

𝛾
2𝑖
≤

𝑑𝜑
𝑖
(𝜎
𝑖
(𝑡))

𝑑𝜎
𝑖
(𝑡)

≤ 𝛿
2𝑖
, (3)

where 𝛾
2𝑖
≤ 𝛾
1𝑖
, 𝛿
2𝑖
≥ 𝛿
1𝑖
, 𝛾
2𝑖
≤ 0, and 𝛿

2𝑖
≥ 0.The inequalities

(2) and (3) denote sector restriction and slope restric-
tion on 𝜑(𝜎(𝑡)), respectively. Let Γ

1
= diag(𝛾

11
, . . . , 𝛾

1𝑚
),

Δ
1

= diag(𝛿
11
, . . . , 𝛿

1𝑚
), Γ
2

= diag(𝛾
21
, . . . , 𝛾

2𝑚
), Δ
2

=

diag(𝛿
21
, . . . , 𝛿

2𝑚
). Then Γ

2
− Γ
1
≤ 0, Δ

2
− Δ
1
≥ 0, Γ
2
≤ 0, and

Δ
2
≥ 0. Setting 𝜓

𝑖
(𝜎
𝑖
(𝑡)) = 𝑑𝜑

𝑖
(𝜎
𝑖
(𝑡))/𝑑𝑡, (3) is formulated as

follows:

𝛾
2𝑖
≤

𝜓
𝑖
(𝜎
𝑖
(𝑡))

�̇�
𝑖
(𝑡)

≤ 𝛿
2𝑖
. (4)

The transfer function from 𝜑(𝜎(𝑡)) to −𝜎(𝑡) is denoted as
𝜒(𝑠) = 𝐶

∗

(𝐴 − 𝑠𝐼)
−1

𝐵.
System (1) is called to be absolutely stable if the equi-

librium point 𝑥(𝑡) = 0 is globally asymptotically stable for
all nonlinear vector valued functions 𝜑(𝜎(𝑡)) satisfying (2)
and (3). In the following sections, less conservative abso-
lute stability criteria including time-domain criterion and
frequency-domain criterion for system (1) are given. Before
studying these problems, first we introduce the KYP lemma
and Schur complement.These lemmaswill be used repeatedly
in this paper to get our main results.

Lemma1 (KYP lemma [23]). Given that𝐴 ∈ R𝑛×𝑛,𝐵 ∈ R𝑛×𝑚,
and symmetric matrix Σ ∈ R(𝑛+𝑚)×(𝑛+𝑚), with det(𝑗𝜔𝐼−𝐴) ̸= 0

for 𝜔 ∈ R, and the pair (𝐴, 𝐵) is controllable, the following two
statements are equivalent.

(i) [ (𝑗𝜔𝐼−𝐴)−1𝐵
𝐼

]

∗

Σ [
(𝑗𝜔𝐼−𝐴)

−1
𝐵

𝐼

] ≤ 0, for all 𝜔 ∈ R.

(ii) There exists a matrix 𝑃 = 𝑃
∗ such that [ 𝐴∗𝑃+𝑃𝐴 𝑃𝐵

𝐵
∗
𝑃 0

] +

Σ ≤ 0. The equivalence for strict inequalities holds even
if (𝐴, 𝐵) is not controllable.

Lemma 2 (Schur complement [24]). The LMI [ 𝑆11 𝑆12
𝑆
∗

12
−𝑆
22

] < 0

is equivalent to one of the following statements:

(i) 𝑆
22
> 0 and 𝑆

11
+ 𝑆
12
𝑆
−1

22
𝑆
∗

12
< 0;

(ii) 𝑆
11
< 0 and 𝑆

22
+ 𝑆
∗

12
𝑆
−1

11
𝑆
12
> 0.

3. Main Results

We choose the following Lur’e-Postnikov function:

𝑉 (𝑥 (𝑡)) = 𝑥
∗

(𝑡) 𝑃𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝜆
𝑖
∫

𝜎
𝑖
(𝑡)

0

𝜑
𝑖
(𝑠) 𝑑𝑠 (5)

as the Lyapunov function, where 𝑃 = 𝑃
∗ and 𝜆

𝑖
∈ R (𝑖 =

1, 2, . . . , 𝑚) are necessary to be determined. It should be
pointed out that 𝑃 is not necessary to be positive definite and
𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are not necessary to be nonnegative.

Theorem 3. System (1) is absolutely stable for all 𝜑(𝜎(𝑡))
satisfying (2) and (3) if 𝐴 + 𝐵Γ

1
𝐶
∗ is Hurwitzian and there

exist diagonal matrices Λ = diag(𝜆
1
, . . . , 𝜆

𝑚
), 𝑇
1
≥ 0, 𝑇

2
> 0,

and symmetric matrices 𝑃 such that the LMI is feasible:

[

[

𝐴
∗

𝑃 + 𝑃𝐴 + Σ
11

𝑃𝐵 + Σ
12

Σ
13

𝐵
∗

𝑃 + Σ
∗

12
Σ
22

Σ
23

Σ
∗

13
Σ
∗

23
−𝑇
2

]

]

< 0, (6)

where

Σ
11
= −𝐶Γ

1
𝑇
1
Δ
1
𝐶
∗

− 𝐴
∗

𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐴,

Σ
12
=

1

2

𝐴
∗

𝐶Λ +

1

2

𝐶𝑇
1
(Γ
1
+ Δ
1
) − 𝐴
∗

𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐵,

Σ
13
=

1

2

𝐴
∗

𝐶𝑇
2
(Γ
2
+ Δ
2
) , Σ

23
=

1

2

𝐵
∗

𝐶𝑇
2
(Γ
2
+ Δ
2
) ,

Σ
22
=

1

2

Λ𝐶
∗

𝐵 +

1

2

𝐵
∗

𝐶Λ − 𝑇
1
− 𝐵
∗

𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐵.

(7)

Proof. We will demonstrate that the given conditions imply
the negative definiteness of ̇

𝑉(𝑥(𝑡)) and the positive definite-
ness of 𝑉(𝑥(𝑡)).

Taking the derivative of𝑉(𝑥(𝑡)) along the trajectory of (1),
we have

̇
𝑉 (𝑥 (𝑡)) = 𝑥

∗

(𝑡) 𝑃�̇� (𝑡) + �̇�
∗

(𝑡) 𝑃𝑥 (𝑡) + 𝜑
∗

(𝜎 (𝑡)) Λ𝐶
∗

�̇� (𝑡) .

(8)

Conditions (2) and (4) for 𝜑
𝑖
(𝜎
𝑖
(𝑡)) are equivalent to

𝑢
1𝑖
(𝑥
𝑖
) = (𝜑

𝑖
(𝜎
𝑖
(𝑡)) − 𝛾

1𝑖
𝜎
𝑖
(𝑡)) (𝜑

𝑖
(𝜎
𝑖
(𝑡)) − 𝛿

1𝑖
𝜎
𝑖
(𝑡)) ≤ 0,

𝑢
2𝑖
(𝑥
𝑖
) = (𝜓

𝑖
(𝜎
𝑖
(𝑡)) − 𝛾

2𝑖
�̇�
𝑖
(𝑡)) (𝜓

𝑖
(𝜎
𝑖
(𝑡)) − 𝛿

2𝑖
�̇�
𝑖
(𝑡)) ≤ 0.

(9)

For any 𝑡
1𝑖
≥ 0 and 𝑡

2𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑚, it follows

𝑚

∑

𝑖=1

𝑡
1𝑖
𝑢
1𝑖
(𝑥
𝑖
) = 𝜑
∗

(𝜎 (𝑡)) 𝑇
1
𝜑 (𝜎 (𝑡))

−

1

2

𝜑
∗

(𝜎 (𝑡)) (Γ
1
+ Δ
1
) 𝑇
1
𝐶
∗

𝑥

−

1

2

𝑥
∗

𝐶𝑇
1
(Γ
1
+ Δ
1
) 𝜑 (𝜎 (𝑡))

+ 𝑥
∗

𝐶Γ
1
𝑇
1
Δ
1
𝐶
∗

𝑥 ≤ 0,

𝑚

∑

𝑖=1

𝑡
2𝑖
𝑢
2𝑖
(𝑥
𝑖
) = 𝜓
∗

(𝜎 (𝑡)) 𝑇
2
𝜓 (𝜎 (𝑡))

−

1

2

𝜓
∗

(𝜎 (𝑡)) (Γ
2
+ Δ
2
) 𝑇
2
𝐶
∗

�̇�

−

1

2

�̇�
∗

𝐶𝑇
2
(Γ
2
+ Δ
2
) 𝜓 (𝜎 (𝑡))

+ �̇�
∗

𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

�̇� ≤ 0,

(10)
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where 𝑇
1
= diag(𝑡

11
, . . . , 𝑡

1𝑚
) ≥ 0 and 𝑇

2
= diag(𝑡

21
, . . . ,

𝑡
2𝑚
) > 0. Then
̇

𝑉 (𝑥 (𝑡)) ≤ 𝑥
∗

(𝑡) 𝑃�̇� (𝑡) + �̇�
∗

(𝑡) 𝑃𝑥 (𝑡) + 𝜑
∗

(𝜎 (𝑡)) Λ𝐶
∗

�̇� (𝑡)

−

𝑚

∑

𝑖=1

𝑡
1𝑖
𝑢
1𝑖
(𝑥
𝑖
) −

𝑚

∑

𝑖=1

𝑡
2𝑖
𝑢
2𝑖
(𝑥
𝑖
) .

(11)

The given condition (6) guarantees the negative definiteness
of the right hand of (11). Consequently, ̇

𝑉(𝑥(𝑡)) is negative
definite.

Now we are only left to demonstrate that 𝑉(𝑥(𝑡)) is
positive definite. In (5), 𝑃 is only a symmetric matrix but not
a positive definite matrix and 𝜆

𝑖
may be a positive or negative

number. Therefore, the proof of the positive definiteness
of 𝑉(𝑥(𝑡)) is a little difficult and complex. Without loss of
generality, letting 𝜆

𝑖
< 0 (𝑖 = 1, 2, . . . , 𝑘) and 𝜆

𝑖
≥ 0 (𝑖 =

𝑘 + 1, . . . , 𝑚) (0 ≤ 𝑘 ≤ 𝑚), then 𝑉(𝑥(𝑡)) has the following
form:

𝑉 (𝑥 (𝑡)) = 𝑥
∗

(𝑡) 𝑃𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝜆
𝑖
∫

𝜎
𝑖
(𝑡)

0

(𝛾
1𝑖
𝑠 + 𝜑
𝑖
(𝑠) − 𝛾

1𝑖
𝑠) 𝑑𝑠

≥ 𝑥
∗

(𝑡)[𝑃+

1

2

𝐶ΛΓ
1
𝐶
∗

+

1

2

𝐶Λ (Δ
1𝑘
− Γ
1𝑘
) 𝐶
∗

]𝑥 (𝑡)

+

𝑚

∑

𝑖=𝑘+1

𝜆
𝑖
∫

𝜎
𝑖
(𝑡)

0

(𝜑
𝑖
(𝑠) − 𝛾

1𝑖
𝑠) 𝑑𝑠,

(12)

where Δ
1𝑘

= diag(𝛿
11
, . . . , 𝛿

1𝑘
, 0, . . . , 0) and Γ

1𝑘
= diag(𝛾

11
,

. . . , 𝛾
1𝑘
, 0, . . . , 0). Since (2) implies 𝜎

𝑖
(𝑡)(𝜑
𝑖
(𝜎
𝑖
(𝑡)) − 𝛾

1𝑖
𝜎
𝑖
(𝑡)) ≥

0,∑𝑚
𝑖=𝑘+1

𝜆
𝑖
∫

𝜎
𝑖
(𝑡)

0

(𝜑
𝑖
(𝑠) − 𝛾

1𝑖
𝑠) 𝑑𝑠 ≥ 0 is satisfied.Then𝑉(𝑥(𝑡))

is positive definite if𝑃+(1/2)𝐶ΛΓ
1
𝐶
∗

+(1/2)𝐶Λ(Δ
1𝑘
−Γ
1𝑘
)𝐶
∗

is positive definite, which is proved in what follows.
Denote 𝐴

1
= 𝐴 + 𝐵Γ

1
𝐶
∗, 𝑃
1
= 𝑃 + (1/2)𝐶ΛΓ

1
𝐶
∗, 𝐴
𝑘
=

𝐴
1
+ 𝐵(Δ

1𝑘
− Γ
1𝑘
)𝐶
∗, and 𝑃

𝑘
= 𝑃
1
+ (1/2)𝐶Λ(Δ

1𝑘
− Γ
1𝑘
)𝐶
∗.

Firstly, the given conditions imply that 𝐴 + 𝐵Γ
1
𝐶
∗

+ 𝐵
̃
Δ𝐶
∗

is Hurwitzian for any diagonal matrix ̃Δ satisfying 0 ≤
̃
Δ ≤

Δ
1
−Γ
1
. Actually, the matrix𝐴+𝐵Γ

1
𝐶
∗

+𝐵
̃
Δ𝐶
∗ is Hurwitzian

for ̃
Δ = 0 in virtue of the given conditions. So we will

demonstrate that 𝐴 + 𝐵Γ
1
𝐶
∗

+ 𝐵
̃
Δ𝐶
∗ is Hurwitzian for any

diagonalmatrix ̃Δ satisfying 0 < ̃
Δ ≤ Δ

1
−Γ
1
.We assume there

exists a diagonalmatrix ̃Δ satisfying 0 < ̃
Δ ≤ Δ

1
−Γ
1
such that

thematrix𝐴+𝐵Γ
1
𝐶
∗

+𝐵
̃
Δ𝐶
∗

= 𝐴
1
+𝐵

̃
Δ𝐶
∗ is notHurwitzian.

On the one hand, a number 𝛼 satisfying 0 < 𝛼 ≤ 1 can be
found such that
det (𝑗𝜔

0
𝐼 − 𝐴

1
− 𝛼𝐵

̃
Δ𝐶
∗

)

= det (𝑗𝜔
0
𝐼 − 𝐴

1
) det (𝐼 − 𝛼𝐶∗(𝑗𝜔

0
𝐼 − 𝐴

1
)

−1

𝐵
̃
Δ) = 0

(13)

holds for certain 𝜔
0
∈ R. Since 𝐴

1
is Hurwitzian, det(𝑗𝜔

0
𝐼 −

𝐴
1
) ̸= 0 and det(𝐼 − 𝛼𝐶∗(𝑗𝜔

0
𝐼 − 𝐴

1
)
−1

𝐵
̃
Δ) = 0 are followed.

The latter formula indicates that there exists a vector ] ̸= 0

such that

]∗ (𝐼 − 𝛼̃Δ𝐺∗ (𝑗𝜔
0
)) = 0, (14)

where ]∗̃Δ ̸= 0 and 𝐺(𝑗𝜔
0
) = 𝐶

∗

(𝑗𝜔
0
𝐼 − 𝐴

1
)
−1

𝐵. Then we
derive

]∗̃Δ {−𝑇
1
+

1

2

(Δ
1
− Γ
1
) 𝑇
1
𝐺 (𝑗𝜔

0
) +

1

2

𝐺
∗

(𝑗𝜔
0
) 𝑇
1
(Δ
1
− Γ
1
)

+

1

2

𝑗𝜔
0
Λ𝐺 (𝑗𝜔

0
) +

1

2

[𝑗𝜔
0
Λ𝐺(𝑗𝜔

0
)]

∗

−𝜔
2

0
𝐺
∗

(𝑗𝜔
0
) Γ
2
𝑇
2
Δ
2
𝐺 (𝑗𝜔

0
) }

̃
Δ] ≥ 0.

(15)

On the another hand, pre- and postmultiplying both sides of
(6) by𝑊

1
= [

𝐼 𝐶Γ
1
0

0 𝐼 0

0 0 𝐼

] and𝑊∗
1
, we have

[

[

[

𝐴
∗

1
𝑃
1
+ 𝑃
1
𝐴
1
− 𝐴
∗

1
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐴
1
Σ
12

Σ
13

Σ

∗

12
Σ
22

Σ
23

Σ

∗

13
Σ
∗

23
−𝑇
2

]

]

]

< 0, (16)

where

Σ
12
= 𝑃
1
𝐵 +

1

2

𝐴
∗

1
𝐶Λ +

1

2

𝐶𝑇
1
(Δ
1
− Γ
1
) − 𝐴
∗

1
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐵,

Σ
13
=

1

2

𝐴
∗

1
𝐶𝑇
2
(Γ
2
+ Δ
2
) .

(17)

By the Schur complement, (16) implies

[

𝐴
∗

1
𝑃
1
+ 𝑃
1
𝐴
1
− 𝐴
∗

1
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐴
1
Σ
12

Σ

∗

12
Σ
22

] < 0. (18)

From the KYP lemma, we derive that (18) holds if and only if

[
(𝑗𝜔𝐼 − 𝐴

1
)

−1

𝐵

𝐼

]

∗

[

̂
Σ
11

̂
Σ
12

̂
Σ
∗

12
Σ
22

] [
(𝑗𝜔𝐼 − 𝐴

1
)

−1

𝐵

𝐼

] < 0,

∀𝜔 ∈ R,

(19)

where ̂Σ
11

= −𝐴
∗

1
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐴
1
and ̂

Σ
12

= (1/2)𝐴
∗

1
𝐶Λ +

(1/2)𝐶𝑇
1
(Δ
1
−Γ
1
)−𝐴
∗

1
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐵. Inequality (19) is equiv-
alent to

− 𝑇
1
+

1

2

(Δ
1
− Γ
1
) 𝑇
1
𝐺 (𝑗𝜔) +

1

2

𝐺
∗

(𝑗𝜔) 𝑇
1
(Δ
1
− Γ
1
)

+

1

2

𝑗𝜔Λ𝐺 (𝑗𝜔) +

1

2

[𝑗𝜔Λ𝐺(𝑗𝜔)]

∗

− 𝜔
2

𝐺
∗

(𝑗𝜔) Γ
2
𝑇
2
Δ
2
𝐺 (𝑗𝜔) < 0, ∀𝜔 ∈ R

(20)

in terms of the equalities 𝐺(𝑗𝜔) = 𝐶
∗

(𝑗𝜔𝐼 − 𝐴
1
)
−1

𝐵 and
𝑗𝜔𝐺(𝑗𝜔) = 𝐶

∗

𝐴
1
(𝑗𝜔𝐼 − 𝐴

1
)
−1

𝐵 + 𝐶
∗

𝐵. Letting 𝜔 = 𝜔
0
in
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(20) and pre- and postmultiplying both sides of the resulting
inequality by ]∗̃Δ and ̃Δ], it follows that

]∗̃Δ {−𝑇
1
+

1

2

(Δ
1
− Γ
1
) 𝑇
1
𝐺 (𝑗𝜔

0
)

+

1

2

𝐺
∗

(𝑗𝜔
0
) 𝑇
1
(Δ
1
− Γ
1
) +

1

2

𝑗𝜔
0
Λ

× 𝐺 (𝑗𝜔
0
) +

1

2

[𝑗𝜔
0
Λ𝐺 (𝑗𝜔

0
)]

∗

−𝜔
2

0
𝐺
∗

(𝑗𝜔
0
) Γ
2
𝑇
2
Δ
2
𝐺 (𝑗𝜔

0
) }

̃
Δ]

= ]∗̃Δ𝑇
1
[

1

𝛼

(Δ
1
− Γ
1
) −

̃
Δ] ] +

𝜔
2

0

𝛼
2

]∗ (−Γ
2
𝑇
2
Δ
2
) ] < 0.

(21)

We can observe that (15) and (21) are contradictive, which
means that the assumption is not true and𝐴+𝐵Γ

1
𝐶
∗

+𝐵
̃
Δ𝐶
∗

is Hurwitzian for any diagonal matrix ̃Δ satisfying 0 ≤
̃
Δ ≤

Δ
1
− Γ
1
. Therefore, the matrix 𝐴

𝑘
= 𝐴 + 𝐵Γ

1
𝐶
∗

+ 𝐵(Δ
1𝑘
−

Γ
1𝑘
)𝐶
∗ is Hurwitzian. Secondly, the given conditions imply

that 𝑃 + (1/2)𝐶ΛΓ
1
𝐶
∗

+ (1/2)𝐶Λ(Δ
1𝑘
− Γ
1𝑘
)𝐶
∗ is positive

definite. Actually, pre- and postmultiplying both sides of (16)
by𝑊
2
= [

𝐼 𝐶(Δ
1𝑘
−Γ
1𝑘
) 0

0 𝐼 0

0 0 𝐼

] and𝑊∗
2
yield

[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
∗

12
Σ
22

Σ
23

Ξ
∗

13
Σ
∗

23
−𝑇
2

]

]

< 0, (22)

where

Ξ
11
= 𝐴
∗

𝑘
𝑃
𝑘
+ 𝑃
𝑘
𝐴
𝑘
+ 𝐶 (Δ

1𝑘
− Γ
1𝑘
)

× 𝑇
1
[(Δ
1
− Γ
1
) − (Δ

1𝑘
− Γ
1𝑘
)] 𝐶
∗

− 𝐴
∗

𝑘
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐴
𝑘
,

Ξ
12
= 𝑃
𝑘
𝐵 +

1

2

𝐴
∗

𝑘
𝐶Λ − 𝐴

∗

𝑘
𝐶Γ
2
𝑇
2
Δ
2
𝐶
∗

𝐵

+

1

2

𝐶𝑇
1
(Δ
1
− Γ
1
) − 𝐶𝑇

1
(Δ
1𝑘
− Γ
1𝑘
) ,

Ξ
13
=

1

2

𝐴
∗

𝑘
𝐶𝑇
2
(Γ
2
+ Δ
2
) .

(23)

Inequality (22) implies Ξ
11
< 0. According to 0 ≤ Δ

𝑘
− Γ
𝑘
≤

Δ
1
− Γ
1
, 𝑇
2
> 0, Γ
2
≤ 0, Δ

2
≥ 0, 𝐴∗

𝑘
𝑃
𝑘
+ 𝑃
𝑘
𝐴
𝑘
< 0 is followed.

The matrix 𝐴
𝑘
is Hurwitzian, which results in the positive

definiteness of 𝑃
𝑘
and 𝑉(𝑥(𝑡)). This completes the proof.

It is found in the proof of Theorem 3, more exactly in
inequality (16), that if (6) holds, then𝐴+𝐵Γ

1
𝐶
∗ is Hurwitzian

if and only if 𝑃 + (1/2)𝐶ΛΓ
1
𝐶
∗

> 0.

Theorem 4. System (1) is absolutely stable for all 𝜑(𝜎(𝑡))
satisfying (2) and (3) if there exist diagonal matricesΛ, 𝑇

1
≥ 0,

𝑇
2
> 0, symmetric matrices 𝑃, 𝑄 > 0 such that 𝑃 + (1/

2)𝐶ΛΓ
1
𝐶
∗

> 0 and the LMI (6) holds.

Remark 5. Theorem 3 is derived directly by using the time-
domain method and can be used to study multi-input and
multioutput Lur’e systems. Inequality (6) in Theorem 3 is in
the form of LMI, which is easier to be solved by means of the
LMI toolbox.

The LMI (6) can be transformed into an equivalent FDI.
Thus, a frequency-domain criterion for (1) is given as follows.

Theorem 6. System (1) is absolutely stable for all 𝜑(𝜎(𝑡))
satisfying (2) and (3) if the matrix 𝐴 + 𝐵Γ

1
𝐶
∗ is Hurwitzian

and there exist diagonal matrices Λ, 𝑇
1
≥ 0, 𝑇

2
> 0 such that

the following frequency-domain inequality holds

Re {[𝐼 + Γ
1
𝜒 (𝑗𝜔)]

∗

𝑇
1
[𝐼 + Δ

1
𝜒 (𝑗𝜔)] + 𝑗𝜔Λ𝜒 (𝑗𝜔)

+ 𝜔
2

[𝐼 + Γ
2
𝜒 (𝑗𝜔)]

∗

𝑇
2
[𝐼 + Δ

2
𝜒 (𝑗𝜔)]} > 0,

𝜔 ∈ R.

(24)

Proof. Let 𝑃 = [
𝑃 0

0 0
], 𝐴 = [

𝐴 𝐵

0 0
], and 𝐿 = [

0

𝐼
]. Inequality (6)

can be rewritten as

[

𝑃𝐴 + 𝐴

∗

𝑃 + Ω
11

𝑃𝐿 + Ω
12

𝐿
∗

𝑃 + Ω
∗

12
−𝑇
2

] < 0, (25)

where

Ω
11
= [

Σ
11

Σ
12

Σ
∗

12
Σ
22

] , Ω
12
= [

Σ
13

Σ
23

] . (26)

According to the KYP lemma, (25) is equivalent to

[
(𝑗𝜔𝐼 − 𝐴)

−1

𝐿

𝐼

]

∗

[

Ω
11

Ω
12

Ω
∗

12
−𝑇
2

] [
(𝑗𝜔𝐼 − 𝐴)

−1

𝐿

𝐼

] < 0,

∀𝜔 ∈ R.

(27)

By simple computations, we have

(𝑗𝜔𝐼 − 𝐴)

−1

𝐿 =

1

𝑗𝜔

[
(𝑗𝜔𝐼 − 𝐴)

−1

𝐵

𝐼

] ,

𝐶
∗

𝐴(𝐴 − 𝑗𝜔𝐼)

−1

𝐵 = 𝐶
∗

𝐵 + 𝑗𝜔𝜒 (𝑗𝜔) ,

(28)

where 𝜒(𝑗𝜔) = 𝐶
∗

(𝐴 − 𝑗𝜔𝐼)
−1

𝐵. Substituting (28) into (27),
the equivalence between (6) and (24) is derived.

Remark 7. For the case Γ
1
= 0, the FDI (24) reduces to

𝑇
1
+ Re {(𝑇

1
Δ
1
+ 𝑗𝜔Λ) 𝜒 (𝑗𝜔) + 𝜔

2

[𝐼 + Γ
2
𝜒 (𝑗𝜔)]

∗

× 𝑇
2
[𝐼 + Δ

2
𝜒 (𝑗𝜔)]} > 0, 𝜔 ∈ R,

(29)

which corresponds to the FDI as given in Theorem 1.15.1 in
[4]. However, the results there only aim at single-input and
single-output Lur’e systems.

If the slope restrictions on 𝜑(𝜎(𝑡)) are removed, another
absolute stability criterion is derived by choosing (5) as the
Lyapunov function.
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Theorem 8. System (1) is absolutely stable for all 𝜑(𝜎(𝑡)) satis-
fying (2) if the matrix𝐴+𝐵Γ

1
𝐶
∗ is Hurwitzian and there exist

diagonal matricesΛ,𝑇 ≥ 0, symmetric matrices 𝑃,𝑄 > 0, such
that the following LMI is feasible:

[

𝐴
∗

𝑃 + 𝑃𝐴 − 𝐶Γ
1
𝑇Δ
1
𝐶
∗

𝑃𝐵 + Ω
12

𝐵
∗

𝑃 + Ω
∗

12
Ω
22

] < 0, (30)

where Ω
12

= (1/2)𝐴
∗

𝐶Λ + (1/2)𝐶𝑇(Γ
1
+ Δ
1
), Ω
22

=

(1/2)Λ𝐶
∗

𝐵 + (1/2)𝐵
∗

𝐶Λ − 𝑇.

Proof. The proof is similar to that of Theorem 3.

Remark 9. Theorem 8 gives absolute stability conditions for
sector restricted Lur’e systems. In fact, the slope restricted
condition (3) plays an important role in improving the con-
dition of absolute stability. The forthcoming example shows
that Theorem 3 is less conservative thanTheorem 8.

Similar to Theorem 3, an equivalent frequency-domain
criterion toTheorem 8 can be given as follows.

Theorem 10. System (1) is absolutely stable for all 𝜑(𝜎(𝑡))
satisfying (2) if the matrix 𝐴+ 𝐵Γ

1
𝐶
∗ is Hurwitzian and there

exist diagonal matrices Λ, 𝑇 ≥ 0 such that the following FDI
holds:

Re {[𝐼 + Γ
1
𝜒 (𝑗𝜔)]

∗

𝑇 [𝐼 + Δ
1
𝜒 (𝑗𝜔)] + 𝑗𝜔Λ𝜒 (𝑗𝜔)} > 0,

𝜔 ∈ R.

(31)

Proof. From the KYP lemma, (30) is equivalent to

[
(𝑗𝜔𝐼 − 𝐴)

−1

𝐵

𝐼

]

∗

[

−𝐶Γ
1
𝑇Δ
1
𝐶
∗

Ω
12

Ω
∗

12
Ω
22

] [
(𝑗𝜔𝐼 − 𝐴)

−1

𝐵

𝐼

] < 0,

∀𝜔 ∈ R.

(32)

The equivalence between (30) and (31) is derived from
𝜒(𝑗𝜔) = 𝐶

∗

(𝐴 − 𝑗𝜔𝐼)
−1

𝐵 and 𝐶
∗

𝐴(𝐴 − 𝑗𝜔𝐼)
−1

𝐵 = 𝐶
∗

𝐵 +

𝑗𝜔𝜒(𝑗𝜔).

Remark 11. Theorem 10 includes two particular cases. For the
case Λ = 0, (31) is reduced to

Re {(𝐼 + Γ
1
𝜒 (𝑗𝜔))

∗

𝑇 (𝐼 + Δ
1
𝜒 (𝑗𝜔))} > 0, 𝜔 ∈ R. (33)

Correspondingly, Theorem 10 is in the form of the circle
criterion. For the case Γ

1
= 0, (31) reduces to

𝑇 + Re {(𝑗𝜔Λ + 𝑇Δ
1
) 𝜒 (𝑗𝜔)} > 0, 𝜔 ∈ R. (34)

Theorem 10 has the same form as the Popov criterion.

4. Numerical Example

In this section, a numerical example is presented to illustrate
the effectiveness of the proposed results.

4
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2.5

2

1.5

1

0.5

0

0

−0.5

−1

10 20 30 40 50

t (s)

x1

x2

x3

Figure 1: The states of system (35).

Consider Chua’s oscillator [25] with the following dimen-
sionless equations

�̇�
1
(𝑡) = 𝛼 [𝑥

2
(𝑡) − 𝑥

1
(𝑡) − 𝑓 (𝑥

1
(𝑡))] ,

�̇�
2
(𝑡) = 𝑥

1
(𝑡) − 𝑥

2
(𝑡) + 𝑥

3
(𝑡) ,

�̇�
3
(𝑡) = − 𝛽𝑥

2
(𝑡) − 𝛾𝑥

3
(𝑡) ,

(35)

where 𝑓(𝑥
1
(𝑡)) = 𝑚

1
𝑥
1
(𝑡) + (1/2)(𝑚

0
− 𝑚
1
)(|𝑥
1
(𝑡) + 1| −

|𝑥
1
(𝑡) − 1|), 𝛼, 𝛽, 𝛾, 𝑚

0
, and 𝑚

1
are numbers. System (35)

can be reformulated in the form of (1) with 𝑥(𝑡) = [

𝑥
1
(𝑡)

𝑥
2
(𝑡)

𝑥
3
(𝑡)

],

𝐴 = [

−𝛼 𝛼 0

1 −1 1

0 −𝛽 −𝛾

], 𝐵 = [

−𝛼

0

0

], 𝐶 = [1 0 0]

∗, 𝜎(𝑡) = 𝑥
1
(𝑡), and

𝜑(𝜎(𝑡)) = 𝑚
1
𝜎(𝑡) + (1/2)(𝑚

0
−𝑚
1
)(|𝜎(𝑡) + 1| − |𝜎(𝑡) − 1|). The

nonlinearity 𝜑(𝜎(𝑡)) satisfies

min {𝑚
0
, 𝑚
1
} 𝜎(𝑡)
2

≤ 𝜑 (𝜎 (𝑡)) 𝜎 (𝑡) ≤ max {𝑚
0
, 𝑚
1
} 𝜎(𝑡)
2

,

min {𝑚
0
, 𝑚
1
} ≤

𝑑𝜑 (𝜎 (𝑡))

𝑑𝜎 (𝑡)

≤ max {𝑚
0
, 𝑚
1
} .

(36)

Thus, Γ
1
= Γ
2
= min{𝑚

0
, 𝑚
1
} and Δ

1
= Δ
2
= max{𝑚

0
, 𝑚
1
}.

When 𝛼 = −0.8018, 𝛽 = 0.136, 𝛾 = 0.1097, and
𝑚
0
= −2.96 are taken, system (35) is absolutely stable for

𝑚
1
≤ 2.009 by applying Theorem 3. However, we derive that

system (35) is absolutely stable for 𝑚
1
≤ 1.81 and 𝑚

1
≤

1.51, respectively, byTheorem 8 and the Popov criterion.This
shows that Theorem 3 is an improvement with respect to
Theorem 8 and the Popov criterion, and the slope restrictions
could improve the absolute stability condition. The states of
system (35) with 𝑚

1
= 2 at the initial value [2.5 2.2 2.5]

∗

are given in Figure 1, from which it is illustrated that system
(35) is absolutely stable.
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5. Conclusion

We have proposed new absolute stability criteria for Lur’e
systems with sector and slope restricted nonlinearities from
time-domain and frequency-domain points of view. The
slope restrictions on nonlinearities improve the absolute sta-
bility conditions. We have shown that the criteria are less
conservative than some existing results.
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