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A class of fractional-order BAM neural networks with delays in the leakage terms is considered. By using inequality technique and
analysis method, several delay-dependent sufficient conditions are established to ensure the uniform stability of such networks.
Moreover, the sufficient conditions guaranteeing the existence, uniqueness, and stability of the equilibrium point are also obtained.
In addition, three simulation examples are given to demonstrate the effectiveness of the obtained results.

1. Introduction

The bidirectional associative memory (BAM) neural net-
works models, first proposed and studied by Kosko [1], have
been widely applied within various engineering and scientific
fields such as pattern recognition, signal and image process-
ing, artificial intelligence, and combinatorial optimization
[2]. In such applications, it is of prime importance to ensure
that the designed neural networks are stable [3].

In hardware implementation of a neural network using
analog electronic circuits, time delay will be inevitable and
occur in the signal transmission among the neurons [4],
which will affect the stability of the neural system and may
lead to some complex dynamic behaviors such as oscillation,
divergence, chaos, and instability or other poor performances
of the neural networks [5]. In this case, the time delay may
substantially affect the performance of the recurrent neural
networks. Therefore, the study of stability for delayed neural
networks is of both theoretical and practical importance.
In the past few decades, a considerable number of suffi-
cient conditions on the existence, uniqueness, and stability

of equilibrium point for delayed BAM neural networks were
reported under some assumptions; for example, see [2–17]
and references therein.

In recent years, since the theory and application of
fractional differential equations gradually developed [18–20],
efforts have been made to study the complex dynamics of
fractional-order neural networks. In [21], the authors firstly
introduced a new class of cellular neural networks with
fractional order. The peculiarity of the new cellular neural
networks model consisted in replacing the traditional first
order cell with a noninteger order one. The introduction of
fractional-order cells, with a suitable choice of the coupling
parameters, led to the onset of chaos in a two-cell system of a
total order of less than three. A theoretical approach, based on
the interaction between equilibrium points and limit cycles,
was used to discover chaotic motions in fractional cellular
neural networks. In [22], the authors investigated the exis-
tence of chaos by using the harmonic balance theory. A circuit
realization of the proposed fractional two-cell chaotic cellular
neural networks was reported and the corresponding stra-
nge attractor was also shown. In [23], the authors presented
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an algorithm of numerical solution for fractional differential
equations and investigated chaos control and synchroniza-
tion in a fractional neuron network system. In [24], the
authors proposed a fractional-order Hopfield neural network
and investigated its stability by using energy function. In [25],
a new type of stability and synchronization, 𝛼-exponential
stability and 𝛼-synchronization, was investigated for a class
of fractional-order neural networks. Several criteria were
derived for such kind of stability of the addressed networks
by handling a new fractional-order differential inequality. In
[26], chaos and hyperchaos for fractional-order cellular neu-
ral networks were investigated by means of numerical simu-
lations. The existence of chaotic and hyperchaotic attractors
was verified with the related Lyapunov exponent spectrum,
bifurcation diagram, and phase portraits. In [27], the authors
investigated stability, multistability, bifurcations, and chaos
for fractional-order Hopfield neural networks. In [28], the
synchronization problemwas studied for a class of fractional-
order chaotic neural networks. By using the Mittag-Leffler
function, M-matrix and linear feedback control, a sufficient
condition was developed ensuring the synchronization of
such neural models with the Caputo fractional derivatives.
In [29], a class of fractional-order neural networks with
delay was considered; a sufficient condition was established
for the uniform stability of such networks. Moreover, the
existence, uniqueness, and stability of its equilibrium point
were also proved. In [30], the authors introduced memristor-
based fractional-order neural networks. The conditions on
the global Mittag-Leffler stability and synchronization were
established by using Lyapunov method for these networks.
In [31], the authors investigated the finite-time stability for
Caputo fractional neural networks with distributed delay
and established a delay-dependent stability criterion by using
the theory of fractional calculus and generalized Gronwall-
Bellman inequality approach. In [32], the global projective
synchronization for fractional-order neural networks was
investigated. Based on the preparation and some analysis
techniques, several criteria were obtained to realize projec-
tive synchronization of fractional-order neural networks via
combining open loop control and adaptive control.

Recently, some authors considered the uniform stability
of delayed neural networks; for example, see [33–36] and
references therein. In [33], the local uniform stability of
competitive neural networks with different time-scales under
vanishing perturbations was investigated; several stability
conditions were established based on Gershgorin’s Theorem.
In [34], the authors considered the uniform asymptotic
stability and global asymptotic stability of the equilibrium
point for time-delays Hopfield neural networks. Several
criteria of the system were derived by using the Lyapunov
functional method and the linear matrix inequality approach
for estimating the upper bound of the derivative of Lyapunov
functional. In [35], the authors showed the uniform stability
and existence and uniqueness of the equilibrium point of
the fractional-order complex-valued neural networks with
time delays firstly. In [36], the authors discuss the exis-
tence and global uniform asymptotic stability of almost
periodic solutions for cellular neural networks. By utilizing
the theory of the almost periodic differential equation and

the Lyapunov functionals method, some sufficient conditions
were obtained to ensure the existence and global uniform
asymptotic stability. To the best of our knowledge, however,
there are few results on the uniform stability analysis of
fractional-order BAM neural networks.

Motivated by the above discussions, the objective of
this paper is to study the uniform stability analysis of
fractional-order BAM neural networks with delays in the
leakage terms. In order to demonstrate the stability of our
proposedmodel, a novel normwhich can be found in [29, 35]
will be introduced, and several delay-dependent sufficient
conditions ensuring the uniform stability of our model will
be established. Incidentally, when it comes to the proof of the
existence, uniqueness, and stability of the equilibrium point
of the proposed model, we will utilize the common norm for
convenience.

The rest of the paper is structured as follows. In Section 2,
wewill present the proposedmodel and recall somenecessary
definitions and lemmas. In Section 3, a sufficient criterion
ensuring the uniform stability of such neural networks is pre-
sented and the existence and uniqueness of the equilibriumof
the model is also demonstrated. Three numerical examples
are presented to manifest the effectiveness of our theore-
tical results in Section 4. Finally, the paper is concluded in
Section 5.

2. Model Description and Preliminaries

In this paper, we consider the following fractional-order BAM
neural networks with delays in the leakage terms:

𝐷
𝛼

𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡 − 𝜎) +

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏)) + 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝐷
𝛼

𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡 − 𝜎) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏)) + 𝐽

𝑗
, 𝑗 = 1, 2, . . . , 𝑚,

(1)

or in the vector form

𝐷
𝛼

𝑥 (𝑡) = −𝐴𝑥 (𝑡 − 𝜎) + 𝐶𝐹 (𝑦 (𝑡)) + 𝑃𝑉 (𝑦 (𝑡 − 𝜏)) + 𝐼,

𝐷
𝛼

𝑦 (𝑡) = −𝐵𝑦 (𝑡 − 𝜎) + 𝐷𝐺 (𝑥 (𝑡)) + 𝑄𝑈 (𝑥 (𝑡 − 𝜏)) + 𝐽,

(2)

where 𝐷𝛼 denotes Caputo fractional derivative of order 𝛼,
0 < 𝛼 < 1; 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ R𝑛, 𝑦(𝑡) =
(𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑚
(𝑡))
𝑇

∈ R𝑚, 𝑥
𝑖
(𝑡), and 𝑦

𝑗
(𝑡) are the state

of the 𝑖th neuron from the neural field 𝐹
𝑋
and the 𝑗th neuron

from the neural field 𝐹
𝑌
at time 𝑡, respectively; 𝐹

𝑗
(𝑦) and

𝑉
𝑗
(𝑦) denote the activation functions of the 𝑗th neuron from

the neural field 𝐹
𝑌
and 𝐺

𝑖
(𝑥) and 𝑈

𝑖
(𝑥) denote the activation

functions of the 𝑖th neuron from the neural field 𝐹
𝑋
; 𝐼
𝑖
and
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𝐽
𝑗
are constants, which denote the external inputs on the 𝑖th

neuron from𝐹
𝑋
and the 𝑗th neuron from𝐹

𝑌
, respectively; the

positive constants 𝑎
𝑖
and 𝑏
𝑗
denote the rates withwhich the 𝑖th

neuron from the neural field 𝐹
𝑋
and the 𝑗th neuron from the

neural field 𝐹
𝑌
will reset their potential to the resting state in

isolation when disconnected from the networks and external
inputs, respectively; the constants 𝑐

𝑖𝑗
, 𝑝
𝑖𝑗
, 𝑑
𝑗𝑖
, and 𝑞

𝑗𝑖
denote

the connection strengths; the nonnegative constants 𝜎 and 𝜏
denote the leakage delay and the transmission delay, respec-
tively;𝐴 = diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) and 𝐵 = diag(𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑚
) are

diagonal matrices, 𝐶, 𝐷, 𝑃, and𝑄 are the connection weight
matrices; and 𝐼 = (𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇 and 𝐽 = (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑚
)
𝑇 are

the external inputs.
The initial conditions associated with system (1) are of the

form

𝑥
𝑖
(𝑠) = 𝜓

𝑖
(𝑠) , 𝑠 ∈ [−𝛾, 0] , 𝑖 = 1, 2, . . . , 𝑛,

𝑦
𝑗
(𝑠) = 𝜙

𝑗
(𝑠) , 𝑠 ∈ [−𝛾, 0] , 𝑗 = 1, 2, . . . , 𝑚,

(3)

where 𝛾 = max{𝜎, 𝜏}, and it is usually assumed that 𝜓
𝑖
(𝑠),

𝜙
𝑗
(𝑠) ∈ 𝐶([−𝛾, 0], 0), 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑚, with

the norm given by ‖𝜓(𝑡)‖ = ∑
𝑛

𝑖=1
sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡

|𝜓
𝑖
(𝑡)|} and

‖𝜙(𝑡)‖ = ∑
𝑚

𝑗=1
sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡

|𝜙
𝑖
(𝑡)|}.

Throughout this paper, we make the following assump-
tion.

(H) The activation functions 𝐹
𝑗
(⋅), 𝑄
𝑖
(⋅), 𝑉
𝑗
(⋅), and 𝑈

𝑖
(⋅)

are Lipschitz continuous; that is, there exist constants 𝐹
𝑗
> 0,

𝐺
𝑖
> 0, 𝑉

𝑗
> 0, and 𝑈

𝑖
> 0 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
(𝑢) − 𝐹

𝑗
(V)
󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐹
𝑗
|𝑢 − V| ,

󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
(𝑢) − 𝐺

𝑖
(V)󵄨󵄨󵄨
󵄨
≤ 𝐺
𝑖
|𝑢 − V| ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
(𝑢) − 𝑉

𝑗
(V)
󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑉
𝑗
|𝑢 − V| ,

󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
(𝑢) − 𝑈

𝑖
(V)󵄨󵄨󵄨
󵄨
≤ 𝑈
𝑖
|𝑢 − V| ,

(4)

for any 𝑢, V ∈ R, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑚.
To prove our results, the following definitions and lemma

are necessary.

Definition 1 (see [18]). TheRiemann-Liouville fractional inte-
gral with fractional-order 𝛼 > 0 of function 𝑓(𝑡) is defined as
follows:

𝑡0
𝐼
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑡0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, (5)

where Γ(⋅) is the Gamma function and Γ(𝜏) = ∫∞
0

𝑡
𝜏−1

𝑒
−𝑡

𝑑𝑡.

Definition 2 (see [18]). The Caputo fractional derivative of
fractional-order 𝛼 of function 𝑓(𝑡) is defined as follows:

𝐶

𝑡0
𝐷

𝛼

𝑡
𝑓 (𝑡) =

𝑡0
𝐼
𝑛−𝛼

𝑡

𝑑
𝑛

𝑑𝑡
𝑛
𝑓 (𝑡)

=

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑡0

(𝑡 − 𝜏)
𝑛−𝛼−1

𝑓
(𝑛)

(𝜏) 𝑑𝜏,

(6)

where 𝑛 is the first integer greater than𝛼; that is, 𝑛−1 < 𝛼 < 𝑛.

Particularly, when 0 < 𝛼 < 1,

𝐷
𝛼

𝑓 (𝑡) =

1

Γ (1 − 𝛼)

∫

𝑡

𝑡0

(𝑡 − 𝜏)
−𝛼

𝑓
󸀠

(𝜏) 𝑑𝜏. (7)

Definition 3. Thesolution of system (1) is said to be uniformly
stable if for any 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) > 0 such that,
for any two solutions (𝑥(𝑡), 𝑦(𝑡))𝑇, (𝑥(𝑡), 𝑦(𝑡))𝑇, of system (1)
with initial functions (𝜓(𝑡), 𝜙(𝑡))𝑇, (𝜓(𝑡), 𝜙(𝑡))

𝑇

, respectively,
it holds that

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ < 𝜀,
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
< 𝜀, (8)

for all 𝑡 ≥ 0, whenever
󵄩
󵄩
󵄩
󵄩
𝜓 (𝑠) − 𝜓 (𝑠)

󵄩
󵄩
󵄩
󵄩
< 𝛿,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑠) − 𝜙 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
< 𝛿, 𝑠 ∈ [−𝛾, 0] ,

(9)

where

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑠) − 𝜓 (𝑠)

󵄩
󵄩
󵄩
󵄩
=

𝑛

∑

𝑖=1

sup
𝑠∈[−𝛾,0]

{𝑒
−𝑠 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑠) − 𝜓

𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨
} ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑠) − 𝜙 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
=

𝑚

∑

𝑗=1

sup
𝑠∈[−𝛾,0]

{𝑒
−𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗
(𝑠) − 𝜙

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
} ,

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ =

𝑛

∑

𝑖=1

sup
𝑡

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
} ,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
=

𝑚

∑

𝑗=1

sup
𝑡

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} .

(10)

Lemma4 (see [20]). Let 𝑛 be a positive integer such that 𝑛−1 <
𝛼 < 𝑛; if 𝑦(𝑡) ∈ 𝐶𝑛−1[𝑎, 𝑏], then

𝐼
𝛼

𝐷
𝛼

𝑦 (𝑡) = 𝑦 (𝑡) −

𝑛−1

∑

𝑘=0

𝑦
(𝑘)

(𝑎)

𝑘!

(𝑡 − 𝑎)
𝑘

. (11)

In particular, if 0 < 𝛼 ≤ 1 and 𝑦(𝑡) ∈ 𝐶[𝑎, 𝑏], then

𝐼
𝛼

𝐷
𝛼

𝑦 (𝑡) = 𝑦 (𝑡) − 𝑦 (𝑎) . (12)

Remark 5. It is noted that when the leakage delay 𝜎 = 0,
the system (1) becomes the following fractional-order BAM
neural networks with delay

𝐷
𝛼

𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏)) + 𝐼

𝑖
,

𝐷
𝛼

𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏)) + 𝐽

𝑗
,

(13)
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with initial conditions
𝑥
𝑖
(𝑠) = 𝜓

𝑖
(𝑠) , 𝑠 ∈ [−𝜏, 0] ,

𝑦
𝑗
(𝑠) = 𝜙

𝑗
(𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(14)

for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

3. Main Results

Theorem6. Under assumption (H), the system (1) is uniformly
stable, if 𝑆

1
> 0, 𝑇

1
> 0, and 𝑆

1
𝑇
1
> 𝑆
2
𝑇
2
hold, where

𝑆
1
= 1 −max

1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎

, 𝑇
1
= 1 − max

1≤𝑗≤𝑚

{𝑏
𝑗
} 𝑒
−𝜎

,

𝑆
2
=

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
} +

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏

,

𝑇
2
=

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
} +

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
} 𝑒
−𝜏

.

(15)

Proof. Assume that (𝑥(𝑡), 𝑦(𝑡))𝑇 = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑦
1
(𝑡),

. . . , 𝑦
𝑚
(𝑡))
𝑇 and (𝑥(𝑡), 𝑦(𝑡))

𝑇

= (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑦
1
(𝑡), . . . ,

𝑦
𝑚
(𝑡))
𝑇 are any two solutions of system (1) with the initial

conditions (3), then
𝐷
𝛼

(𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)) = −𝑎

𝑖
(𝑥
𝑖
(𝑡 − 𝜎) − 𝑥

𝑖
(𝑡 − 𝜎))

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝐹
𝑗
(𝑦
𝑗
(𝑡)) − 𝐹

𝑗
(𝑦
𝑗
(𝑡)))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏))

− 𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏))) ,

𝑖 = 1, 2, . . . , 𝑛,

𝐷
𝛼

(𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)) = −𝑏

𝑗
(𝑦
𝑗
(𝑡 − 𝜎) − 𝑦

𝑗
(𝑡 − 𝜎))

+

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝐺
𝑖
(𝑥
𝑖
(𝑡)) − 𝐺

𝑖
(𝑥
𝑖
(𝑡)))

+

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
(𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏))

−𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏))) ,

𝑗 = 1, 2, . . . , 𝑚.

(16)
From Lemma 4, we can obtain

𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡) = 𝜓

𝑖
(0) − 𝜓

𝑖
(0)

+ 𝐼
𝛼

[−𝑎
𝑖
(𝑥
𝑖
(𝑡 − 𝜎) − 𝑥

𝑖
(𝑡 − 𝜎))

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝐹
𝑗
(𝑦
𝑗
(𝑡)) − 𝐹

𝑗
(𝑦
𝑗
(𝑡)))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏))

−𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏)))] ,

𝑖 = 1, 2, . . . , 𝑛,

𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡) = 𝜙

𝑗
(0) − 𝜙

𝑗
(0)

+ 𝐼
𝛼

[−𝑏
𝑗
(𝑦
𝑗
(𝑡 − 𝜎) − 𝑦

𝑗
(𝑡 − 𝜎))

+

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝐺
𝑖
(𝑥
𝑖
(𝑡)) − 𝐺

𝑖
(𝑥i (𝑡)))

+

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
(𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏))

−𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏)))] ,

𝑗 = 1, 2, . . . , 𝑚.

(17)

Further, we have that

𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(0) − 𝜓

𝑖
(0)
󵄨
󵄨
󵄨
󵄨
+

1

Γ (𝛼)

𝑒
−𝑡

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠 − 𝜎) − 𝑥

𝑖
(𝑠 − 𝜎)

󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
(𝑦
𝑗
(𝑠)) − 𝐹

𝑗
(𝑦
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
(𝑦
𝑗
(𝑠 − 𝜏))

− 𝑉
𝑗
(𝑦
𝑗
(𝑠 − 𝜏))

󵄨
󵄨
󵄨
󵄨
󵄨
] 𝑑𝑠,

(18)

𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗
(0) − 𝜙

𝑗
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
+

1

Γ (𝛼)

𝑒
−𝑡

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑏
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠 − 𝜎) − 𝑦

𝑗
(𝑠 − 𝜎)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
(𝑥
𝑖
(𝑠)) − 𝐺

𝑖
(𝑥
𝑖
(𝑠))

󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
(𝑥
𝑖
(𝑠 − 𝜏))

− 𝑈
𝑖
(𝑥
𝑖
(𝑠 − 𝜏))

󵄨
󵄨
󵄨
󵄨
] 𝑑𝑠,

(19)

for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
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It follows from assumption (H) and inequality (18) that

𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(0) − 𝜓

𝑖
(0)
󵄨
󵄨
󵄨
󵄨
+ 𝑎
𝑖

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜎)

𝑒
−(𝑠−𝜎)

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠 − 𝜎) − 𝑥

𝑖
(𝑠 − 𝜎)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠)

𝑒
−𝑠

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
(𝑦
𝑗
(𝑠)) − 𝐹

𝑗
(𝑦
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜏)

𝑒
−(𝑠−𝜏)

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
(𝑦
𝑗
(𝑠 − 𝜏)) − 𝑉

𝑗
(𝑦
𝑗
(𝑠 − 𝜏))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(0) − 𝜓

𝑖
(0)
󵄨
󵄨
󵄨
󵄨
+ 𝑎
𝑖

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜎)

𝑒
−(𝑠−𝜎)

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠 − 𝜎) − 𝑥

𝑖
(𝑠 − 𝜎)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠)

𝑒
−𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜏)

𝑒
−(𝑠−𝜏)

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠 − 𝜏) − 𝑦

𝑗
(𝑠 − 𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

= 𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(0) − 𝜓

𝑖
(0)
󵄨
󵄨
󵄨
󵄨
+ 𝑎
𝑖

1

Γ (𝛼)

× ∫

𝜎

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜎)

𝑒
−(𝑠−𝜎)

×
󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑠 − 𝜎) − 𝜓

𝑖
(𝑠 − 𝜎)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ 𝑎
𝑖

1

Γ (𝛼)

∫

𝑡

𝜎

(𝑡 − s)𝛼−1𝑒−(𝑡−𝑠+𝜎)𝑒−(𝑠−𝜎)

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠 − 𝜎) − 𝑥

𝑖
(𝑠 − 𝜎)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠)

𝑒
−𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗

1

Γ (𝛼)

× ∫

𝜏

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜏)

𝑒
−(𝑠−𝜏)

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗
(𝑠 − 𝜏) − 𝜙

𝑗
(𝑠 − 𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗

1

Γ (𝛼)

× ∫

𝑡

𝜏

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠+𝜏)

𝑒
−(𝑠−𝜏)

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠 − 𝜏) − 𝑦

𝑗
(𝑠 − 𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

= 𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(0) − 𝜓

𝑖
(0)
󵄨
󵄨
󵄨
󵄨
+ 𝑎
𝑖

1

Γ (𝛼)

× ∫

0

−𝜎

(𝑡 − 𝛾 − 𝜎)
𝛼−1

𝑒
−(𝑡−𝛾)

𝑒
−𝛾

×
󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝛾) − 𝜓

𝑖
(𝛾)

󵄨
󵄨
󵄨
󵄨
𝑑𝛾

+ 𝑎
𝑖

1

Γ (𝛼)

∫

𝑡−𝜎

0

(𝑡 − 𝛾 − 𝜎)
𝛼−1

𝑒
−(𝑡−𝛾)

𝑒
−𝛾

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝛾) − 𝑥

𝑖
(𝛾)

󵄨
󵄨
󵄨
󵄨
𝑑𝛾

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−(𝑡−𝑠)

𝑒
−𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗

1

Γ (𝛼)

× ∫

0

−𝜏

(𝑡 − 𝛽 − 𝜏)
𝛼−1

𝑒
−(𝑡−𝛽)

𝑒
−𝛽
󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗
(𝛽) − 𝜙

𝑗
(𝛽)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝛽

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗

1

Γ (𝛼)

× ∫

𝑡−𝜏

0

(𝑡 − 𝛽 − 𝜏)
𝛼−1

𝑒
−(𝑡−𝛽)

𝑒
−𝛽
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝛽) − 𝑦

𝑗
(𝛽)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝛽

≤ sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑡) − 𝜓

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑖
sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑡) − 𝜓

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜎
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×

1

Γ (𝛼)

∫

𝑡

𝑡−𝜎

𝜃
𝛼−1

𝑒
−𝜃

𝑑𝜃

+ 𝑎
𝑖
sup
𝑡

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥i (𝑡) − 𝑥𝑖 (𝑡)

󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜎

×

1

Γ (𝛼)

∫

𝑡−𝜎

0

𝜃
𝛼−1

𝑒
−𝜃

𝑑𝜃

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
}

𝑚

∑

𝑗=1

sup
𝑡

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
}

×

1

Γ (𝛼)

∫

𝑡

0

𝑢
𝛼−1

𝑒
−𝑢

𝑑𝑢

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
}

𝑚

∑

𝑗=1

sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗
(𝑡) − 𝜙

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜏

×

1

Γ (𝛼)

∫

𝑡

𝑡−𝜏

V𝛼−1𝑒−V𝑑V

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
}

𝑚

∑

𝑗=1

sup
𝑡

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜏

×

1

Γ (𝛼)

∫

𝑡−𝜏

0

V𝛼−1𝑒−V𝑑V

≤ sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑡) − 𝜓

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑖
sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑡) −𝜓

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜎

+ 𝑎
𝑖
sup
𝑡

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜎

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
}

𝑚

∑

𝑗=1

sup
𝑡

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
}

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
}

𝑚

∑

𝑗=1

sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗
(𝑡) − 𝜙

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜏

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
}

𝑚

∑

𝑗=1

sup
𝑡

{𝑒
−𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜏

= sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑡) − 𝜓

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑖
𝑒
−𝜎 sup
𝑡∈[−𝛾,0]

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝜓
𝑖
(𝑡) − 𝜓

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑖
𝑒
−𝜎sup
𝑡

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
}

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
}
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏
󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+ max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏 󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
.

(20)

From (20), we can get

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ =

𝑛

∑

𝑖=1

sup
𝑡

{𝑒
−𝑡 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
}

≤
󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
+max
1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎 󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

+max
1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎

‖𝑥 (𝑡) − 𝑥 (𝑡)‖

+

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
}
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏
󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏 󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
,

(21)

which implies

‖𝑥 (𝑡) − 𝑥 (𝑡)‖

≤

∑
𝑛

𝑖=1
max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
} + ∑
𝑛

𝑖=1
max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏

1 −max
1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎

×
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
+

1 +max
1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎

1 −max
1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎

×
󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
+

∑
𝑛

𝑖=1
max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏

1 −max
1≤𝑖≤𝑛

{𝑎
𝑖
} 𝑒
−𝜎

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

=

𝑆
2

𝑆
1

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
+

𝑆
3

𝑆
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑆
4

𝑆
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
,

(22)

where 𝑆
3

= 1 + max
1≤𝑖≤𝑛

{𝑎
𝑖
}𝑒
−𝜎, 𝑆
4

= ∑
𝑛

𝑖=1
max
1≤𝑗≤𝑚

{|𝑝
𝑖𝑗
|𝑉
𝑗
}𝑒
−𝜏.

Similarly, it follows from assumption (H) and inequality
(19) that

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

≤

∑
𝑚

𝑗=1
max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
} + ∑
𝑚

𝑗=1
max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
} 𝑒
−𝜏

1 −max
1≤𝑗≤𝑚

{𝑏
𝑗
} 𝑒
−𝜎

× ‖𝑥 (𝑡) − 𝑥 (𝑡)‖ +

1 +max
1≤𝑗≤𝑚

{𝑏
𝑗
} 𝑒
−𝜎

1 −max
1≤𝑗≤𝑚

{𝑏
𝑗
} 𝑒
−𝜎
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×

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
+

∑
𝑚

𝑗=1
max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
} 𝑒
−𝜏

1 −max
1≤𝑗≤𝑚

{𝑏
𝑗
} 𝑒
−𝜎

×
󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

=

𝑇
2

𝑇
1

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ +

𝑇
3

𝑇
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+

𝑇
4

𝑇
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
,

(23)

where 𝑇
3
= 1 + max

1≤𝑗≤𝑚
{𝑏
𝑗
}𝑒
−𝜎, 𝑇
4

= ∑
𝑚

𝑗=1
max
1≤𝑖≤𝑛

{|𝑞
𝑗𝑖
|𝑈
𝑖
}𝑒
−𝜏.

Substituting (23) into (22), we can obtain

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ ≤

𝑆
2

𝑆
1

[

𝑇
2

𝑇
1

‖𝑥 (𝑡) − 𝑥 (𝑡)‖

+

𝑇
3

𝑇
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+

𝑇
4

𝑇
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
]

+

𝑆
3

𝑆
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
+

𝑆
4

𝑆
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

=

𝑆
2
𝑇
2

𝑆
1
𝑇
1

‖𝑥 (𝑡) − 𝑥 (𝑡)‖

+

𝑆
2
𝑇
4
+ 𝑆
3
𝑇
1

𝑆
1
𝑇
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑆
2
𝑇
3
+ 𝑆
4
𝑇
1

𝑆
1
𝑇
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
.

(24)

By using condition 𝑆
1
𝑇
1
> 𝑆
2
𝑇
2
, (24) implies

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ ≤

𝑆
2
𝑇
4
+ 𝑆
3
𝑇
1

𝑆
1
𝑇
1
− 𝑆
2
𝑇
2

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑆
2
𝑇
3
+ 𝑆
4
𝑇
1

𝑆
1
𝑇
1
− 𝑆
2
𝑇
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
.

(25)

And, substituting (22) into (23), we can get

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤

𝑇
2

𝑇
1

[

𝑆
2

𝑆
1

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑆
3

𝑆
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑆
4

𝑆
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
]

+

𝑇
3

𝑇
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
+

𝑇
4

𝑇
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩

=

𝑇
2
𝑆
2

𝑇
1
𝑆
1

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

+

𝑇
2
𝑆
4
+ 𝑇
3
𝑆
1

𝑇
1
𝑆
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+

𝑇
2
𝑆
3
+ 𝑇
4
𝑆
1

𝑇
1
𝑆
1

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
.

(26)

By using condition 𝑆
1
𝑇
1
> 𝑆
2
𝑇
2
, (26) implies

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤

𝑇
2
𝑆
4
+ 𝑇
3
𝑆
1

𝑇
1
𝑆
1
− 𝑇
2
𝑆
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+

𝑇
2
𝑆
3
+ 𝑇
4
𝑆
1

𝑇
1
𝑆
1
− 𝑇
2
𝑆
2

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
.

(27)

If we take

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤

𝜀
1

(𝑆
2
𝑇
4
+ 𝑆
3
𝑇
1
) / (𝑆
1
𝑇
1
− 𝑆
2
𝑇
2
)

=

𝜀
1

2𝛿
1

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

𝜀
1

(𝑆
2
𝑇
3
+ 𝑆
4
𝑇
1
) / (𝑆
1
𝑇
1
− 𝑆
2
𝑇
2
)

=

𝜀
1

2𝛿
2

,

(28)

where

𝛿
1
=

𝑆
2
𝑇
4
+ 𝑆
3
𝑇
1

𝑆
1
𝑇
1
− 𝑆
2
𝑇
2

, 𝛿
2
=

𝑆
2
𝑇
3
+ 𝑆
4
𝑇
1

𝑆
1
𝑇
1
− 𝑆
2
𝑇
2

. (29)

From (25), we can obtain

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ ≤ 𝜀
1
. (30)

If we take

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑡) − 𝜙 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

𝜀
2

(𝑇
2
𝑆
4
+ 𝑇
3
𝑆
1
) / (𝑇
1
𝑆
1
− 𝑇
2
𝑆
2
)

=

𝜀
2

2𝛿
3

,

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑡) − 𝜓 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤

𝜀
2

(𝑇
2
𝑆
3
+ 𝑇
4
𝑆
1
) / (𝑇
1
𝑆
1
− 𝑇
2
𝑆
2
)

=

𝜀
2

2𝛿
4

,

(31)

where

𝛿
3
=

𝑇
2
𝑆
4
+ 𝑇
3
𝑆
1

𝑇
1
𝑆
1
− 𝑇
2
𝑆
2

, 𝛿
4
=

𝑇
2
𝑆
3
+ 𝑇
4
𝑆
1

𝑇
1
𝑆
1
− 𝑇
2
𝑆
2

, (32)

from (27), we can get

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤ 𝜀
2
. (33)

From (30) and (33), we say that, for any 𝜀 = max{𝜀
1
, 𝜀
2
} >

0, then there exists a constant 𝛿 = 𝜀/max{𝛿
5
, 𝛿
6
} > 0, 𝛿

5
=

max{𝛿
1
, 𝛿
4
}, or 𝛿

6
= max{𝛿

2
, 𝛿
3
} such that ‖𝑥(𝑡) − 𝑥(𝑡)‖ < 𝜀,

‖𝑦(𝑡) − 𝑦(𝑡)‖ < 𝜀, when ‖𝜓(𝑡) − 𝜓(𝑡)‖ < 𝛿, ‖𝜙(𝑡) − 𝜙(𝑡)‖ <
𝛿, which means that the solution of system (1) is uniformly
stable. The proof is completed.
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Theorem 7. Under assumption (H) and the conditions of
Theorem 6, the system (1) has a unique equilibrium point,
which is uniformly stable if 𝑊

1
< min

1≤𝑗≤𝑚
{𝑏
𝑗
} and 𝑊

2
<

min
1≤𝑖≤𝑛

{𝑎
𝑖
} hold, where

𝑊
1
=

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
} +

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} ,

𝑊
2
=

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
} +

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
} .

(34)

Proof. Let 𝑎
𝑖
𝑥
∗

𝑖
= 𝑢
∗

𝑖
, 𝑏
𝑗
𝑦
∗

𝑗
= V∗
𝑗
, and construct a mapping

Υ(𝑢, V) : R𝑛+𝑚 → R𝑛+𝑚 defined by

Υ (𝑢, V) = (Υ
1
(𝑢, V) , Υ

2
(𝑢, V) , . . . , Υ

𝑛
(𝑢, V) ,

Υ
𝑛+1
(𝑢, V), Υ

𝑛+2
(𝑢, V), . . . , Υ

𝑛+𝑚
(𝑢, V))𝑇,

(35)

where

Υ
𝑖
(𝑢, V) =

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(

V
𝑗

𝑏
𝑗

) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(

V
𝑗

𝑏
𝑗

) + 𝐼
𝑖
,

Υ
𝑛+𝑗

(𝑢, V) =
𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(

𝑢
𝑖

𝑎
𝑖

) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(

𝑢
𝑖

𝑎
𝑖

) + 𝐽
𝑗
,

(36)

for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
Now, we will show that Υ(𝑢, V) is a contraction mapping

on R𝑛+𝑚. In fact, for any two different points (𝑢, V) =

(𝑢
1
, . . . , 𝑢

𝑛
, V
1
, . . . , V

𝑚
)
𝑇 and (𝑢, V) = (𝑢

1
, . . . , 𝑢

𝑛
, V
1
, . . . , V

𝑚
)
𝑇,

we have

‖Υ (𝑢, V) − Υ (𝑢, V)‖

=

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝐹
𝑗
(

V
𝑗

𝑏
𝑗

) − 𝐹
𝑗
(

V
𝑗

𝑏
𝑗

))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑉
𝑗
(

V
𝑗

𝑏
𝑗

) − 𝑉
𝑗
(

V
𝑗

𝑏
𝑗

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝐺
𝑖
(

𝑢
𝑖

𝑎
𝑖

) − 𝐺
𝑖
(

𝑢
𝑖

𝑎
𝑖

))

+

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
(𝑈
𝑖
(

𝑢
𝑖

𝑎
𝑖

) − 𝑈
𝑖
(

𝑢
𝑖

𝑎
𝑖

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑗
− V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑏
𝑗

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑗
− V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑏
𝑗

]

]

+

𝑚

∑

𝑗=1

[

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖

󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
− 𝑢
𝑖

󵄨
󵄨
󵄨
󵄨

𝑎
𝑖

+

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖

󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
− 𝑢
𝑖

󵄨
󵄨
󵄨
󵄨

𝑎
𝑖

]

≤ (

∑
𝑛

𝑖=1
max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
} + ∑

𝑛

𝑖=1
max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
}

min
1≤𝑗≤𝑚

{𝑏
𝑗
}

)

×

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑗
− V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

+ (

∑
𝑚

𝑗=1
max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
} + ∑

𝑚

𝑗=1
max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
}

min
1≤𝑖≤𝑛

{𝑎
𝑖
}

)

×

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
− 𝑢
𝑖

󵄨
󵄨
󵄨
󵄨

=

𝑊
1

min
1≤𝑗≤𝑚

{𝑏
𝑗
}

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑗
− V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

𝑊
2

min
1≤𝑖≤𝑛

{𝑎
𝑖
}

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
− 𝑢
𝑖

󵄨
󵄨
󵄨
󵄨
.

(37)

By using conditions 𝑊
1

< min
1≤𝑗≤𝑚

{𝑏
𝑗
} and 𝑊

2
<

min
1≤𝑖≤𝑛

{𝑎
𝑖
}, (37) implies

‖Υ (𝑢, V) − Υ (𝑢, V)‖ <
𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑗
− V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
− 𝑢
𝑖

󵄨
󵄨
󵄨
󵄨
= ‖(𝑢, V) − (𝑢, V)‖ ,

(38)

which implies that Υ(𝑢, V) is a contraction mapping on
R𝑛+𝑚. Hence, there exists a unique fixed point (𝑢∗, V∗) =

(𝑢
∗

1
, . . . , 𝑢

∗

𝑛
, V∗
1
, . . . , V∗

𝑚
)
𝑇 such that Υ(𝑢∗, V∗) = (𝑢

∗

, V∗); that
is

𝑢
∗

𝑖
=

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(

V
𝑗

𝑏
𝑗

) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(

V
𝑗

𝑏
𝑗

) + 𝐼
𝑖
,

V∗
𝑗
=

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(

𝑢
𝑖

𝑎
𝑖

) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(

𝑢
𝑖

𝑎
𝑖

) + 𝐽
𝑗
,

(39)

for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. That is

−𝑎
𝑖
𝑥
∗

𝑖
+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(𝑦
∗

𝑗
) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑦
∗

𝑗
) + 𝐼
𝑖
= 0,

−𝑏
𝑗
𝑦
∗

𝑗
+

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑥
∗

𝑖
) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(𝑥
∗

𝑖
) + 𝐽
𝑗
= 0,

(40)

for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, which implies that (𝑥∗, 𝑦∗)
is an equilibrium point of system (1). Moreover, it follows
from Theorem 6 that (𝑥∗, 𝑦∗) is uniformly stable. The proof
is completed.

Corollary 8. Under assumption (H), the system (13) is uni-
formly stable, if 𝑆

1
> 0, ̃𝑇

1
> 0, and 𝑆

1

̃
𝑇
1
> 𝑆
2

̃
𝑇
2
hold, where

𝑆
1
= 1 −max

1≤𝑖≤𝑛

{𝑎
𝑖
} ,

̃
𝑇
1
= 1 − max

1≤𝑗≤𝑚

{𝑏
𝑗
} ,
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𝑆
2
=

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
} +

n
∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} 𝑒
−𝜏

,

̃
𝑇
2
=

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
} +

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
} 𝑒
−𝜏

.

(41)

Proof. Similar to the proof of Theorem 6, we can obtain the
above Corollary 8; thus, we omit it.

Corollary 9. Under assumption (H) and the conditions of
Corollary 8, the system (13) has a unique equilibrium point,
which is uniformly stable if 𝑊̃

1
< min

1≤𝑗≤𝑚
{𝑏
𝑗
} and 𝑊̃

2
<

min
1≤𝑖≤𝑛

{𝑎
𝑖
} hold, where

𝑊̃
1
=

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
} +

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑗
} ,

𝑊̃
2
=

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
} +

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖
} .

(42)

Proof. Similar to the proof of Theorem 7, we can obtain the
above Corollary 9; thus, we omit it.

Remark 10. In [25], the authors investigated𝛼-stability and𝛼-
synchronization of fractional-order neural networks without
delays. In [28], the authors introduced a class of fractional-
order chaotic neural networks without delays and discussed
the synchronization of such networks. In [29], the authors
took the constant delay into account and discussed the
dynamic analysis of a class of fractional-order neural net-
works with constant delay. In [35], the authors investigated
the uniform stability of fractional-order complex-valued
neural networks with constant delay. Different from the
previous works, here, we have viewed the stability analysis
of fractional-order BAM neural networks with delays in the
leakage terms.

Remark 11. In [29, 35], several delay-independent stability
conditions were given for fractional-order neural networks
with constant delay. In this paper, a delay-dependent
stability condition was provided. It is known that delay-
dependent conditions are usually less conservative than
delay-independent ones, especially in the case when the
delay size is small [10]. In addition, the positive constants 𝑐

𝑖

(𝑖 = 0, 1, . . . , 𝑛) in the model of [29] was required satisfying
0 < 𝑐

𝑖
< 1 (𝑖 = 0, 1, . . . , 𝑛). However, the obtained results

in this paper show that when the leakage delay 𝜎 > 0, the
positive constants 𝑎

𝑖
> 1 (𝑖 = 0, 1, . . . , 𝑛) and 𝑏

𝑗
> 1 (𝑗 =

0, 1, . . . , 𝑚) could be possible, and the simulation
examples in the next section verify the validity of our
results.

4. Examples

Example 1. Consider the following fractional-order BAM
neural networks with delays in the leakage terms:

𝐷
𝛼

𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡 − 𝜎) +

2

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(𝑦
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏)) + 𝐼

𝑖
, 𝑖 = 1, 2,

𝐷
𝛼

𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡 − 𝜎) +

2

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑥
𝑖
(𝑡))

+

2

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏)) + 𝐽

𝑗
, 𝑗 = 1, 2,

(43)

where 𝛼 = 0.95, 𝜎 = 0.25, 𝜏 = 0.50, 𝐴 = diag(0.55, 0.60),
𝐵 = diag(0.50, 0.50),

𝐶 = [

1.22 0.80

0.65 −0.45
] , 𝐷 = [

0.55 0.43

−0.32 0.42
] ,

𝑃 = [

0.38 −0.32

0.45 0.80
] ,

𝑄 = [

−0.62 0.34

0.45 1.10
] , 𝐼 = [0.84, 1.22]

𝑇

,

𝐽 = [−0.48, 0.75]
𝑇

,

𝐺
1
(𝑥) = 𝐺

2
(𝑥) = 𝑈

1
(𝑥) = 𝑈

2
(𝑥)

=

1

10

(|𝑥 + 1| + |𝑥 − 1|) ,

𝐹
1
(𝑦) = 𝐹

2
(𝑦) = 𝑉

1
(𝑦) = 𝑉

2
(𝑦)

=

1

20

(
󵄨
󵄨
󵄨
󵄨
𝑦 + 1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 − 1

󵄨
󵄨
󵄨
󵄨
) .

(44)

By calculation, 𝐹
1
= 𝐹
2
= 𝑉
1
= 𝑉
2
= 0.1, 𝐺

1
= 𝐺
2
=

𝑈
1
= 𝑈
2
= 0.2, 𝑆

1
= 1 − 0.60𝑒

−0.25

= 0.5327, 𝑇
1
= 1 −

0.5𝑒
−0.25

= 0.6106, 𝑆
2
= 1.22 × 0.1 + 0.65 × 0.1 + (0.38 ×

0.1 + 0.80 × 0.1)𝑒
−0.5

= 0.2586, and 𝑇
2
= 0.55 × 0.2 +

0.42 × 0.2 + (0.62 × 0.2 + 1.10 × 0.2)𝑒
−0.5

= 0.4026, which
satisfy 𝑆

1
𝑇
1
> 𝑆
2
𝑇
2
; according to Theorem 6, when we select

the appropriate initial values, the system (43) could realize
uniform stability. Furthermore, we have 𝑊

1
= 1.22 × 0.1 +

0.65 × 0.1 + 0.38 × 0.1 + 0.80 × 0.1 =0.3050 < min
1≤𝑗≤2

{𝑏
𝑗
} =

0.50,𝑊
2
= 0.55 × 0.2 + 0.42 × 0.2 + 0.62 × 0.2 + 1.10 × 0.2 =

0.5380 < min
1≤𝑖≤2

{𝑎
𝑖
} = 0.55; by utilizingTheorem 7, we can

obtain that the system (43) has an unique equilibrium point
which is uniformly stable.

In order to check the validity of Theorems 6 and 7, the
following five cases are given: case 1 with the initial values
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (−2.5, 4.0, 3.5, −5.0)
𝑇, case 2with the initial

values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 = (6.5, −3.0, −7.0, 4.5)

𝑇, case 3 with
the initial values (𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (3.0, 8.0, −1.5, −2.0)
𝑇,

case 4 with the initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 =
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Figure 1: Transient states of the fractional-order BAM neural networks in Example 1 with 𝛼 = 0.95, 𝜎 = 0.25, and 𝜏 = 0.50.

(−6.5, −7.0, 7.5, 8.0)
𝑇, and case 5 with the initial values

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (4.0, 2.0, 1.5, 1.0)
𝑇. The time responses of

state variables are shown in Figure 1.
When 𝜎 = 0, consider the following three cases:

case 1 with the initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

=

(3.0, 8.0, −1.5, −2.0)
𝑇, case 2 with the initial values

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (−6.5, −7.0, 7.5, 8.0)
𝑇, and case 3 with the

initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (4.0, 2.0, 1.5, 1.0)
𝑇. The time

responses of state variables are shown in Figure 2 with the
leakage delay 𝜎 = 0.

Example 2. Consider the following fractional-order BAM
neural networks with delays in the leakage terms:

𝐷
𝛼

𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡 − 𝜎) +

2

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(𝑦
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏)) + 𝐼

𝑖
, 𝑖 = 1, 2,

𝐷
𝛼

𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡 − 𝜎) +

2

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑥
𝑖
(𝑡))

+

2

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏)) + 𝐽

𝑗
, 𝑗 = 1, 2,

(45)
where 𝛼 = 0.98, 𝜎 = 0.20, 𝜏 = 0.40, 𝐴 = diag(0.50, 0.65),
𝐵 = diag(0.55, 0.42),

𝐶 = [

0.55 −0.75

0.85 0.66
] , 𝐷 = [

0.76 0.42

0.39 −0.68
] ,

𝑃 = [

0.22 0.46

−0.75 0.82
] ,

𝑄 = [

−0.24 0.65

0.37 0.55
] , 𝐼 = [0.50, −0.45]

𝑇

,

𝐽 = [−0.20, 0.30]
𝑇

,
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Figure 2: Transient states of the fractional-order BAM neural networks in Example 1 with 𝛼 = 0.95, 𝜎 = 0, and 𝜏 = 0.50.

𝐺
1
(𝑥) = 𝐺

2
(𝑥) =

1

10

(|𝑥 + 1| + |𝑥 − 1|) ,

𝑈
1
(𝑥) = 𝑈

2
(𝑥) =

1

20

(|𝑥 + 1| + |𝑥 − 1|) ,

𝐹
1
(𝑦) = 𝐹

2
(𝑦) =

1

15

(
󵄨
󵄨
󵄨
󵄨
𝑦 + 1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 − 1

󵄨
󵄨
󵄨
󵄨
) ,

𝑉
1
(𝑦) = 𝑉

2
(𝑦) =

1

30

(
󵄨
󵄨
󵄨
󵄨
𝑦 + 1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 − 1

󵄨
󵄨
󵄨
󵄨
) .

(46)
By calculation, 𝐹

1
= 𝐹
2
= 2/15, 𝑉

1
= 𝑉
2
= 1/15, 𝐺

1
=

𝐺
2
= 1/5, 𝑈

1
= 𝑈
2
= 1/10, 𝑆

1
= 1 − 0.65𝑒

−0.2

= 0.4678,
𝑇
1
= 1 − 0.55𝑒

−0.2

= 0.5497, 𝑆
2
= 0.75 × 2/15 + 0.85 × 2/15 +

(0.46×1/15+0.82×1/15)𝑒
−0.4

= 0.2665, and𝑇
2
= 0.76 × 1/5 +

0.68 × 1/5 +(0.65 × 1/10 +0.55 × 1/10)𝑒
−0.4

= 0.3684, which
satisfy 𝑆

1
𝑇
1
> 𝑆
2
𝑇
2
; according to Theorem 6, when we select

the appropriate initial values, the system (45) could realize
uniform stability. Furthermore, we have𝑊

1
= 0.75 × 2/15 +

0.85×2/15+0.46×1/15+0.82×1/15 =0.2987 < min
1≤𝑗≤2

{𝑏
𝑗
} =

0.42,𝑊
2
= 0.76 × 1/5 + 0.68 × 1/5 + 0.65 × 1/10 + 0.55 ×

1/10 = 0.4080 < min
1≤𝑖≤2

{𝑎
𝑖
} = 0.50; by utilizingTheorem 7,

we can obtain that the system (45) has an unique equilibrium
point which is uniformly stable.

In order to check the validity of Theorems 6 and 7, the
following five cases are given: case 1 with the initial values
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (−2.5, 4.0, 3.5, −5.0)
𝑇, case 2with the initial

values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 = (6.5, −3.0, −7.0, 4.5)

𝑇, case 3 with
the initial values (𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (3.0, 8.0, −1.5, −2.0)
𝑇,

case 4 with the initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 =

(−6.5, −7.0, 7.5, 8.0)
𝑇, and case 5 with the initial values

(𝑥
1
, 𝑥
2
, 𝑦
1
, y
2
)
𝑇

= (4.0, 2.0, 1.5, 1.0)
𝑇. The time responses of

state variables are shown in Figure 3.
When 𝜎 = 0, consider the following three cases:

case 1 with the initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 =

(−2.5, 4.0, 3.5, −5.0)
𝑇, case 2 with the initial values

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (3.0, 8.0, −1.5, −2.0)
𝑇, and case 3 with
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Figure 3: Transient states of the fractional-order BAM neural networks in Example 2 with 𝛼 = 0.98, 𝜎 = 0.20, and 𝜏 = 0.40.

the initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 = (−6.5, −7.0, 7.5, 8.0)

𝑇.
The time responses of state variables are shown in Figure 4
with the leakage delay 𝜎 = 0.

Example 3. Consider the following fractional-order BAM
neural networks with delays in the leakage terms:

𝐷
𝛼

𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡 − 𝜎) +

2

∑

𝑗=1

𝑐
𝑖𝑗
𝐹
𝑗
(𝑦
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑝
𝑖𝑗
𝑉
𝑗
(𝑦
𝑗
(𝑡 − 𝜏)) + 𝐼

𝑖
, 𝑖 = 1, 2,

𝐷
𝛼

𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡 − 𝜎) +

2

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑥
𝑖
(𝑡))

+

2

∑

𝑖=1

𝑞
𝑗𝑖
𝑈
𝑖
(𝑥
𝑖
(𝑡 − 𝜏)) + 𝐽

𝑗
, 𝑗 = 1, 2,

(47)

where 𝛼 = 0.95, 𝜎 = 0.50, 𝜏 = 0.50, 𝐴 = diag(1.30, 1.40),
𝐵 = diag(1.20, 1.15),

𝐶 = [

0.45 0.25

0.36 −0.27
] , 𝐷 = [

−0.45 0.43

0.29 0.35
] ,

𝑃 = [

0.38 0.33

−0.45 0.52
] ,

𝑄 = [

0.62 0.34

−0.36 −0.48
] , 𝐼 = [0.84, 1.22]

𝑇

,

𝐽 = [−0.48, 0.75]
𝑇

,

𝐺
1
(𝑥) = 𝐺

2
(𝑥) = 𝑈

1
(𝑥) = 𝑈

2
(𝑥)

=

1

10

(|𝑥 + 1| + |𝑥 − 1|) ,
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Figure 4: Transient states of the fractional-order BAM neural networks in Example 2 with 𝛼 = 0.98, 𝜎 = 0, and 𝜏 = 0.40.

𝐹
1
(𝑦) = 𝐹

2
(𝑦) = 𝑉

1
(𝑦) = 𝑉

2
(𝑦)

=

1

20

(
󵄨
󵄨
󵄨
󵄨
𝑦 + 1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 − 1

󵄨
󵄨
󵄨
󵄨
) .

(48)

By calculation, 𝐹
1
= 𝐹
2
= 𝑉
1
= 𝑉
2
= 0.1, 𝐺

1
= 𝐺
2
= 𝑈
1
=

𝑈
2
= 0.2, 𝑆

1
= 1−1.4𝑒

−0.5

= 0.1509,𝑇
1
= 1−1.2𝑒

−0.5

= 0.2722,
𝑆
2
= 0.45 × 0.1 + 0.36 × 0.1 + (0.38 × 0.1 + 0.52 × 0.1)𝑒

−0.5

=

0.1356, and𝑇
2
= 0.45 × 0.2 + 0.35 × 0.2 + (0.62 × 0.2 + 0.48 ×

0.2)𝑒
−0.5

= 0.3954, which satisfy 𝑆
1
𝑇
1
> 𝑆
2
𝑇
2
; according to

Theorem 6, when we select the appropriate initial values, the
system (47) could realize uniform stability. Furthermore, we
have𝑊

1
= 0.45 × 0.1 + 0.36 × 0.1 + 0.38 × 0.1 + 0.52 ×

0.1 = 0.171 < min
1≤𝑗≤2

{𝑏
𝑗
} = 1.15,𝑊

2
= 0.45 × 0.2 + 0.35 ×

0.2 + 0.62 × 0.2 + 0.48 × 0.2 = 0.38 < min
1≤𝑖≤2

{𝑎
𝑖
} = 1.30; by

utilizing Theorem 7, we can obtain that the system (47) has
an unique equilibrium point which is uniformly stable.

In order to check the validity of Theorems 6 and 7, the
following five cases are given: case 1 with the initial values
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (−2.5, 4.0, 3.5, −5.0)
𝑇, case 2with the initial

values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 = (6.5, −3.0, −7.0, 4.5)

𝑇, case 3 with
the initial values (𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (3.0, 8.0, −1.5, −2.0)
𝑇,

case 4 with the initial values (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇 =

(−6.5, −7.0, 7.5, 8.0)
𝑇, and case 5 with the initial values

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)
𝑇

= (4.0, 2.0, 1.5, 1.0)
𝑇. The time responses of

state variables are shown in Figure 5.

5. Conclusions

In this paper, the uniform stability for a class of fractional-
order BAM neural networks with leakage delays has been
discussed. Several sufficient conditions ensuring the uniform
stability of such systems have been derived based on inequal-
ity technique and analysis method. Meanwhile, the existence,



14 Abstract and Applied Analysis

0 5 10 15
t

0

2

4

6

8

−8

−6

−4

−2

x
1

(a)

0 5 10 15
t

0

2

4

6

8

−8

−6

−4

−2

x
2

(b)

0 5 10 15
t

0

2

4

6

8

−8

−6

−4

−2

y
1

(c)

0 5 10 15
t

0

2

4

6

8

−6

−4

−2

y
2

(d)

Figure 5: Transient states of the fractional-order BAM neural networks in Example 3 with 𝛼 = 0.95, 𝜎 = 0.50, and 𝜏 = 0.50.

uniqueness, and uniform stability of the equilibrium point
have been investigated. Finally, three simulation examples
have been provided to demonstrate the effectiveness of the
obtained results.

We would like to point out that it is possible to extend our
main results to other complex systems [37–41] and establish
novel stability conditions with less conservatism by using
more up-to-date techniques in [42–46]. The corresponding
results will appear in the near future.
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