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Efficient implicit predictor-corrector LU-SGS discontinuous Galerkin (DG) approach for compressible Euler equations on
unstructured grids is investigated by adding the error compensation of high-order term. The original LU-SGS and GMRES
schemes for DG method are discussed. Van Albada limiter is employed to make the scheme monotone. The numerical experiments
performed for the transonic inviscid flows around NACAO0012 airfoil, RAE2822 airfoil, and ONERA M6 wing indicate that the
present algorithm has the advantages of low storage requirements and high convergence acceleration. The computational efficiency
is close to that of GMRES scheme, nearly 2.1 times greater than that of LU-SGS scheme on unstructured grids for 2D cases, and

almost 5.5 times greater than that of RK4 on unstructured grids for 3D cases.

1. Introduction

High-order discontinuous Galerkin (DG) finite element
methods were developed based on weighted residual the-
ory; they maintain advantages of both the traditional high
resolution finite difference method and the finite volume
method while overcoming their shortcomings. Indeed, the
DG method can be considered as a mixture of classic finite
element method (FEM) and finite volume method (FVM),
which is a better solution strategy for solving problems in
the presence of strong shocks and discontinuities because the
solution across each element can be discontinuous. DG meth-
ods can easily deal with complex boundary-value problem
and flexibly handle discontinuity, which have a low require-
ment of the regularity of grids. And high accuracy can be
achieved by selecting appropriate basis functions by improv-
ing the order of the piecewise interpolation polynomials
functions. In addition, the methods are highly parallelizable
as each element is independent and the interelement commu-
nications are minimal. And they have several useful mathe-
matical properties.

While DG method was introduced by Reed and Hill
[1] for solving the neutron transport equation back in 1973,
nowadays, DG methods have been widely used in the com-
putational fluid dynamics, computational aeroacoustics, and
computational electromagnetics. See [2-25].

In recent years, significant progress has been made in
developing numerical algorithms for solving the compress-
ible flow problems. Many numerical methods are based on
the semidiscrete approach: DG methods are used for the spa-
tial discretization, rendering the original partial differential
equations (PDE) into a system of ordinary differential equa-
tions (ODE) in time. Usually, for time-dependent problems,
DG methods have been used in conjunction with explicit
high-order accurate time-integration methods, such as non-
linear stable Runge-Kutta DG methods in the literatures [7-
13]. In general, explicit schemes are easy to implement and
parallelize and require only limited memory storage. Such
methods are well suited for problems with similar spatial and
temporal scales, while being notoriously time-consuming
and inefficient for problems with disparate temporal and
spatial scales, such as low reduced frequency phenomena and



steady-state problems. As a consequence, implicit time-inte-
gration strategies should be developed exclusively in order
to avoid the stability restrictions of explicit methods, which
are unconditionally stable; for details, refer to [5, 6, 26].
Implicit solvers, which do allow large time steps, are widely
used in the computational fluid dynamics community for the
steady solution of nonlinear conservation laws in [27]. The
Newton-Krylov-Schwarz method has recently emerged as a
promising technique for the parallel implicit solution of large-
scale aerodynamics problems in [28], which is specially well
suited for the discontinuous spectral Galerkin method, since
each subdomain can be treated separately.

The lower-upper symmetric Gauss-Seidel (LU-SGS)
time-marching scheme, which was originally given for struc-
tured grids, has been established in [29] and has been applied
to tetrahedral/prism unstructured grids. Another attractive
implicit scheme is the generalized minimum residual scheme
(GMRES), which was introduced by Saad and Schultz [2]
firstly. Then, Bassi and Rebay showed the efficiency of
GMRES method in [14] and used a simple block Jacobi pre-
conditioner for the implicit solution of the compressible
Navier-Stokes equations. Xia and Luo [3] presented a matrix-
free GMRES algorithm with an LU-SGS preconditioner
reconstructed discontinuous Galerkin method on tetrahe-
dron grids for compressible flow problems. Then, they pro-
posed implicit reconstructed discontinuous Galerkin (IRDG)
method based on the automatic differentiation technique [4].

In this work, we focus exclusively on a predictor-corrector
LU-SGS (PCLU-SGS) strategy for discontinuous Galerkin
method in conjunction with Van Albada limiter [30] to solve
the Euler equations on unstructured grids. The governing
equations are listed in Section 2. DG method is presented
and the limiter and numerical flux are described in detail in
Section 3. The implicit time-marching procedures are given
including TVD Runge-Kutta, LU-SGS, and GMRES schemes,
and the PCLU-SGS scheme is established in Section 4. The
numerical experiments are discussed in Section 5. Conclu-
sion is given in Section 6.

2. Governing Equations

The unsteady, compressible inviscid 2D Euler equations can
be expressed in the following conservative form:

U (x,t) OF(U(x1) 3G (U(xD)
a0 o oy 0y

in Qx(0,T),

where T' > 0 is the length of time interval and Q is a two-
dimensional bounded domain. The conservative state vector

U and the inviscid flux component vectors F(U) and G(U) are
defined by
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(pe+p)v

where the notations p, p, and e denote the density, pressure,
and specific total energy per unit mass of the fluid, respec-
tively. u and v are the velocity components of the flow in
the x and y coordinate directions. This set of equations is
completed by the perfect gas equation of state given as fol-
lows:

p=(y—1)p[e—%(u2+vz)], (3)

where y is defined as the ratio of specific heat of the fluid (y =
1.4 for air). Then the equations are applied with the initial and
boundary conditions denoted by (4), where 0Q) represents the
boundary of domain Q. Consider the following:

U(x,0) =U, (x),

(4)

B(U)=0 on 0Qx(0,T).

3. Discontinuous Galerkin Finite
Element Method

3.1. DG Spatial Discretization. The computational domain Q
is partitioned into an ensemble of nonoverlapping elements,
triangles in 2D; that is, Q = e; Ue, U --- U e,, where n
denotes the number of elements in the domain. We consider
possible choices of the piecewise basis functions and then
obtain the following weak formulation of (5) by multiplying
a test function @ and integrating by parts over the e,,,:

oD
“hg

oD
a J ®,U,dV - J [—hF(Uh) +
e, e, ay

dt Ox (U*‘)] v

m m

(5)
+ Le @, [E(U,)n, +G(U,)n,]dS=0 VO,

m

where U, and @, represent the finite element approximations
of the analytical solution U and the test function ®, respec-
tively. n = (n,, n,) is the unit normal vector of outward to the
boundary. Let the approximate solution and test function U,
and @, be expressed as

N N
U, = U090 (x), =) D0l (x), (6)
j=1 j=1

where (pf (x) is the shape function of the polynomials of
degree p. Equation (5) must be satisfied for any test function
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®,,, so by substituting (6) to (5), we obtain the following
system of N equations:
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(7)

i=1,2,...,N.

The interface flux function F(U;,)n, + G(Ujy)n,, can be treated
as a numerical Riemann flux function H(Uﬁ, Uf,n), where
U}, and Uy, represent the internal element interface solution
and neighboring element interface solution, respectively. In
the present work, the Roe, LLF, and HLLC approximate Rie-
mann solvers are employed. The domain and boundary
integrals in (7) are calculated by use of 2p and 2p + 1
order accurate Gauss quadrature formulas [31, 32] with a
number of quadrature points corresponding to the degree of
interpolating polynomials.

By grouping together all the elemental time-dependent
and spatial contributions, (7) can be written as a system of
ordinary differential equations:

du
ME =R(U), (8)

where the mass matrix M has identical diagonal blocks M;;, U
is the global vector of the degrees of freedom, and R(U) repre-
sents the steady state residual vector. As a result, the inverse of
the mass matrix M can be easily computed, especially, using
the orthogonal basis functions, and stored in advance due to
the fact that it remains unchanged during the process.

In the present paper, we explore the orthogonal basis
functions through Gram-Schmidt orthogonalization meth-
od, and high accuracy can be achieved by improving the order
of the piecewise interpolation polynomials functions. For 2D
problems, ¢, = 1, ¢, = &, ¢, = 1, @5 = &,..., and, for 3D
problems, ¢y = 1,9, =& ¢, =1, 93 =G,

3.2. Flux Functions. The numerical flux function can be eval-
uated using any upwind flux functions. This is exactly similar
to FVM because discontinuities can be allowed across the
interface. Therefore, approximate Riemann solvers can be
used to compute the flux function. In the present work, three
flux functions have been employed including HLLC Riemann
numerical solver by Toro [33] which has easier and lower
computational cost in comparison with many other available
Riemann solvers, such as local Lax-Friedrich (LLF) scheme.
HLLC flux function not only maintains the advantages of the
HLL solver but also resolves isolated contact discontinuities

exactly, which has been extended in conjunction with time-
derivative preconditioning to compute flow problems at all
speeds. HLL flux can be expressed as

F, if$§ >0
F' = JFr, ifS, <0<S; 9)
Fp ifSz<0,

where S; and Sy, represent the fastest wave speed for the left
and right states, respectively. F;  is written as

SrFL — S Fg + S8z (Ug - Uy)

SR _SL

Fip = (10)

The HLLC flux is a modification of HLL flux, which can be
written as

F; 0< SL

FHLLC _ F, =F +S,(U;-U;) S,<0, S,,>0 a
Fip=Fr+Sp(Up—Ug) Sy <0, Sg20
Fp 0> Sg,

where S, is constant between the two acoustic waves:

S = Pr—Pr+prdr (St
A =
pr (S -

- QL) ~ PrRIR (SR - ‘JR)

12
q1) = Pz (Sk — 4qr) )

For details, refer to [33, 34].

The second flux function implemented in this paper is
LLF solver [35]. It is more dissipate than both the HLLC flux
function and the Roe flux function, but it is more robust. The
LLF flux can be written as

FLUF _ % [FL+FR—(|A"+C’)(UR_UL)]’ (13)

where A’ is the velocity normal to the interface and ¢’ is the
speed of sound at the interface. M| + ¢ is the largest wave
speed in the direction normal to the interface.

The third flux function is Roe numerical flux by Roe
[36]. Roe format is a typical flux differential splitting scheme,
which contains more feature information, and therefore has a
strong ability to capture shock. The Roe flux can be expressed
as

FRoe _ % [FL + FR _ |K| (UR _ UL)] R (14)
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FIGURE 1: Mesh around NACA0012 airfoil: (a) whole and (b) close-up mesh near the airfoil.
where DG discretization. Iterative algorithms such as GMRES and
CGS are often used to approximately solve the sparse linear
equations due to the enormous computational cost and the
o large memory requirement of direct methods. Another imp-
. +n4a a licit scheme, the LU-SGS scheme originally developed for
_ 4TS e structured grids, has been extended to unstructured and
|A| (Ur-Up) = Vg 1% T 0 ’ hybrid grids, which does not require any extra storage

(<)

-1

!
hoy + A os + uag + vo, —
4 5 6 7

' Ap
061:/\ A -3 o, =
| |< g (c'>>

~ |)t' - c'| (Ap - pc'A)t')
) 2(c)’

@)

|/\' + c'l (Ap+pc'a))
2(c')

© (15)

o3 5 ay =) + o +os,

a5 =c (0 —a3), o = p|/\'| (Au - nXA/\’),

o =p l/\'l (Av - nyA/\') ,

A" is the velocity normal to the interface, and ¢’ is the speed
of sound at the interface.

In this paper, Van Albada limiter [30] is employed to
make the scheme monotone for 2D problems and Barth-
Jespersen limiter [37] is used for 3D problems.

4. Time-Marching Schemes

In order to resolve the time-dependent problem, the semidis-
crete system can be integrated in time in this paper. The
implicit time-integration schemes have been widespread for

compared to explicit methods. The LU-SGS procedures are
described as follows.

4.1. PCLU-SGS Scheme. In the original LU-SGS approach
[29], (8) can be translated into the following system:

AAQ = Res”, (16)

where Res" represents residual term.

Then the coefficient matrix using the decomposition
method can be written as A = D + L + U; we obtain

(D+L)D™' (D +U)AQ" =Res" + (LD'U) AQ", (17)

where D represents the diagonal matrix and L and U repre-
sent the lower and upper matrices. Ignoring the infinitesimal
quantity (LD"'U)AQ", (17) is then solved using one sweep of
symmetric Gauss-Seidel iteration as shown in the following:

forward sweep:
(D +L)AQ = Res”, (18)
backward sweep:
D' (D +U)AQ = AQ. (19)

While ignoring the higher-order infinitesimal quantity does
not affect the accuracy of the method, increasing the trunca-
tion error will affect the rate of convergence. Therefore, we
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& EXP

—— GMRES (m)
--- LU-SGS - PCLU-SGS

FIGURE 2: Pressure coefficient distribution with different time-
marching format for transonic flow around NACA0012 airfoil (p =
2).

obtain the PCLU-SGS algorithm through the compensation
of high-order term for the original LU-SGS scheme. The com-
putational procedure is shown in detail as follows.

(1) Use the original LU-SGS scheme to solve AQ,

forward sweep and backward sweep:

(D+L)AQ=Res”, D '(D+U)AQ=AQ. (20)

(2) Compute the high-order infinitesimal quantity

(LD'U)AQ" using the value of AQ to correct the
residual Res”.

(3) Use the original LU-SGS scheme to compute AQ:
(D+L)D' (D +U)AQ" =Res =Res" +(LD'U)AQ. (21)

4.2. TVD Runge-Kutta Scheme. The explicit time-integration
schemes have been widespread for DG discretization. The
TVD Runge-Kutta scheme of Cockburn [10] for Euler equa-
tions can be expressed as follows.

(1) Denote u), = P, (ug), where P, is the projection
operator on L,.

(2) Forn=0,1,...,N—-1, compute uZ“ and denote ug =
u}, and,

5
F1GURE 3: Flood contours.
for j = 1,...,p + 1, compute the intermediate
function, “;J ),

Lot
“;;]) = z ocjmu,(:") + ﬁijt"M_th (u;m),yh (" + dmAt")) . (22)

m=0

(3) Denote u}/™" = u{l’“.

The scheme is linearly stable for a Courant number less than
or equal to 1/(2p + 1). In this paper, the RK4 scheme is
employed to compute the Euler equations.

5. Numerical Experiments

5.1. Transonic Flow around NACA0012 Airfoil. Consider the
calculation state Ma,, = 0.8 and 1.25° angle of attack.
The pressure coefficient distribution using different time-
marching schemes compared with the experiment results for
transonic flow around NACAO0012 airfoil is given in Figure 2.
Good agreement can be seen in terms of the location and
strength of shocks (see Figurel). The flood contours are
shown in Figure 3. From Figure 4 it can be seen that it takes
only 1500 iterations to obtain the result by using the present
algorithm, which are far fewer than the 4500 iterations
required to obtain the same results by using the original LU-
SGS method. The computational efficiency is close to that of
GMRES algorithm and nearly 2.1 times greater than that of
the LU-SGS one. Figure 5 shows that LLF solver similar to
the HLL solver is more dissipate than both the HLLC flux
function and the Roe flux function. Figure 6 shows the effects
of convergence performance with different CFL numbers; it
can be clearly seen that the results are almost the same when
CFL number is greater than 100. The results of the test cases
verify the effectiveness and the ability to capture discontinu-
ous of PCLU-SGS DG method.

Furthermore, the Sod shock tube problem with the initial
conditions is given as follows:

T .
U= {(PL’uL’PL) = (10,17, if —5<x<0 (23)

(pro o )" = (0.125,0,0.1)", if 0 < x <5,



Mathematical Problems in Engineering

Res(p)

AN
roa L g Ly T
5 10 15 20 25 30 500 1000 1500 2000 2500 3000 3500 4000 4500
CPU_Time (s) Iter step
-©- LU-SGS -5 LU-SGS
—— GMRES (m) —— GMRES (m)
A PCLU-SGS A PCLU-SGS

(@) (b)

FIGURE 4: Convergence history for transonic flow around NACAQ012 airfoil: (a) CPU-Time and (b) iteration number.
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FIGURE 5: Pressure coefficient distribution with different numerical flux for transonic flow around NACA0012 airfoil: (a) p = 2 and (b) p = 3.

where t = 2.0, and the mesh consists of 100 elements in In the present paper, though the LLF flux function is more
Figure 7. dissipate than both the HLLC flux function and the Roe flux

Obviously, with the improvement of the accuracy, the function, it is more robust and more economical. Then we use
method with HLLC flux resolves better contact discontinuity. it in the following examples.
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FIGURE 7: Density with HLLC flux for Sod shock tube problem: (a) p = 1 and (b) p = 2.

5.2. Transonic Flow around RAE2822 Airfoil. Consider the
calculation state Ma = 0.725 and angle of attack « = 2.54".
The pressure coefficient distribution using different time-
marching schemes for transonic flow around RAE2822 airfoil

is given in Figure 8. The numerical solutions demonstrate
that it takes only 1200 iterations to obtain the result by using
the present algorithm, which are far fewer than 4000 itera-
tions required to obtain the same results by using the original
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FIGURE 8: Pressure coefficient distribution with different time-marching format flow around RAE2822 airfoil (p = 2).
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FIGURE 9: Convergence history with different time-marching format for transonic flow around RAE2822 airfoil: (a) CPU-Time and (b)

iteration number.

LU-SGS method. And the results show that the convergence
acceleration is nearly 2.3 times that of the original LU-SGS
one from Figure 9.

5.3. Transonic Flow over ONERA M6 Wing. 'This case is about
a transonic flow at Mach number Ma = 0.84 around the
ONERA M6 wing with &« = 3.06" angle of attack. The
unstructured mesh consists of 582752 triangles in Figure 10.

The surface pressure coefficient distribution with different
spanwise location is given in Figure 12. From Figure 11 it can
be seen that it takes only 5050 iterations to obtain the result by
using the present algorithm, which are far fewer than 44021
iterations required to obtain the same results by using the
RK4 method. The convergence acceleration is nearly 5.5 times
that of the RK4 one and nearly half that of GMRES one. The
convergence performance is similar to that in [38].
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FIGURE 11: Convergence history with different time-marching format for transonic flow around ONERA M6 wing: (a) CPU-Time and

The results are not as good as those in the literature [39],
because the shock detector is used, which directly affect the

accuracy of solutions on smooth region. How to accurately
judge problem units will be our future efforts.

6. Conclusion

An improved implicit time-marching scheme based on
the original LU-SGS scheme is developed and applied for
the discontinuous Galerkin method on unstructured grids.
The developed new algorithm has been used to compute

the transonic flows around NACAOQOI2 airfoil, RAE2822 air-
foil, and ONERA M6 wing. The implicit PCLU-SGS scheme
for the DG method on unstructured grids is significantly
more efficient and robust than the original LU-SGS scheme.

The convergence performance of the present scheme can
compete with the GMRES scheme.
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PCLU-SGS method
o EXP
---- GMRES (m) method

(b)

FIGURE 12: Surface pressure coeflicient distribution with different spanwise location for transonic flow over ONERA M6 wing: (a) 20% and

(b)

80% (p = 1).
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