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An impulsive one-predator and two-prey systemwith stage-structure and generalized functional response is proposed and analyzed.
By reasonable assumption and theoretical analysis, we obtain conditions for the existence and global attractivity of the predator-
extinction periodic solution. Sufficient conditions for the permanence of this system are established via impulsive differential
comparison theorem. Furthermore, abundant results of numerical simulations are given by choosing two different and concrete
functional responses, which indicate that impulsive effects, stage-structure, and functional responses are vital to the dynamical
properties of this system. Finally, the biological meanings of the main results and some control strategies are given.

1. Introduction and Model Formulation

In real world, the properties of one-predator and one-prey
system have been studied widely and many valuable results
have been obtained. If examining the cases that there are two
preys for a predator, then the above system cannot reflect the
real behaviors of individuals accurately, so scholars proposed
three-species predator-prey system.The relationship between
species in three-species system may take many forms, such
as one prey and two predators [1], a food chain [2, 3],
or two preys and one predator [4, 5]. On the other hand,
for predator-prey model, in description of the relationship
between predator and prey, a crucial element is the classic
definition of a predator’s functional response. Recently, the
dynamics of predator-prey systems with different kinds of
functional responses have been studied in relevant litera-
ture, such as Holling type [6], Crowley-Martin type [7–
9], Beddington-DeAngelis type [10, 11], Watt type [12, 13],
and Ivlev type [14]. For example, Gakkhar and Naji [15]
investigated the dynamical behaviors of the following three-
species system with nonlinear functional response:
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where 𝑥
1
(𝑡) and 𝑥

2
(𝑡) represent the two preys densities,

respectively, and 𝑦(𝑡) represents the density of predators
depending on the two preys.

However, as Pei et al. [16] pointed out that system (1)
could not provide an effective approach because there was no
impulsive spraying pesticides or harvesting pest at different
fixed moment. We know that pests may bring disastrous
effects to their existing system when their amount reaches
a certain level. For preventing large economic loss, chemical
pesticides are often used in the process of pest management.
As a matter of fact, the control on pests often makes pests
reduce instantaneously in a short time. In the modeling
process, these perturbations are often assumed to be in the
form of impulses. Based on traditional models, impulsive
differential equations are proposed and extensively used in
some applied fields, especially in population dynamics; see
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[17–19]. The theory of impulsive differential equation is now
being recognized richer than the corresponding differential
equation without impulses, which plays a key role in the
development of biomathematics; seemonographs [20, 21] and
references cited therein.

On the other hand, the stage-structure for predator was
also not considered in system (1). In real world, many species
go through two or more life stages when they proceed from
birth to death. For many animals, their babies are raised by
their parents or are dependent on the nutrition from the
eggs they stay in. The babies are too weak to produce babies
or capture their prey; hence their competition with other
individuals of the community can be ignored. Therefore, it
is reasonable to introduce stage-structure into competitive or
predator-prey models. Many researchers have incorporated
it into biological models, where stage-structure is modeled
by using a time delay [22–24]. Authors [5] pointed out that
when the system contained time delay, it hadmore interesting
behaviors. Their results showed that time delay could cause a
stable equilibrium to become unstable and Hopf bifurcation
could occur as the time delay crossed some critical values.
These obtained results have shown that stage-structure plays
a vital role in predator-prey models and stage-structured
systems exhibit complicated properties. Moreover, Xu [25]
showed that an important factor inmodeling of predator-prey
is the choice of functional response. Model with generalized
functional response exhibited many universal properties,
which could be applied tomany fields because of its flexibility.
Shao and Li [26] considered a predator-prey system with
generalized functional response. Their results indicated that
generalized functional response caused dynamical behaviors
of the system to be very complex.

Based on these backgrounds, in this paper, develop-
ing system (1) with stage-structure, generalized function
response, and impulsive spraying pesticides, we will consider
the following one-predator and two-prey system:
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where 𝑥
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ferent preys, respectively, and we assume that there is no
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period of predator. The term 𝑒

−𝑑𝜏 denotes the mature rate
of immature predator. Function 𝑓
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predator’s functional response. 𝑝
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partial impulsive harvesting of prey by catching or pesticides
at moment 𝑡 = 𝑛𝑇 (𝑛 = 1, 2, . . .).

By use of impulsive differential equation theory and some
analysis techniques, we aim to investigate the existence and
global attractivity of predator-extinction periodic solution
and the permanence of (2). Further, by numerical analysis,
we try to find out the effects of impulsive and stage-structure
on this system.
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fourth equation of system (2), we can simplify (2) and restrict
our attention to the following system:
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The rest of this paper is organized as follows. In Section 2,
we give some notations, definitions, and lemmas. By using
lemmas and impulsive comparison theorem, we discuss the
existence of predator-extinction solution and permanence of
system (3) in Sections 3 and 4, respectively. In Section 5,
numerical simulations are given to show the complicated
dynamical behaviors of (3). Finally, we end this paper by a
brief discussion in Section 6.

2. Preliminaries

In this section, some definitions and lemmas are introduced
which are useful for our main results. Solution of (3),
denoted by 𝑥(𝑡) = (𝑥
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where 𝑓 denotes the mapping defined by right side of system
(2). For more details refer to [20, 21].

Lemma 1 (see [27]). Consider the following differential equa-
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Similarly, there exists 𝑘
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𝑦


2
(𝑡) ≤ 𝑒

−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
+ 𝜀
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜂
2
+ 𝜀
2
))

⋅ 𝑦
2
(𝑡 − 𝜏) − 𝑑

2
𝑦
2
(𝑡) − 𝑟𝑦

2

2
(𝑡) .

(17)

Consider the following differential comparison system:

𝑢


2
(𝑡) = 𝑒

−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
+ 𝜀
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜂
2
+ 𝜀
2
))

⋅ 𝑢
2
(𝑡 − 𝜏) − 𝑑

2
𝑢
2
(𝑡) − 𝑟𝑢

2

2
(𝑡) .

(18)

According to (11) and Lemma 1, we have lim
𝑡→∞

𝑢
2
(𝑡) = 0.

Since 𝑦
2
(𝜉) = 𝜑

3
(𝜉), 𝜉 ∈ [−𝜏, 0], 𝑢

2
(𝑡) is the solution of (18)

with initial conditions 𝑢
2
(𝜉) = 𝜑

3
(𝜉), 𝜉 ∈ [−𝜏, 0]; by com-

parison theorem, we have lim
𝑡→∞

𝑦
2
(𝑡) ≤ lim

𝑡→∞
𝑢
2
(𝑡) = 0.

In view of the positivity of 𝑦
2
(𝑡), we have lim

𝑡→∞
𝑦
2
(𝑡) = 0.

It implies that for arbitrarily small positive constant 𝜀
3
and 𝑡

large enough, we have
0 < 𝑦
2
(𝑡) < 𝜀

3
. (19)

Further, from the first and the fourth equation of (3), we have

𝑥


1
(𝑡) ≥ 𝑥

1
(𝑡) (𝑎
1
− 𝛽
1
𝐿
1
𝜀
3
− 𝑏
1
𝑥
1
(𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝑝

1
) 𝑥
1
(𝑡) , 𝑡 = 𝑛𝑇.

(20)

Considering the following comparison system of (20),

𝑢


3
(𝑡) = 𝑢

3
(𝑡) (𝑎
1
− 𝛽
1
𝐿
1
𝜀
3
− 𝑏
1
𝑢
3
(𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑢
3
(𝑡
+
) = (1 − 𝑝

1
) 𝑢
3
(𝑡) , 𝑡 = 𝑛𝑇,

(21)

by Lemma 2, we get the positive periodic solution of system
(21) as follows:
𝑢
∗

3
(𝑡)

=

(𝑎
1
− 𝛽
1
𝐿
1
𝜀
3
) (1 − 𝑝

1
− 𝑒
−(𝑎
1
−𝛽
1
𝐿
1
𝜀
3
)𝑇
)

𝑏
1
(1 − 𝑝

1
− 𝑒
−(𝑎
1
−𝛽
1
𝐿
1
𝜀
3
)𝑇
) + 𝑏
1
𝑝
1
𝑒
−(𝑎
1
−𝛽
1
𝐿
1
𝜀
3
)(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] ,

(22)

with

𝑢
∗

3
(0
+
) =

(𝑎
1
− 𝛽
1
𝐿
1
𝜀
3
) (1 − 𝑝

1
− 𝑒
−(𝑎
1
−𝛽
1
𝐿
1
𝜀
3
)𝑇
)

𝑏
1
(1 − 𝑒

−(𝑎
1
−𝛽
1
𝐿
1
𝜀
3
)𝑇
)

= 𝑥
∗

1
(0
+
) .

(23)

By comparison theorem, for given constant 𝜀
1
> 0 and 𝑡 large

enough, we have 𝑢∗
3
(𝑡)−𝜀
1
< 𝑥
1
(𝑡). Let 𝜀

3
→ 0, then 𝑢∗

3
(𝑡) →

𝑥
∗

1
(𝑡), so we have 𝑥∗

1
(𝑡) − 𝜀

3
< 𝑥
1
(𝑡). It follows from (15) that

𝑥
1
(𝑡) < 𝑥

∗

1
(𝑡) + 𝜀

1
for 𝑡 sufficiently large, which implies that

𝑥
1
(𝑡) → 𝑥

∗

1
(𝑡) as 𝑡 → ∞. Similarly, we can obtain 𝑥

2
(𝑡) →

𝑥
∗

2
(𝑡) as 𝑡 → ∞. This is the end of the proof.

4. Permanence of System (3)

Now we investigate the permanence of system (3). Before
stating the theorem, we give the definition of permanence for
system (3).

Definition 4. System (3) is said to be permanent, if there exist
two positive constants 𝑚 and𝑀, such that, for any solution
(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦
2
(𝑡)) of (3), 𝑚 ≤ 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑦
2
(𝑡) ≤ 𝑀 holds

for 𝑡 sufficiently large.

Theorem 5. Suppose that conditions of (H1) and (H2) hold;
moreover if the following conditions:
(H4): 1 − 𝑝

𝑖
− exp(−(𝑎

𝑖
− 𝛽
𝑖
𝐿
𝑖
𝜂
3
)𝑇) > 0, 𝑖 = 1, 2,

(H5): 𝑒−𝑑1𝜏(𝜆
1
𝛽
1
𝑓
1
(𝜉
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜉
2
)) − 𝑑

2
− 𝑟𝜂
3
> 0,

are satisfied, where 𝜂
3
, 𝜉
1
, and 𝜉

2
are defined in (27), (40), and

(42), respectively, then system (3) is permanent.

Proof. Firstly, in view of (15) and (16), noticing that positive
constants 𝜀

1
and 𝜀
2
are arbitrarily chosen and can be suffi-

ciently small, we have

𝑥
1
(𝑡) ≤ 𝜂

1
,

𝑥
2
(𝑡) ≤ 𝜂

2
.

(24)

Secondly, from the third equation of system (3), we have the
following inequality:

𝑦


2
(𝑡) ≤ 𝑒

−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜂
2
)) 𝑦
2
(𝑡 − 𝜏)

− 𝑟𝑦
2

2
(𝑡) .

(25)

Considering the following comparison equation,

𝑢


4
(𝑡) = 𝑒

−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜂
2
)) 𝑢
4
(𝑡 − 𝜏)

− 𝑟𝑢
2

4
(𝑡) ,

(26)

by (H4) and Lemma 1, we have lim
𝑡→∞

𝑢
4
(𝑡) =

𝑒
−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜂
2
))/𝑟. According to comparison

theorem of differential equation, we get

𝑦
2
(𝑡) ≤ lim
𝑡→∞

𝑢
4
(𝑡)

≤

𝑒
−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
) + 𝜆
2
𝛽
2
𝑓
2
(𝜂
2
))

𝑟

Š 𝜂
3
.

(27)

Let𝑀 = max{𝜂
1
, 𝜂
2
, 𝜂
3
}, by (24) and (27); then we have 𝑥

1
(𝑡),

𝑥
2
(𝑡), 𝑦
2
(𝑡) ≤ 𝑀.

The following work is to find a constant 𝑚 > 0 with 𝑚 <

𝑀, such that𝑚 ≤ 𝑥
1
(𝑡),𝑚 ≤ 𝑥

2
(𝑡), and 𝑚 ≤ 𝑦

2
(𝑡).

On one hand, from the first and the fourth equation of
(3), combining inequality (27), we have

𝑥


1
(𝑡) ≥ 𝑥

1
(𝑡) (𝑎
1
− 𝛽
1
𝐿
1
𝜂
3
− 𝑏
1
𝑥
1
(𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝑝

1
) 𝑥
1
(𝑡) , 𝑡 = 𝑛𝑇.

(28)

Consider the following comparison system:

𝑢


5
(𝑡) = 𝑢

5
(𝑡) (𝑎
1
− 𝛽
1
𝐿
1
𝜂
3
− 𝑏
1
𝑢
5
(𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑢
5
(𝑡
+
) = (1 − 𝑝

1
) 𝑢
5
(𝑡) , 𝑡 = 𝑛𝑇.

(29)
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According to Lemma 2 and (H5), by using comparison
theorem, there exists an arbitrarily small constant 𝜀

4
> 0, such

that 𝑥
1
(𝑡) ≥ 𝑢

∗

5
(𝑡) − 𝜀

4
for 𝑡 large enough, where 𝑢∗

5
(𝑡) is the

unique and globally stable positive periodic solution of (29)
with the following form:

𝑢
∗

5
(𝑡) =

(𝑎
1
− 𝛽
1
𝐿
1
𝜂
3
) (1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) 𝑇))

𝑏
1
(1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) 𝑇)) + 𝑏

1
𝑝
1
exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) (𝑡 − 𝑛𝑇))

, (30)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], and

𝑢
∗

5
(0
+
)

=

(𝑎
1
− 𝛽
1
𝐿
1
𝜂
3
) (1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) 𝑇))

𝑏
1
(1 − exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) 𝑇))

= 𝑥
∗

1
(0
+
) .

(31)

By using comparison theorem of impulsive differential equa-
tion, we can derive from (30) that

𝑥
1
(𝑡) ≥ 𝑢

∗

5
(𝑡) − 𝜀

4

≥

(𝑎
1
− 𝛽
1
𝐿
1
𝜂
3
) (1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) 𝑇))

𝑏
1
(1 − exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝜂
3
) 𝑇))

− 𝜀
4
Š𝑚
1
> 0

(32)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇]. Similarly, we have

𝑥
2
(𝑡)

≥

(𝑎
2
− 𝛽
2
𝐿
2
𝜂
3
) (1 − 𝑝

2
− exp (− (𝑎

2
− 𝛽
2
𝐿
2
𝜂
3
) 𝑇))

𝑏
2
(1 − exp (− (𝑎

2
− 𝛽
2
𝐿
2
𝜂
3
) 𝑇))

− 𝜀
4
Š𝑚
2
> 0.

(33)

On the other hand, in order to prove the stability of 𝑦
2
(𝑡),

we define a Lyapunov function as follows:

𝑉 (𝑡) = 𝑦
2
(𝑡) + exp (−𝑑

1
𝜏)

⋅ ∫

𝑡

𝑡−𝜏

(𝜆
1
𝛽
1
𝑓
1
(𝑠) + 𝜆

2
𝛽
2
𝑓
2
(𝑠)) 𝑦
2
(𝑠) 𝑑𝑠.

(34)

Calculating the derivative of 𝑉(𝑡) along solution 𝑦
2
(𝑡) of

system (3), we get

𝑉


(𝑡)

= (exp (−𝑑
1
𝜏) (𝜆
1
𝛽
1
𝑓
1
(𝑥
1
(𝑡)) + 𝜆

2
𝛽
2
𝑓
2
(𝑥
2
(𝑡)))

− 𝑑
2
− 𝑟𝑦
2
(𝑡)) 𝑦
2
(𝑡) .

(35)

According to (H4), we can choose a positive constant 𝜀
5
small

enough such that

𝑒
−𝑑
1
𝜏
(𝜆
1
𝛽
1
𝑓
1
(𝜉
1
− 𝜀
5
) + 𝜆
2
𝛽
2
𝑓
2
(𝜉
2
− 𝜀
5
)) − 𝑑

2

− 𝑟𝜂
3
> 0.

(36)

For some constant𝑦∗
2
(0 < 𝑦∗

2
< 𝜂
3
), we claim that𝑦

2
(𝑡) < 𝑦

∗

2

cannot be true for all 𝑡 > 𝑡
0
. Suppose that the claim is invalid,

then there exists a positive constant 𝑡
0
such that 𝑦

2
(𝑡) < 𝑦

∗

2

for all 𝑡 > 𝑡
0
. From system (3), we have

𝑥


1
(𝑡) ≥ 𝑥

1
(𝑡) (𝑎
1
− 𝛽
1
𝐿
1
𝑦
∗

2
− 𝑏
1
𝑥
1
(𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝑝

1
) 𝑥
1
(𝑡) , 𝑡 = 𝑛𝑇.

(37)

From the unique solution 𝑢∗
6
(𝑡) of the comparison system of

(37), we have 𝑥(𝑡) ≥ 𝑢∗
6
(𝑡) − 𝜀

5
, for 𝑡 large enough, where

𝑢
∗

6
(𝑡) =

(𝑎
1
− 𝛽
1
𝐿
1
𝑦
∗

2
) (1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝑦
∗

2
) 𝑇))

𝑏
1
(1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝑦
∗

2
) 𝑇)) + 𝑏

1
𝑝
1
exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝑦
∗

2
) (𝑡 − 𝑛𝑇))

(38)

is the unique solution of the following system:

𝑢


6
(𝑡) = 𝑢

6
(𝑡) (𝑎
1
− 𝛽
1
𝐿
1
𝑦
∗

2
− 𝑏
1
𝑢
6
(𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑢
6
(𝑡
+
) = (1 − 𝑝

1
) 𝑢
6
(𝑡) , 𝑡 = 𝑛𝑇,

(39)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], with

𝑢
∗

6
(0
+
)

=

(𝑎
1
− 𝛽
1
𝐿
1
𝑦
∗

2
) (1 − 𝑝

1
− exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝑦
∗

2
) 𝑇))

𝑏
1
(1 − exp (− (𝑎

1
− 𝛽
1
𝐿
1
𝑦
∗

2
) 𝑇))

Š 𝜉
1
.

(40)

Obviously 𝑢∗
6
(𝑡) ≥ 𝜉

1
, 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇]. Thus the inequality

𝑥
1
(𝑡) ≥ 𝑢

∗

6
(𝑡) − 𝜀

5
≥ 𝜉
1
− 𝜀
5

(41)



6 Discrete Dynamics in Nature and Society

holds for 𝑡 sufficiently large. Similarly we have

𝑥
2
(𝑡)

≥

(𝑎
2
− 𝛽
2
𝐿
2
𝑦
∗

2
) (1 − 𝑝

2
− exp (− (𝑎

2
− 𝛽
2
𝐿
2
𝑦
∗

2
) 𝑇))

𝑏
2
(1 − exp (− (𝑎

2
− 𝛽
2
𝐿
2
𝑦
∗

2
) 𝑇))

− 𝜀
5
Š 𝜉
2
− 𝜀
5
.

(42)

In view of (35), combining (41) and (42), we get

𝑉


(𝑡) ≥ (exp (−𝑑
1
𝜏)

⋅ (𝜆
1
𝛽
1
𝑓
1
(𝜉
1
− 𝜀
5
) + 𝜆
2
𝛽
2
𝑓
2
(𝜉
2
− 𝜀
5
)) − 𝑑

2

− 𝑟𝜂
3
) 𝑦
2
(𝑡) .

(43)

Let𝑦𝑚
2
Šmin{𝑦

2
(𝑡) : 𝑡
1
≤ 𝑡 ≤ 𝑡

1
+𝜏}.We can prove𝑦

2
(𝑡) ≥

𝑦
𝑚

2
for 𝑡 > 𝑡

1
. Otherwise, there exists 𝑡

2
> 0 such that 𝑦

2
(𝑡) ≥

𝑦
𝑚

2
for 𝑡
1
≤ 𝑡 ≤ 𝑡

1
+ 𝜏 + 𝑡

2
, 𝑦
2
(𝑡
1
+ 𝜏 + 𝑡

2
) = 𝑦
𝑚

2
, and 𝑦

2
(𝑡
1
+

𝜏 + 𝑡
2
) ≤ 0. However, from (43), we have

𝑉

(𝑡
1
+ 𝜏 + 𝑡

2
) ≥ (exp (−𝑑

1
𝜏)

⋅ (𝜆
1
𝛽
1
𝑓
1
(𝜉
1
− 𝜀
5
) + 𝜆
2
𝛽
2
𝑓
2
(𝜉
2
− 𝜀
5
)) − 𝑑

2

− 𝑟𝜂
3
) 𝑦
𝑚

2
> 0.

(44)

This is a contradiction. Hence, for all 𝑡 > 𝑡
1
, we have 𝑦

2
(𝑡) ≥

𝑦
𝑚

2
> 0.
In view of (36) and (43), we have 𝑉(𝑡) > 0, which leads

to 𝑉(𝑡) → ∞ as 𝑡 → ∞. It is a contradiction with 𝑉(𝑡) ≤
𝜂
3
+exp(−𝑑

1
𝜏)(𝜆
1
𝛽
1
𝑓
1
(𝜂
1
)+𝜆
2
𝛽
2
𝑓
2
(𝜂
2
))𝜂
3
𝜏.This implies that

for any positive constant 𝑡
0
, 𝑦
2
(𝑡) < 𝑦

∗

2
cannot be true for all

𝑡 > 𝑡
0
; then there are the following two cases.

Case (a). 𝑦
2
(𝑡) > 𝑦

∗

2
is true for all 𝑡 large enough; then our

aim is obtained.

Case (b). 𝑦
2
(𝑡) is oscillatory about 𝑦∗

2
; then we define

𝑚
3
= min{

𝑦
∗

2

2

, 𝑦
∗

2
exp (− (𝑑

2
+ 𝑟𝑦
∗

2
) 𝜏)} . (45)

Now we show 𝑦
2
(𝑡) ≥ 𝑚

3
. It is clear that there exist two

positive constants �̃� and 𝜔 such that 𝑦
2
(�̃�) = 𝑦

2
(�̃� + 𝜔) = 𝑦

∗

2

and 𝑦
2
(𝑡) < 𝑦

∗

2
, 𝑡 ∈ (�̃�, �̃� + 𝜔), with �̃� being sufficiently large

such that (37) holds for 𝑡 ∈ (�̃�, �̃� + 𝜔). By the continuous and
bounded properties of 𝑦

2
(𝑡), we know that 𝑦

2
(𝑡) is uniformly

continuous. Therefore, there exists a constant 𝑡
3
> 0 such

that 𝑦
2
(𝑡) > 𝑦

∗

2
/2 for all �̃� ≤ 𝑡 ≤ �̃� + 𝑡

3
. If 𝜔 < 𝑡

3
,

then 𝑦
2
(𝑡) > 𝑦

∗

2
/2; our aim is obtained. If 𝑡

3
< 𝜔 < 𝜏,

in view of (3), for �̃� < 𝑡 < �̃� + 𝜔, combining assumption
𝑦
2
(�̃�) = 𝑦

∗

2
and 𝑦

2
(𝑡) < 𝑦

∗

2
(�̃� < 𝑡 < �̃� + 𝜔), we have

𝑦


2
(𝑡) ≥ −𝑑

2
𝑦
2
(𝑡) − 𝑟𝑦

2

2
(𝑡) ≥ (−𝑑

2
− 𝑟𝑦
∗

2
)𝑦
2
(𝑡). Easily we get

𝑦
2
(𝑡) ≥ 𝑦

∗

2
exp(−(𝑑

2
+ 𝑟𝑦
∗

2
)𝜏) ≥ 𝑚

3
. If 𝜔 > 𝜏, analogously

we derive that 𝑦
2
(𝑡) ≥ 𝑚

3
for �̃� ≤ 𝑡 ≤ �̃� + 𝜏. Since the

interval [�̃�, �̃� + 𝜔] is chosen at random and the choice of 𝑚
3

is independent with the positive solution of (3), we conclude
that 𝑦

2
(𝑡) ≥ 𝑚

3
holds for all 𝑡 large enough.
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Figure 1: Dynamical behaviors of the predator-extinction solution
of system (3) with initial value 𝑥

1
(0) = 0.1, 𝑥

2
(0) = 0.8, 𝑦

2
(0) = 0.5

and 𝑎
1
= 0.65, 𝑎

2
= 1, 𝑏

1
= 0.65, 𝑏

2
= 1, 𝑑

1
= 0.5, 𝑑

2
= 0.7, 𝛽

1
= 1,

𝛽
2
= 1, 𝜆

1
= 1, 𝜆

2
= 1, 𝑝

1
= 0.2, 𝑝

2
= 0.2, 𝑐

1
= 1, 𝑐

2
= 0.8, 𝑐

3
= 1,

𝑐
4
= 1, 𝑐
5
= 1, 𝑟 = 0.25, 𝜏 = 1, and 𝑇 = 1.

Based on the above analysis, letting 𝑚 = min{𝑚
1
, 𝑚
2
,

𝑚
3
}, we have 𝑚 ≤ 𝑥

1
(𝑡), 𝑚 ≤ 𝑥

2
(𝑡), and 𝑚 ≤ 𝑦

2
(𝑡). In

addition, 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦
2
(𝑡) ≤ 𝑀 holds; hence we conclude

that system (3) is permanent. The proof is complete.

5. Numerical Simulation

For the generalized functional response of (3), there aremany
functional responses that meet the condition, such as Holling
type I, Holling type II, Holling type III, Crowley-Martin type,
Beddington-DeAngelis type, Watt type, and Ivlev type. In
this section, we choose two concrete functional responses to
illustrate the rationality of our results and try to find more
dynamical behaviors of system (3). We choose such function
response as Holling type II and Beddington-DeAngelis type
as follows:

𝑓
1
(𝑥
1
(𝑡)) =

𝑥
1
(𝑡)

𝑐
1
+ 𝑐
2
𝑥
1
(𝑡)

,

𝑓
2
(𝑥
2
(𝑡)) =

𝑥
2
(𝑡)

𝑐
3
+ 𝑐
4
𝑥
2
(𝑡) + 𝑐

5
𝑦
2
(𝑡)

.

(46)

Firstly, let 𝑎
1
= 0.65, 𝑎

2
= 1, 𝑏

1
= 0.65, 𝑏

2
= 1, 𝑑

1
= 0.5,

𝑑
2
= 0.7, 𝛽

1
= 1, 𝛽

2
= 1, 𝜆

1
= 1, 𝜆

2
= 1, 𝑝

1
= 0.2, 𝑝

2
= 0.2,

𝑐
1
= 1, 𝑐

2
= 0.8, 𝑐

3
= 1, 𝑐

4
= 1, 𝑐

5
= 1, 𝑟 = 0.25, 𝜏 = 1,

and𝑇 = 1. By calculation, all parameters satisfy conditions of
Theorem 3; then we obtain from Theorem 3 that a predator-
extinction solution of system (3) exists, which is globally
attractive. By numerical analysis with MATLAB, we get the
following simulation figures of a predator-extinction solution
and its global attractivity. Figure 1 shows the existence of
a predator-extinction solution with only one initial value
and Figure 2 shows the attractivity of the predator-extinction
solution; that is, regardless of different initial values, species
𝑥
1
, 𝑥
2
, and 𝑦

2
converge to the predator-extinction solution.
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Figure 2: Dynamical behavior of system (3) with different initial
values. These initial values are chosen randomly, and other parame-
ters are the same as those in Figure 1. One can find that the solutions
are globally attractive.The difference between Figures 1 and 2 is that
more initial values are chosen in Figure 2 to show that the solutions
are globally attractive.

Secondly, we choose another set of parameters to illus-
trate the permanence of system (3). Take 𝑎

1
= 0.65, 𝑎

2
= 1,

𝑏
1
= 0.65, 𝑏

2
= 1, 𝑑

1
= 0.5, 𝑑

2
= 0.2, 𝛽

1
= 1, 𝛽

2
= 1, 𝜆

1
= 1,

𝜆
2
= 1, 𝑝

1
= 0.2, 𝑝

2
= 0.2, 𝑐

1
= 1, 𝑐
2
= 0.8, 𝑐

3
= 1, 𝑐
4
= 1, 𝑐
5
=

1, 𝑟 = 0.25, 𝜏 = 1, and 𝑇 = 1. One can verify that conditions
ofTheorem 5 are satisfied; then fromTheorem 5, system (3) is
permanent. By simulation, the results can be indicated clearly
by Figure 3. Figure 3(a) shows the permanence of (3) and
Figure 3(b) gives a positive periodic solution of this system.

Thirdly, in view of (H4), we know that pest population
will die out if 𝑝

1
and 𝑝

2
are larger than the corresponding

threshold. In order to investigate the influence of 𝑝
1
, 𝑝
2

and time delay 𝜏, we fix the same parameters in Figure 3 as
follows. Consider that 𝑎

1
= 0.65, 𝑎

2
= 1, 𝑏

1
= 0.65, 𝑏

2
= 1,

𝑑
1
= 0.5, 𝑑

2
= 0.2, 𝛽

1
= 1, 𝛽

2
= 1, 𝜆

1
= 1, 𝜆

2
= 1, 𝑐

1
= 1,

𝑐
2
= 0.8, 𝑐

3
= 1, 𝑐

4
= 1, 𝑐

5
= 1, 𝑟 = 0.25, and 𝑇 = 1. If

𝑝
1
= 0.5, by simulation, pest 𝑥

1
is driven to extinction (see

Figure 4(a)), and if𝑝
2
= 0.65, then, similarly, pest𝑥

2
becomes

extinct (see Figure 4(b)). If𝑝
1
= 0.5 and𝑝

2
= 0.65 at the same

time, then not only both pests are going to extinct but also
their predator dies out due to lack of food (see Figure 4(c)),
which is contrary to the conservation of biological diversity.
From biological point of view, we only need to control these
two pests at a rational level by adjusting the value of 𝑝

1
and

𝑝
2
, respectively. Furthermore, by simulation, if time delay 𝜏

between immature predator and mature predator goes up to
a threshold (𝜏 = 4), the predatorwill die out (see Figure 4(d)),
so we claim that the stage-structure also plays an important
role in the permanence of system (3).

Finally, we consider the influence of impulsive period 𝑇.
Take parameters in system (3) as 𝑎

1
= 0.65, 𝑎

2
= 1, 𝑏
1
= 0.65,

𝑏
2
= 1, 𝑑

1
= 0.5, 𝑑

2
= 0.1, 𝛽

1
= 1, 𝛽

2
= 1, 𝜆

1
= 1, 𝜆

2
= 1,

𝑝
1
= 0.1, 𝑝

2
= 0.1, 𝑐

1
= 10, 𝑐

2
= 0.8, 𝑐

3
= 10, 𝑐

4
= 1, 𝑐
5
= 1,

𝑟 = 0.25, 𝜏 = 0, 𝑥
1
(0) = 0.7, 𝑥

2
(0) = 0.8, and 𝑦

2
(0) = 0.5.

By simulation, we get the following bifurcation diagrams (see
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Figure 3: The permanence of system (3) with initial values of
𝑥
1
(0) = 0.1, 𝑥

2
(0) = 0.8, 𝑦

2
(0) = 0.5, and 𝑑

2
= 0.2, and other

parameters are the same as those in Figure 1. Obviously, all these
species can coexist and their densities go into a bounded region. (a)
Time series of 𝑥

1
, 𝑥
2
, and 𝑦

2
, which indicate that the solution of (3)

goes into a bounded region to be permanent. (b) Phase portrait of
system (3), which implies a positive periodic solution.

Figure 5). Figure 5 indicates that bifurcation appears if 𝑇 =

118.1, 143.9, 147.4, respectively, and if 𝑇 ∈ [118.1, 147.4],
more than one periodic solution appears. If a moderate pulse
is given (𝑇 > 147), then the system exhibits chaotic phenom-
ena, including stable solutions, cycles, cascade, and chaos,
which means the evolution of this system is unpredictable. In
a word, the system analyzed here exhibits many complicated
dynamical behaviors.

6. Discussion

In this paper, considering the complicated effects from the
real world, we introduce impulsive spraying pesticides, stage-
structure for predator, and generalized functional response
into one-predator and two-prey system. Firstly, we investigate
the existence and global attractivity of predator-extinction
periodic solution under the condition that 𝑒−𝑑1𝜏(𝜆

1
𝛽
1
𝑓
1
(𝜂
1
)+
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Figure 4: Dynamical behavior of system (3) with initial values 𝑥
1
(0) = 0.7, 𝑥

2
(0) = 0.8, and 𝑦

2
(0) = 0.5. (a) Time series of 𝑥

1
, 𝑥
2
, and 𝑦

2

with 𝑝
1
= 0.5, 𝑝

2
= 0.2, which imply that overcatching of 𝑥

1
will drive it to die out. (b) Time series of 𝑥

1
, 𝑥
2
, and 𝑦

2
with 𝑝

1
= 0.2, 𝑝

2
= 0.65,

which imply that overcatching of 𝑥
2
will also drive it to die out. (c) Time series of 𝑥

1
, 𝑥
2
, and 𝑦

2
with 𝑝

1
= 0.5, 𝑝

2
= 0.65. Figures show that

the three species die out because of overcapturing of the two preys. (d) Time series of 𝑥
1
, 𝑥
2
, and 𝑦

2
with 𝜏 = 4, the remaining parameters are

as fixed as those in Figure 3. Comparing Figure 4 with Figure 3, one can find that the delay 𝜏 large enough can lead 𝑦
2
to die out.

𝜆
2
𝛽
2
𝑓
2
(𝜂
2
)) < 𝑑

2
. Secondly, we obtain the sufficient con-

ditions of the permanence. Finally, by numerical simulation
withMATLAB, we further discuss some complicated dynam-
ical behaviors of the system.

Our obtained results imply that if 𝑑
1
or 𝑑
2
is larger than

a threshold (because of lack of food or catching the pest
that died from insecticide), the predator will be extinct (see
Figure 1), and if pesticides are used too much or harvesting
is excessive on two pests, three species will all die out (see
Figure 4(c)). In order to keep biological balance or biological
diversity, some protective measures can be taken to ensure

𝑑
2
is less than the threshold (such as disease prevention and

releasing immature or mature predator); then the system will
be permanent (see Figures 1–3). By comparing Figure 3 with
Figures 4(a) and 4(b), if we change parameters 𝑝

1
and 𝑝

2
,

respectively, 𝑥
1
and 𝑥

2
will die out effectively, but the rest of

population will still survive, which can be used to provide
a reliable control strategy: if impulsive period 𝑇 is given,
we can adjust 𝑝

1
, 𝑝
2
to give a protection for the predator.

It will not only reduce the economic loss but also protect
environment fromdamage. Finally, impulsive period𝑇 affects
the dynamical behaviors of the system heavily, which may
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Figure 5: Bifurcation diagrams of system (3) with respect to impulsive period 𝑇 on [107, 157]. (a) Bifurcation diagrams of 𝑥
1
. (b) Bifurcation

diagrams of 𝑥
2
. (c) Bifurcation diagrams of 𝑦

2
. Figure 5 indicates that bifurcation appears if 𝑇 = 118.1, 143.9, 147.4, respectively, and if 𝑇 ∈

[118.1, 147.4], more than one periodic solution appears. If a moderate pulse is given (𝑇 > 147), then the system shows chaotic phenomenon.
The bifurcation diagrams include stable solutions, cycles, cascade, and chaos.

bring chaotic phenomena, including stable solutions, cycles,
cascade, and chaos (see Figure 5).

In a word, our obtained results show that all parameters
𝑝
1
, 𝑝
2
, 𝜏, and 𝑇 bring great effects on the properties of

system (3), which can be applied to ecological resource man-
agement. The complicated dynamical behaviors imply that
the influence from parameters 𝑝

1
, 𝑝
2
, 𝜏, and 𝑇 is worthy of

being studied and we will continue to study the potential
dynamical properties in the near future.
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