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The grey forecasting model has been successfully applied in numerous fields since it was proposed. The nonhomogeneous discrete
grey model (NDGM) was approximately constructed based on the nonhomogeneous index trend; it increased the applicability
of discrete grey model. However, the NDGM required accurate data and better effect when the original data did not meet the
conditions and fitting and prediction errors were larger. For this, the NDGM with the fractional order accumulating operator
(abbreviated as NDGM�푝/�푞) has higher performance. In this paper, the matrix perturbation bound of the parameters was used to
analyze the stability of NDGM�푝/�푞 and the NDGM�푝/�푞 can decrease the disturbance bound. Subsequently, the parameter estimation
method of NDGM�푝/�푞 was studied and the Particle Swarm Optimization algorithm was employed to optimize the order number
of NDGM�푝/�푞 and some steps were provided. In addition, the results of two practical examples demonstrated that the perturbation
of NDGM�푝/�푞 was smaller than that of NDGM and provided remarkable predication performance compared with the traditional
NDGMmodel and DGMmodel.

1. Introduction

Forecasting the future values of time series data plays a
very important role in our research; thus, many forecasting
methods have been developed for many years, such as the
Rough sets theory proposed by Pawlak (see [1, 2]) and fuzzy
mathematics proposed by Zadeh (see [3]). However, because
of limited knowledge and information, only part of system
structure could be fully known. To address this problem,
professorDeng proposed grey forecastingmodels to catch the
system development tendency [4, 5].

As a core model of grey prediction, GM (1, 1) model
has been widely used in some fields such as transportation,
agriculture, economy, and management [6–10]. Meanwhile,
many scholars have improved the GM (1, 1) model a lot [11–
19], thus enhancing its simulative accuracy and predictive
accuracy. However, during the processes of both practical
application and theoretical research of the GM (1, 1) model,
GM (1, 1) model directly jumped from discrete form to

continuous form, which resulted in failing in completely
fitting homogeneous exponential sequence in simulation and
prediction.Then the discrete greymodel [20]was put forward
to solve the transformation from discrete to continuous GM
(1, 1) model. However, GM (1, 1) model and DGM model
were constructed based on a hypothesis that the original data
sequence was a homogeneous index sequence. However, the
fact was not consistent, and the most original data sequence
was the nonhomogeneous index sequence.

Hence, Xie and Liu [21] come up with nonhomogeneous
discrete grey model (NDGM), and the model was con-
structed based on the approximate nonhomogeneous index
trend. The results indicate there is no error between original
value and simulative value based on pure nonhomogeneous
index sequence. And NDGM model was the extension
of DGM model while the latter was the special case of
the former. NDGM model increased the applicability of
discrete grey model. According to improve simulation and
prediction accuracies, there were some the results [22, 23] of

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 9728587, 10 pages
https://doi.org/10.1155/2017/9728587

https://doi.org/10.1155/2017/9728587


2 Mathematical Problems in Engineering

nonhomogeneous discrete grey model. However, these mod-
els had a higher requirement for data; when the data did not
meet the requirements, the errors of both model-fitting and
prediction were larger. The actual value cannot always meet
the definition of monotonic increasing (decreasing) concave
(convex) function. So the original data were accumulated
to increase the exponent law according to the classical grey
modeling mechanism. However, the accumulation of integer
order was not suitable for some data, as modeling, and the
effects of simulation and prediction were poor. Nevertheless,
the current fraction grey model which used factional order
accumulation [24–27] has the important significance for
improving the performance of grey model.

Therefore, Wu et al. [28] defined the actual data with
fractional order accumulation and defined theNDGMmodel
with fractional order accumulation (NDGM�푝/�푞). But they
only presented the algorithm of model and some random
fractional order values without considering the initial value
of the model and presenting the nature of NDGM�푝/�푞 model.
When a system was studied, the stability must be considered.
They did not study the stability of the NDGM�푝/�푞 model;
hence, the parameters of matrix perturbation bound were
used to analyze the stability of NDGM�푝/�푞 model; then it
was concluded that the solution of the NDGM�푝/�푞 model
perturbation bound of solution was smaller than that of
NDGM model. When 0 < 𝑝/𝑞 < 1, the solution of
NDGM�푝/�푞model perturbation bound of solutionwas smaller
and could decrease the disturbance bound. And they did not
conclude which order number was the best as well as how
to obtain the best order number and other properties. In
order to solve these issues, the parameter estimation method
of NDGM�푝/�푞 was studied. Furthermore, the Particle Swarm
Optimization algorithm was employed to optimize the order
number of the NDGM�푝/�푞 model and obtained the better
simulation and prediction results. Finally, the results from
previous works demonstrated that the perturbation bound
solution of thatNDGM�푝/�푞modelwas smaller than traditional
NDGM model in Case 1, and the results the Case 2 practical
demonstrated that NDGM�푝/�푞 provided better predication
performance than the traditional NDGM model and DGM
model.

This paper is organized as follows. In Section 2, we
introduced the NDGM model with integer order accumu-
lating operator and the NDGM�푝/�푞 model. In Section 3, the
stability of the NDGM�푝/�푞 model was discussed. In Section 4,
the Particle Swarm Optimization algorithm was employed
to optimize the order number of NDGM�푝/�푞 model; some
steps were provided. Finally, in Section 5, the paper was
concluded.

2. NDGM Model with Fractional Order
Accumulating Operator

Definition 1 (see [29]). Assume that the sequence𝑋(0) = {𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)} (1)

is an original data sequence, and the symbol 𝐷 represents a
kind ofmathematical operationalmethod.When𝐷 is applied
once on the sequence 𝑋(0), we have that𝑋(0)𝐷(1) = 𝑋(1) = {𝑥(1) (1) , 𝑥(1) (2) , . . . , 𝑥(1) (𝑛)} (2)

is the accumulated generation sequence of 𝑋(0), where𝑥(1) (𝑘) = �푛∑
�푘=1

𝑥(0) (𝑖) , 𝑘 = 1, 2, . . . , 𝑛. (3)

Then 𝐷 is called the first-order accumulating generation
operator of 𝑋(0), denoted by 1-AGO. If 𝐷 is applied 𝑟 times
on 𝑋(0), we obtain𝑋(0)𝐷(�푟) = 𝑋(�푟) = {𝑥(�푟) (1) , 𝑥(�푟) (2) , . . . , 𝑥(�푟) (𝑛)} , (4)

where 𝑥(�푟) (𝑘) = �푛∑
�푘=1

𝑥(�푟−1) (𝑖) , 𝑘 = 1, 2, . . . , 𝑛, 𝑟 ∈ 𝑍+. (5)

Then 𝐷 is called the 𝑟-order accumulating generation
operator of 𝑋(0), denoted by 𝑟-AGO.

Accordingly, the inverse accumulating generation opera-
tor is the inverse operation of the accumulating generation
process and plays a role in recovery from the acts of accumu-
lating operators; the inverse accumulating operator is defined
as follows:𝑋(0)𝐷(�푟) = 𝛼(�푟)𝑋(0)= {𝛼(�푟)𝑥(0) (1) , 𝛼(�푟)𝑥(0) (2) , . . . , 𝛼(�푟)𝑥(0) (𝑛)} , (6)

where𝛼(�푟)𝑥(0) (𝑘) = {𝛼(�푟−1)𝑥(0) (𝑘) − 𝛼(�푟−1)𝑥(0) (𝑘 − 1)} ,𝑘 = 2, 3, . . . , 𝑛. (7)

In Definition 1, the order 𝑟 ∈ 𝑍+, and we call the two
operators accumulating and inverse accumulating generation
operators with integer order.

The sequence𝑍(1) = {𝑧(1) (2) , 𝑧(1) (3) , . . . , 𝑧(1) (𝑛)} (8)

is the mean sequence of 𝑋(1), where𝑧(1) (𝑘) = 12 (𝑥(1) (𝑘) + 𝑥(1) (𝑘 − 1)) , 𝑘 = 2, 3, . . . , 𝑛. (9)

Definition 2 (see [29]). The equation𝑥(0) (𝑘) + 𝑎𝑧(1) (𝑘) = 𝑏,𝑥(1) (0) = 𝑥(0) (1) (10)

is called a GM(1, 1) model, where 𝑧(1)(𝑘) = (1/2)(𝑥(1)(𝑘) +𝑥(1)(𝑘 − 1)), 𝑘 = 2, 3, . . . , 𝑛. The whitenization equation𝑑𝑥(1)/𝑑𝑡 + 𝑎𝑥(1) = 𝑏 of GM(1, 1) model is solved to obtain𝑥(1) (𝑡 + 1) = (𝑥(1) − 𝑏𝑎) 𝑒−�푎�푡 + 𝑏𝑎 . (11)
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Definition 3 (see [20]). The sequences 𝑋(0) and 𝑋(1) are
defined as (1) and (2). Then the equation𝑥(1) (𝑘 + 1) = 𝛽1𝑥(1) (𝑘) + 𝛽2 (12)

is called discrete grey model (DGM). Similar with GM (1, 1)
model, 𝛽1 and 𝛽2 are the parameters of DGM model. The
equation𝑥(1) (𝑘 + 1) = 𝛽�푘1 (𝑥(0) (1) − 𝛽21 − 𝛽1) + 𝛽21 − 𝛽1 ,𝑘 = 1, 2, . . . , 𝑛 − 1, (13)

is called the recursive function of DGMmodel.

Definition 4 (see [21]). The sequences 𝑋(0) and 𝑋(1) are
defined as (1) and (2). Then the equation𝑥(1) (𝑘 + 1) = 𝛽1𝑥(1) (𝑘) + 𝛽2𝑘 + 𝛽3𝑥(1) (1) = 𝑥(1) (1) + 𝛽4 (14)

is called nonhomogenous discrete grey model (NDGM).𝑥(1)(𝑘) is the simulative value of 𝑥(1)(𝑘) and 𝑥(1)(1) is the
iterative value of the NDGM model. 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are
parameters of NDGMmodel. The equation𝑥(1) (𝑘 + 1) = 𝑥(1) (1) 𝛽�푘1 + 𝛽2 �푘∑

�푗=1

𝑗𝛽�푘−�푗1 − 1 − 𝛽�푘11 − 𝛽1 × 𝛽3 (15)

is called the recursive function of DGMmodel.

Definition 5. Let the 𝑝/𝑞 (0 < 𝑝/𝑞 < 1) order accumulated
generating operator of the original nonhomogeneous index
sequence 𝑋(0) be 𝑋(�푝/�푞). Let 𝐶0�푝/�푞 = 1, 𝐶�푘�푘−1 = 0; then𝑥(�푝/�푞)(𝑘) = ∑�푘�푖=1 𝐶�푘−�푖�푘−�푖+�푝/�푞−1𝑥(0)(𝑖), 𝑘 = 1, 2, . . . , 𝑛, where𝐶�푘−�푖�푘−�푖+�푝/�푞−1= (𝑝/𝑞 + 𝑘 − 𝑖 − 1) (𝑝/𝑞 + 𝑘 − 𝑖 − 2) ⋅ ⋅ ⋅ (𝑟 + 1) (𝑝/𝑞)(𝑘 − 𝑖)! . (16)

𝑝/𝑞 order inverse accumulated generating operator of𝑋(0) is𝛼(�푝/�푞)𝑋(0) = 𝛼(1)𝑋(1−�푝/�푞) = {𝛼(1)𝑋(1−�푝/�푞) (1) ,𝛼(1)𝑋(1−�푝/�푞) (2) , . . . , 𝛼(1)𝑋(1−�푝/�푞) (𝑛)} . (17)

Definition 6 (see [28]). Assume that𝑥(�푝/�푞) (𝑘 + 1) = 𝛽1𝑥(�푝/�푞) (𝑘) + 𝛽2𝑘 + 𝛽3𝑥(�푝/�푞) (1) = 𝑥(1) (1) + 𝛽4 (18)

is established.
The sequences𝑋(0) and𝑋(�푝/�푞) are defined as (2) and (18).

Then (18) is called nonhomogenous discrete grey model with
fractional order accumulation (abbreviated as NDGM�푝/�푞
model). 𝑥(�푝/�푞)(𝑘) is the simulative value of 𝑥(1)(𝑘) and𝑥(�푝/�푞)(1) is the iterative value of the NDGM model. 𝛽1, 𝛽2,𝛽3, and 𝛽4 are parameters of NDGM(�푝/�푞) model.

That is least squaremethod. So we can get the expressions
of parameters in Proposition 7.

Proposition 7. Based on the least square method the first level
parameters 𝛽1, 𝛽2, and 𝛽3 satisfy the matrix equation

(𝛽1𝛽2𝛽3) = (𝐵�푇𝐵)−1 𝐵�푇𝑌, (19)

where

𝐵 = (((
(

𝑥(�푝/�푞) (1) 1 1𝑥(�푝/�푞) (2) 2 1... ... ...𝑥(�푝/�푞) (𝑛 − 1) 𝑛 − 1 1
)))
)

,

𝑌 = (
(

𝑥(�푝/�푞) (2)𝑥(�푝/�푞) (3)...𝑥�푝/�푞 (𝑛)
)
)

.
(20)

Proposition 8. The recursive function of NDGM�푝/�푞 model is𝑥(�푝/�푞) (𝑘 + 1) = 𝛽�푘1𝑥(�푝/�푞) (1) + 𝛽2 �푘∑
�푗=1

𝑗𝛽�푘−�푗1 + 1 − 𝛽�푘11 − 𝛽1 𝛽3,𝑘 = 1, 2, . . . , 𝑛 − 1. (21)

Proof. By Definition 6, we have𝑥(�푝/�푞) (𝑘 + 1) = 𝛽1𝑥(�푝/�푞) (𝑘) + 𝛽2𝑘 + 𝛽3= 𝛽1 (𝛽1𝑥(�푝/�푞) (𝑘 − 1) + 𝛽2 (𝑘 − 1) + 𝛽3) + 𝛽2𝑘+ 𝛽3= 𝛽21𝑥(�푝/�푞) (𝑘 − 1) + 𝛽2 [𝛽1 (𝑘 − 1) + 𝑘]+ 𝛽3 (1 + 𝛽1)= 𝛽31𝑥(�푝/�푞) (𝑘 − 2)+ 𝛽2 [𝛽21 (𝑘 − 2) + 𝛽1 (𝑘 − 1) + 𝑘]+ 𝛽3 (1 + 𝛽1 + 𝛽21) = ⋅ ⋅ ⋅= 𝛽�푘1𝑥(�푝/�푞) (1) + 𝛽2 �푘∑
�푗=1

𝑗𝛽�푘−�푗1 + 1 − 𝛽�푘11 − 𝛽1 𝛽3,𝑘 = 1, 2, . . . , 𝑛 − 1.

(22)

We use the least square method to calculate the value
of parameter 𝛽4. By minimizing the error of 𝑥(�푝/�푞)(𝑘) and
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4

= ∑�푛�푘=1[𝑥(1)(𝑘) − 𝑥(1)(𝑘)]. We can construct
a nonrestraint optimized model; then

𝛽4 = [𝑥�푝/�푞 (𝑘 + 1) − 𝛽�푘1𝑥(1) (1) − 𝛽2∑�푘�푗=1 𝑗𝛽�푘−�푗1 − 𝛽3 ((1 − 𝛽�푘1) / (1 − 𝛽1))] 𝛽�푘11 + ∑�푛−1�푘=1 (𝛽�푘1)2 , (23)

where 𝑘 = 1, 2, . . . , 𝑛 − 1.
3. The Stability of the Solution of NDGM
Model with Fractional Order Accumulation

3.1. The Stability of 𝑁𝐷𝐺𝑀�푝/�푞 Model. In order to illustrate
the stability of the NDGM�푝/�푞 model, the theorem related to
the matrix perturbation analysis was introduced as follows.

Lemma 9 (see [29]). Let 𝐴 ∈ 𝐶�푛×�푛, 𝑏 ∈ 𝐶�푛, 𝑀 = 𝐴 + 𝐸, and𝑐 = 𝑏 + 𝑘. Suppose 𝑥 + ℎ and 𝑥 satisfy ‖𝑀𝑥 − 𝑐‖2 = 𝑚𝑖𝑛 and‖𝐴𝑥 − 𝑏‖2 = 𝑚𝑖𝑛. If rank(𝐴) = rank(𝑀) and ‖𝐴†‖2‖𝐸‖2 < 1,
where 𝐴† is the pseudo-inverse of matrix 𝐴, then

‖ℎ‖ ≤ 𝜅†𝛾† (‖𝐸‖2‖𝐴‖ ‖𝑥‖ + ‖𝑘‖‖𝐴‖ + 𝜅†𝛾† ‖𝐸‖2‖𝐴‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐴‖ ) , (24)

where ‖𝐴‖, ‖𝐸‖, and ‖𝑟�푥‖ are the tolerance norm and 𝑟�푥 = 𝑏 −𝐴𝑥, 𝜅† = ‖𝐴†‖2‖𝐴‖, and 𝛾† = 1 − ‖𝐴†‖2‖𝐸‖2.
Theorem 10. For the NDGM�푝/�푞 model of original data{𝑥(0)(1), 𝑥(0)(2), . . . , 𝑥(0)(𝑛)} based on nonhomogeneous index
sequence, if the rth data is disturbed, that is, 𝑥(0)(𝑟) = 𝑥(0)(𝑟)+𝜀, 𝑟 = 1, 2, . . . , 𝑛 − 1, based on the least square method‖𝐵𝑋 − 𝑌‖ = 𝑚𝑖𝑛, let 𝑥 be a solution of the Lemma 9; then
the perturbation bound is 𝐿1(𝑥(0)(𝑟)) and

𝐿1 (𝑥(0) (1)) = |𝜀| 𝜅†𝛾† √∑�푛−1�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ ‖𝑥‖
+ √∑�푛�푘=2 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖
+ 𝜅†𝛾† √∑�푛−1�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐵‖ ,

𝐿1 (𝑥(0) (𝑟)) = |𝜀| 𝜅†𝛾† √∑�푛−�푟�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ ‖𝑥‖
+ √∑�푛−�푟+1�푘=1 (𝐶�푘−1

�푘+�푝/�푞−2
)2‖𝐵‖

+ 𝜅†𝛾† √∑�푛−�푟�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐵‖ ,
(25)

where 𝑟 = 2, 3, . . . , 𝑛 − 1, and when 𝑥(0)(𝑛) = 𝑥(0)(𝑛) + 𝜀, then
𝐿1 (𝑥(0) (𝑛)) = 𝜅†𝛾† |𝜀|‖𝐵‖ , (26)

where mathematical notation is the same as Lemma 9.

Proof. If 𝜀 is regarded as a disturbance of 𝑥(0)(1), then𝐵 = 𝐵 + Δ𝐵
= (

(
𝑥(�푝/�푞)(1) 1 1𝑥(�푝/�푞) (2) 2 1... ... ...𝑥(�푝/�푞) (𝑛 − 1) 𝑛 − 1 1

)
)

+ ((
(

𝜀 0 0𝑝𝑞 𝜀 0 0... ... ...𝐶�푛−2�푛−3+�푝/�푞𝜀 0 0
))
)

,

𝑌̂ = 𝑌 + Δ𝑌(
(

𝑥(�푝/�푞) (2)𝑥(�푝/�푞) (3)...𝑥(�푝/�푞) (𝑛)
)
)

+ ((
(

𝑝𝑞𝜀𝐶21+�푝/�푞𝜀...𝐶�푛−1�푛−2+�푝/�푞𝜀
))
)

;

(27)

thus, we have(Δ𝐵)�푇 Δ𝐵
= (1 + (𝑝𝑞)2 + (𝐶2�푝/�푞+1)2 + ⋅ ⋅ ⋅ + (𝐶�푛−1�푛−2+�푝/�푞)2 𝜀2 0 00 0 00 0 0) . (28)
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Because 1 + (𝑝/𝑞)2 + (𝐶2�푝/�푞+1)2 + ⋅ ⋅ ⋅ + (𝐶�푛−1�푛−2+�푝/�푞)2𝜀2 is Δ𝐵�푇Δ𝐵
maximum of eigenvalue, then

‖Δ𝐵‖2 = √𝜆max (Δ𝐵�푇Δ𝐵) = √�푛−1∑
�푘=1

(𝐶�푘−1
�푘+�푝/�푞−2

)2 |𝜀| ,
‖Δ𝑌‖2 = √(𝑝𝑞)2 + (𝐶2

�푝/�푞+1
)2 + ⋅ ⋅ ⋅ + (𝐶�푛−1

�푛−2+�푝/�푞
)2 |𝜀|

= √ �푛∑
�푘=2

(𝐶�푘−1
�푘+�푝/�푞−2

)2 |𝜀| .
(29)

By Lemma 9 and based on the least square method ‖𝐵𝑥 −𝑌‖2 = 𝑚𝑖𝑛, Δ𝑥 is the disturbed solution of equation 𝐵𝑥 = 𝑌,
and we have

Δ𝑥 ≤ 𝜅†𝛾† (‖Δ𝐵‖2‖𝐵‖ ‖𝑥‖ + ‖Δ𝑌‖‖𝐵‖ + 𝜅†𝛾† ‖Δ𝐵‖2‖𝐵‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐵‖ ) ,𝐿1 (𝑥(0) (1))
= |𝜀| 𝜅†𝛾† √∑�푛−1�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ ‖𝑥‖

+ √∑�푛�푘=2 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖
+ 𝜅†𝛾† √∑�푛−1�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐵‖ .

(30)

When 𝑥(0)(2) = 𝑥(0)(2) + 𝜀, then
Δ𝐵 = (((((

(

0 0 0𝜀 0 0𝑝𝑞 𝜀 0 0... ... ...𝐶�푛−3�푛−4+�푝/�푞𝜀 0 0
)))))
)

,

Δ𝑌 = (((((
(

𝜀𝑝𝑞 𝜀𝐶21+�푝/�푞𝜀...𝐶�푛−2�푛−3+�푝/�푞𝜀
)))))
)

.
(31)

According to the proof of 𝐿2(𝑥(0)(1)), we have
𝐿1 (𝑥(0) (2)) = |𝜀| 𝜅†𝛾† √∑�푛−2�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ ‖𝑥‖

+ √∑�푛−1�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖
+ 𝜅†𝛾† √∑�푛−2�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐵‖ .

(32)

According to this rule, if 𝜀 is regarded as a disturbance of𝑥(0)(𝑟), 𝑟 = 3, 4, . . . , 𝑛 − 1, both Δ𝐵 and Δ𝑌 changed; thus,

𝐿1 (𝑥(0) (𝑟)) = |𝜀| 𝜅†𝛾† √∑�푛−�푟�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ ‖𝑥‖
+ √∑�푛−�푟+1�푘=1 (𝐶�푘−1

�푘+�푝/�푞−2
)2‖𝐵‖

+ 𝜅†𝛾† √∑�푛−�푟�푘=1 (𝐶�푘−1�푘+�푝/�푞−2)2‖𝐵‖ 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩‖𝐵‖ .
(33)

If 𝜀 is regarded as a disturbance of 𝑥(0)(𝑛), we have
(Δ𝐵)�푇 Δ𝐵 = (0 0 00 0 00 0 0) ,

𝑌 = (00...𝜀) ,
𝐿1 (𝑥(0) (𝑛)) = 𝜅†𝛾† |𝜀|‖𝐵‖ .

(34)

When 𝑝/𝑞 = 1, let 𝐿2(𝑥(0)(𝑟) be the perturbation bound
of the NDGMmodel. ByTheorem 10, we have𝐿2 (𝑥(0) (𝑟)) = |𝜀| 𝜅†𝛾† (√𝑛 − 𝑟 ‖𝑥‖󵄩󵄩󵄩󵄩𝐵1󵄩󵄩󵄩󵄩 + √𝑛 − 𝑟 + 1󵄩󵄩󵄩󵄩𝐵1󵄩󵄩󵄩󵄩+ 𝜅†𝛾†√𝑛 − 𝑟 󵄩󵄩󵄩󵄩𝑟�푥󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐵1󵄩󵄩󵄩󵄩) , 𝑟 = 1, 2, . . . , 𝑛 − 1,

𝐿2 (𝑥(0) (𝑛)) = 𝜅†𝛾† |𝜀|󵄩󵄩󵄩󵄩𝐵1󵄩󵄩󵄩󵄩 .
(35)
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Table 1: The fitted values and MAPE of four grey models (unit: millionth).

Year Actual value GM(1, 1) NDGM NDGM0.5 NDGM0.01

2000 5.08 5.08 5.08 5.08 5.08
2001 4.80 3.55 3.65 3.74 4.23
2002 4.67 4.52 4.61 4.41 4.43
2003 4.50 5.76 5.84 5.71 5.50
2004 7.12 7.34 7.42 7.47 7.29
2005 9.67 9.34 9.45 9.70 9.67
2006 12.80 11.90 12.04 12.42 12.54
2007 15.88 15.15 15.37 15.66 15.84
2008 19.49 19.30 19.65 19.51 19.48
MAPE 10.01 8.93 8.01 5.49
2009 23.07 24.57 25.13 24.02 23.42
2010 26.86 31.29 32.16 29.28 27.59
MAPE 11.50 14.32 6.55 2.11

Obviously, 𝜅†/𝛾† and ‖Δ𝐵‖ are all positive and increasing
function of 𝑟; other variables are not changed. Therefore,
perturbation bounds 𝐿1(𝑥(0)(𝑟)) and 𝐿2(𝑥(0)(𝑟)) are the
increasing function of the effect of sample size 𝑛; that is,𝐿1(𝑥(0)(𝑟)) and 𝐿2(𝑥(0)(𝑟)) will change large when 𝑛 → +∞.
When 𝑟 is a constant value, 𝑝/𝑞 is lager; then 𝐿1(𝑥(0)(𝑟))
is lager too. When 0 < 𝑝/𝑞 ≤ 1, we have 𝐿1(𝑥(0)(𝑟)) <𝐿2(𝑥(0)(𝑟)), 𝑟 = 1, 2, . . . , 𝑛 − 1. When the perturbation
bound of solution was large, the perturbation was not always
large. This was because the perturbation cannot exceed the
perturbation bound. Hence, from the perspective of the size
of perturbation bound,when𝑥(0)(𝑟) = 𝑥(0)+𝜀, 𝑟 = 1, 2, . . . , 𝑛−1, the disturbed solution of theNDGM�푝/�푞model is lower.The
NDGM�푝/�푞 model is more stable than NDGMmodel.

3.2. Verification of the Stability𝑁𝐷𝐺𝑀�푝/�푞Model. In this sec-
tion, the effectiveness of the NDGM�푝/�푞 model is verified by
two real cases study.Mean absolute percentage error (MAPE)
compares the real and forecasted values to evaluate the preci-
sion. MAPE is defined as (MAPE = 100%(1/𝑛)∑�푛�푘=1 |(𝑥(𝑘) −𝑥(𝑘))/𝑥(𝑘)|), where 𝑥(0)(𝑘) is the actual value at time 𝑘, and𝑥(0)(𝑘) is the predicted value for time 𝑘.
Case 1 (syphilis incidence predicted in China [30]). The
trends of syphilis incidence in China forecasting example
[31] compare the precision; the historical incidence of China
from 2000 to 2008 was employed as the model-fitting. Then
the actual values of 2009 and 2010 were predicted. The
NDGM�푝/�푞 model, NDGM model, and a classical GM(1, 1)
model were built, respectively, to simulate the trends of
syphilis incidence in China. The simulated/forecasted values
and absolute percentage errorwith different greymodelswere
shown in Table 1.

As can be seen from Table 1, from a short-term fore-
casting viewpoint, NDGM0.01 obtained lower MAPE than
the GM(1, 1) model, which implied that the NDGM0.01
could significantly enhance the precision of grey forecasting
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Figure 1: Simulates and forecasts obtained using different grey
models.

model. Moreover, NDGM0.01 obtained lower MAPE than the
NDGM0.5; therefore, it was also shown that the perturbation
bound was smaller and the prediction accuracy was higher.
According to Table 1, a scatter broken-line figure regarding
the simulated and forecasted data was shown in Figure 1.

Figure 1 showed that the whole performances of the four
models for simulating and forecasting the trends of syphilis
incidence in China. Obviously, the prediction effect of GM(1,
1) model was better than that of NDGM model, but the
simulation and prediction precisions of other NDGMmodels
were better than those of GM(1, 1) model. For NDGMmodel,
the simulation and prediction precisions of NDGM0.01 were
the best, followed byNDGM0.5, but those ofNDGMmodel of
integer orderwere theworst.Moreover, for theNDGMmodel
of fractional order, the simulation, and prediction precisions
of smaller fraction were higher than those of bigger one. In
addition, Theorem 10 can also be proved to be correct from
the stability of system. Namely, the smaller the perturbation
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order was, the higher the system stability was, and the higher
the precisions of simulation and prediction were.

4. Optimizing the Order Number of
the NDGM�푝/�푞 Model by Particle Swarm
Optimization (PSO) Algorithm

4.1. 𝑁𝐷𝐺𝑀�푝/�푞ModelSteps. Wehavediscussed theNDGM�푝/�푞
model and the main steps of modeling; the steps were as
follows.

Step 1. Calculation of the order 𝑝/𝑞 accumulation sequence𝑋(�푝/�푞) = {𝑥(�푝/�푞) (1) , 𝑥(�푝/�푞) (2) , . . . , 𝑥(�푝/�푞) (𝑛)} . (36)

Step 2. Put 𝑥(�푝/�푞)(𝑘), 𝑘 = 1, 2, . . . , 𝑛 into (19); then use the
least squares estimate parameter of 𝛽1, 𝛽2, and 𝛽3.
Step 3. Using𝑥(�푝/�푞) (𝑘 + 1) = 𝛽�푘1𝑥(�푝/�푞) (1) + 𝛽2 �푘∑

�푗=1

𝑗𝛽�푘−�푗1 + 1 − 𝛽�푘11 − 𝛽1 𝛽3,𝑘 = 1, 2, . . . , 𝑛 − 1, (37)

then we will predict 𝑥(�푝/�푞)(1), 𝑥(�푝/�푞)(2), . . . .
Step 4. Assume that 𝑋(�푝/�푞) = {𝑥(�푝/�푞)(1), 𝑥(�푝/�푞)(2), . . . ,𝑥(�푝/�푞)(𝑛)}, is the fractional order accumulation sequence and
the equation𝛼(�푝/�푞)𝑋(0) = {𝛼(1)𝑥(1−�푝/�푞) (1) , 𝛼(1)𝑥(1−�푝/�푞) (2) , . . . ,𝛼(1)𝑥(1−�푝/�푞) (𝑛 + 1) , . . .} (38)

is established.

4.2. Optimizing the Order Number of the 𝑁𝐷𝐺𝑀�푝/�푞 Model
by Particle Swarm Optimization (PSO) Algorithm. The value
of the mean absolute percentage error (MAPE) is often used
to judge the merits of modeling. The order of the NDGM�푝/�푞
model is sought under the condition of the least mean
absolute percent as follows:

min 𝑓 (𝑟) = 1𝑛 − 1 �푛∑
�푘=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥(0) (𝑘) − 𝑥(0) (𝑘)𝑥(0) (𝑘) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , 𝑟 ∈ 𝑅+. (39)

In this section, we will use the Particle Swarm Optimiza-
tion (PSO) algorithm to optimize the order number of the
NDGM�푝/�푞 model. The searing process of the optimization
order of the NDGM�푝/�푞 model is as follows.

Step 1. Defining structure and initializing randomly the
position (pBest) and speed for each particle, let pBest = 1.
Step 2. Set the first pBest = 1 as the current position and
gBest = 1 as the optimal particle position in initial swarm.

Step 3. All the particles in the particle swarm were operated
according to the following order:

(1) Update the locations and speeds of particles; let 𝐶1 =1, 𝐶2 = 1, and𝑃 ⋅ 𝑉 = 𝑉 + 𝐶1 × rand × (𝑝𝐵𝑒𝑠𝑡 − Present) + 𝐶2× rand × (𝑔𝐵𝑒𝑠𝑡 − Present)
Present = Present + 𝑉. (40)

(2) Judge whether the particle location Present meets
the scope; if beyond the scope, a new location
should be set for Present. If within the scope, then
the calculation continued according to the following
steps. When 𝑟 = 𝑝𝐵𝑒𝑠𝑡, the average relative error of
fractional order operator model, the concrete steps
were as follows:

(a) Computing 𝑋(�푟), 𝑋(�푟) is the rth order accumu-
lating generating sequence of 𝑋(0).

(b) Compute the mean generated sequence with
consecutive neighbours 𝑍(�푟) of 𝑋(�푟).

(c) Compute the 𝑟-order inverse accumulating gen-
eration sequence 𝑋(−�푟) of 𝑋(�푟).

(d) Solve the parameters 𝑎 = [𝛽1, 𝛽2, 𝛽3].
(e) Deduce the time response expression of 𝑥(�푟)(𝑘).
(f) Compute the simulative values 𝑥(�푟)(𝑘).
(g) Compute the restored simulative values 𝑥(0)(𝑘)

of 𝑥(�푟)(𝑘).
(h) Compute the MAPE 𝑓(pBest).
(i) Judge whether the value of 𝑓(𝑝𝐵𝑒𝑠𝑡) is less than𝑓(gBest); if 𝑓(𝑝𝐵𝑒𝑠𝑡) < 𝑓(𝑔𝐵𝑒𝑠𝑡), the new

position is set to 𝑝𝐵𝑒𝑠𝑡. If the 𝑓(𝑝𝐵𝑒𝑠𝑡) is not
superior to 𝑔𝐵𝑒𝑠𝑡, the new position is set to𝑔𝐵𝑒𝑠𝑡.

Step 4. Step 3was carried out according to the order from the
second particle to the last one.

Step 5. Judgingwhether the algorithmmeets the convergence
rule, if it meets then go to Step 6; else go to Step 3.
Step 6. Output Best “g,” which is the optimal value of the
order outputting the simulated or forecasted values of the
NDGM�푝/�푞 model, when 𝑟 = 𝐵𝑒𝑠𝑡.

According to the modeling mechanism of the proposed
NDGM�푝/�푞 model and the Particle Swarm Optimization
(PSO) algorithm of the order number, the flowchart of the
new model is summarized in Figure 2.

4.3. Verification of 𝑁𝐷𝐺𝑀�푝/�푞 Model

Case 2 (logistics demand forecasting in Jiangsu province
[30]). We consider an example from paper [30] which
provides the sample data. We will build four models that
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Whether to pass the inception

Particle Swarm Optimization (PSO) algorithm

Fraction accumulating generation operator

�e least squares estimate parameter

Mean absolute percentage error (MAPE)

Forecasting data and analyzing their rationality

No

Yes

Prediction values x̂(0) (k + 1) , x̂(0) (k + 2) , x̂(0) (k + 3) , . . .

�e NDGMp/q model of 𝛽1, 𝛽2, 𝛽3, 𝛽4

Error inception MAPE =
1

n

n

∑
k−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

x (k) − x̂(k)

x(k)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r = q/p − AGO sequen X(p/q) (x(p/q) (1) , x(p/q) (2) , . . . , x(p/q) (k))=ce 

X(0) = (x(0) (1) , x(0) (2) , . . . , x(0) (k))Original sequence

r = p/qOptimizing the order number

Figure 2: The flowchart of the NDGM�푝/�푞 model.

simulate Jiangsu province’s logistics demand from 2002 to
2006 and to forecast it from 2007 to 2009. We will compare
the simulation and prediction mean absolute percentage
error of the NDGM�푝/�푞 model with a classical NDGMmodel
and DGMmodel.

According to MATLAB programs of the NDGM�푝/�푞
model and Particle Swarm Optimization (PSO) algorithm,
the optimal order of the NDGM�푝/�푞 is 𝑝/𝑞 = 0.3298. The
simulated/forecasted values and mean absolute percentage
errorwith the four different greymodels are shown inTable 2.



Mathematical Problems in Engineering 9
Jia

ng
su

 p
ro

vi
nc

e l
og

ist
ic

s d
em

an
d

Simulation

Prediction

Actual value
NDGM0.3298 model

1000

2000

3000

4000

5000

6000

7000

8000

2003 2004 2005 2006 2007 2008 20092002
Year

(u
ni

t:
10

8
to

n–
km

)

(a) The NDGM�푝/�푞 model

Jia
ng

su
 p

ro
vi

nc
e l

og
ist

ic
s d

em
an

d

Actual value
NDGM model

Simulation

Prediction

2003 2004 2005 2006 2007 2008 20092002
Year

1000

2000

3000

4000

5000

6000

7000

8000

(u
ni

t:
10

8
to

n–
km

)

(b) The NDGMmodel

Jia
ng

su
 p

ro
vi

nc
e l

og
ist

ic
s d

em
an

d

Actual value
DGM(1, 1) model

Simulation

Prediction

2003 2004 2005 2006 2007 2008 20092002
Year

1000

2000

3000

4000

5000

6000

7000

8000

(u
ni

t:
10

8
to

n–
km

)

(c) The DGMmodel

Figure 3

Table 2: The fitted values and MAPE of four grey models (unit:108 ton-km).

Year Actual value DGM NDGM NDGM0.3298

2002 1549.12 1549.12 1549.12 1549.12
2003 1817.44 1899.10 1807.62 1811.13
2004 2398.13 2374.15 2426.34 2418.20
2005 3068.30 2968.18 3041.35 3048.45
2006 3644.14 3710.85 3652.70 3648.96
MAPE 2.65 0.71 0.49
2007 4098.42 4639.35 4260.39 4212.31
2008 4707.50 5800.16 4864.46 4741.86
2009 5154.46 7251.42 5464.90 5242.83
MAPE 25.70 4.44 1.74

According to Table 2, in order to show the performances
of four models clearly, we can draw Figures 3(a), 3(b), and
3(c).

As can be seen from Figures 3(a)–3(c), obviously, both of
the simulation and prediction performance of the greymodel
with the optimal fractional order were superior to those of the
corresponding greymodel with an integer order.This showed

that the fractional order accumulating generation could really
improve the performance of a grey prediction model. It was
shown that the improved effect of the fractional order on
grey prediction model was also influenced by the raw model.
Moreover, we can rank the effect of three models from the
worst to the best in terms of their abilities to fit the data,
namely, DGMmodel, NDGMmodel, and NDGM�푝/�푞 model.

5. Conclusion

When some systems were studied, the stability must be
considered. The grey theory model mainly deals with the
incomplete information cases and the uncertainty of the
system models. From the perspective of model stability,
NDGM�푝/�푞model is more stable than traditional NDGM, and
it was the result of a case to explain the stability. Because
GM(1, 1) model, DGM(1, 1) model, and NDGM model had
a higher requirement for data and when the data did not
meet the requirements, the errors of both simulation and
prediction were larger, and the NDGM�푝/�푞 model has the
important significance for improving the performance of
grey model. Furthermore, we provided the Particle Swarm
Optimization algorithmwhich was employed to optimize the
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order number of NDGM�푝/�푞 model. Using a case studied in
Section 3, it has been shown that theMAPE of the NDGM�푝/�푞
model was always the lowest among the four grey models.
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