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Multivariate time series (MTS) data is an important class of temporal data objects and it can be easily obtained. However, the MTS
classification is a very difficult process because of the complexity of the data type. In this paper, we proposed a Cycle Deep Belief
Network model to classify MTS and compared its performance with DBN and KNN.This model utilizes the presentation learning
ability of DBN and the correlation between the time series data.The experimental results showed that this model outperforms other
four algorithms: DBN, KNN ED, KNN DTW, and RNN.

1. Introduction

Time series data are sequences of real-valued signals that are
measured at successive time intervals. They can be divided
into two kinds: univariate time series and multivariate time
series (MTS). Univariate time series contain one variable,
while MTS have two or more variables. MTS is a more
important data type of time series because it is widely used
in many areas such as speech recognition, medicine and bio-
logy measurement, financial and market data analysis, tele-
communication and telemetry, sensor networking, motion
tracking, and meteorology.

As the availability of MTS data increases, the problem of
MTS classification attracts great interest recently in the litera-
ture [1].MTS classification is a supervised learning procedure
aimed for labeling a new multivariate series instance accord-
ing to the classification function learned from the training
set [2]. However, the features in traditional classification
problems are independent of their relative positions, while
the features in time series are highly correlated.That resulted
in the loss of some important information if the traditional
classification algorithms are used for MTS, since they treat
each feature as an independent attribute. Many techniques
have been proposed for time series classification. A method
based on boosting are presented for multivariate time series
classification [3]. In [4], the authors proposed a DTW based

decision tree to classify time series and the error rate is 4.9%.
In [5], the authors utilize a multilayer perceptron neural net-
work on the control chart problem and the best performance
achieved is 1.9% error rate. Hidden Markov Models are used
on the PCV-ECG classification problem and achieve 98%
accuracy [6]. Support vector machine combined with Gaus-
sian Elastic Metric Kernel is used for time series classification
[7]. The dynamics of recurrent neural networks (RNNs) for
the classification of time series are presented in [8]. However,
simple combination of one-nearest-neighbor with DTW
distance is claimed to be exceptionally difficult to beat [9].

Deep Belief Network is a type of deep neural network
with multiple hidden layers, introduced by Hinton et al. [10]
along with a greedy layer-wise learning algorithm. Restricted
Boltzmann Machine (RBM), a probabilistic model, is the
building block of DBN. DBN and RBM have witnessed
increased attention from researchers.They have already been
applied in many problems and gained excellent performance,
such as classification [11], dimensionality-reduction [12], and
information retrieval [13]. Taylor et al. [14] proposed condi-
tional RBM, an extension of the RBM, which is applied to
human notion sequences. Chao et al. [15] evaluated the DBN
performance as a forecasting tool on predicting exchange
rate. Längkvist et al. [16] applied DBN for sleep stage classi-
fication and evaluated the performance.The result illustrated
that DBN either with features (feat-DBN) or using the raw
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data (raw-DBN) performed better than the feat-GOHMM.
The feat-DBN achieved 72.2% and the raw-DBN achieved
67.4%, while the feat-GOHMM achieved only 63.9%.

Raw-DBN do not need to extract feature before classify-
ing the sleep data and this algorithm is easy to implement.
However, it neglects the important information in time series
data and its performance is not satisfactory. This paper
proposed a Cycle DBN model for time series classification.
This model possesses the ability of feature learning since it is
developed on the basis of DBN. Meanwhile, the characters of
time series data are taken into consideration in the model.

The remainder of the paper is organized as follows. Next
section reviews the background material. In Section 3, we
detail the Cycle DBN model for multivariate time series.
Section 4 evaluates the performance of ourCycleDBNon two
real data sets. Section 5 concludes the work of this paper.

2. Background Material

A time series is a sequence of observations over a period of
time. Formally, a univariate time series 𝑥 = {𝑥(𝑖) ∈ 𝑅 : 𝑖 =
1, 2, . . . , 𝑛} is an ordered set of 𝑛 real-valued numbers, and 𝑛 is
called the length of the time series 𝑥. Multivariate time series
ismore common in real life and it ismore complex since it has
two or more variables. A MTS is defined as a finite sequence
of univariate time series

𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) . (1)

The MTS 𝑋 has 𝑚 variables and the corresponding compo-
nent of the 𝑗th variable 𝑥𝑗 is a univariate time series of length
𝑛:

𝑥 = {𝑥𝑗 (𝑖) ∈ 𝑅 : 𝑖 = 1, 2, . . . , 𝑛} (𝑗 = 1, 2, . . . , 𝑚) . (2)

In this paper, we use bold face characters forMTS and regular
fonts for univariate time series.

The time series classification problem is a supervised
learning procedure. First we should learn a function 𝑓 : 𝑋 →
𝑦 according to the given training set 𝐴 = {(𝑋(𝑖), 𝑦(𝑖))} 𝑖 =
1, 2, . . . , 𝑘. The training set 𝐴 includes 𝑘 samples and each
sample consists of an input𝑋(𝑖) paired with its corresponding
label 𝑦(𝑖). Then we can assign a label to a new time series
instance based on the function we learned from the training
set.

ADeep Belief Network (DBN) consists of an input layer, a
number of hidden layers, and finally an output layer. The top
two layers have undirected, symmetric connections between
them. The lower layers receive top-down, directed con-
nections from the layer above.

The process of training DBNs includes two phases. Each
two consecutive layers in DBN are treated as a Restricted
Boltzmann Machine with visible units V and hidden units
ℎ. There are full connections between visible layer and hid-
den layer, but no visible-to-visible or hidden-to-hidden con-
nections (see Figure 1). The visible and hidden units are con-
nected with a weight matrix,𝑊, and have a visible bias vector
𝑏 and a hidden bias vector 𝑐, respectively. We need to train
each RBM independently one after another and then stack
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Figure 1: Graphical depiction of RBM.

Begin

Train a rbm

True

End

False

Initialize the number 

parameter of each 
layer dbn(i)

Input data 
v

V = ℎ

i = 0

i < 1

i++

of layer l and the

P(ℎj | ) =
1

1 + ？ＲＪ(cj + ∑iWiji)

Figure 2: The flowchart of DBN training.

them on top of each other in the first phase.This procedure is
also called pretraining. In the second phase, the BP network
is set up at the last level of the DBN, and the output of the
highest RBM is received as its input. Then we can perform
a supervised learning in this phase. This procedure is called
fine-tuning since the parameters in the DBN are tuned using
error back propagation algorithm in this phase.

The procedure of training DBN is shown by Algorithm 1
and the corresponding flowchart is given by Figure 2.

From the above analysis, we can conclude that the most
important of DBN is the training of each RBM.

Since there are no hidden-hidden or visible-visible con-
nections in the RBM, the probability that hidden unit ℎ𝑗 is
activated by visible vector 𝑃(ℎ𝑗|V) and the probability that
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Begin
Initialize 𝛼 (the learning rate), 𝑙 (the number of
DBN layers),𝑚𝑘 (the number of hidden unites in 𝑘 layer
and 𝑘 = 1, 2, . . . , 𝑙), epochs, DBN(𝑘).parameters
(the parameters of each layer and 𝑘 = 1, 2, . . . , 𝑙).

Input data𝑋;
𝑉1 = 𝑋;
𝑘 = 1;
do
trainRBM(𝑉1, DBN(𝑘).parameters);
𝑘++;
compute ℎ according to Equation (3)
𝑉1 = ℎ;
while (𝑘 < 𝑙)
End.

Algorithm 1: DBN train algorithm.

visible unit V𝑖 is activated by given hidden vector 𝑃(V𝑖|ℎ) is
given by

𝑃 (ℎ𝑗 | V) =
1

1 + exp (𝑐𝑗 + ∑𝑖 𝑤𝑖𝑗V𝑖)
, (3)

𝑃 (V𝑖 | ℎ) =
1

1 + exp (𝑏𝑖 + ∑𝑗 𝑤𝑗𝑖ℎ𝑗)
. (4)

Contrastive Divergence (CD) approximation is used to train
the parameters by minimizing the reconstruction error and
the learning rule is given by

𝜕 log𝑃 (V)
𝜕𝑊𝑖𝑗

≈ ⟨V𝑖ℎ𝑗⟩data − ⟨V𝑖ℎ𝑗⟩recon . (5)

⟨V𝑖ℎ𝑗⟩data is expectation of the training set and ⟨V𝑖ℎ𝑗⟩recon rep-
resents the expectation of the distribution of reconstructions.

The procedure of training RBM is shown as Algorithm 2
and the corresponding flowchart is given by Figure 3.

3. Cycle_DBN for Time Series Classification

Längkvist et al. [16] applied DBN in time series classification
and obtained a remarkable result. The standard DBN opti-
mizes the posterior probability 𝑝(𝑦𝑡 | 𝑥𝑡) of the class labels
given the current input 𝑥𝑡. However, time series data are
different from other kinds of data and there are correlations
between time series data. It is unsuitable to apply DBN for
time series classification without any modification because it
neglects the important information in time series data.

Based on the above discussion, this paper proposed a
Cycle DBN model for time series classification just as Fig-
ure 4.Themodel inherits the powerful feature representation
of DBN and utilizes the data correlation of the time series.
Thus, this model is quite suitable for time series classification.

In this model, 𝑋𝑡 is the input at time step 𝑡 and 𝑂𝑡 is the
corresponding output of DBN. Since our purpose is classi-
fication, we add a softmax function on the top layer and 𝑦𝑡 is
the corresponding label. After training DBN and getting the

Begin
m = 1;
while (m < epoch)
for all hidden units 𝑗
𝑃 (ℎ1𝑗 | V1) =

1
1 + exp (𝑐𝑗 + ∑𝑖𝑊𝑖𝑗V1𝑖)

Sample ℎ1𝑖 ∈ {0, 1} from 𝑃(ℎ1𝑗|V1)
End for
For all visible units 𝑖 do
𝑃 (V2𝑖 | ℎ1𝑗) =

1
1 + exp (𝑏𝑖 + ∑𝑗𝑊𝑖𝑗ℎ1𝑗)

Sample V2𝑖 ∈ {0, 1} from 𝑃(V2𝑗 | ℎ1)
End for
For all hidden units 𝑗 do
𝑃 (ℎ2𝑗 | V2) =

1
1 + exp (𝑐𝑗 + ∑𝑖𝑊𝑖𝑗V2𝑖)

ℎ2𝑗 = 𝑃 (ℎ2𝑗 | V2)
end for
𝑤 = 𝑤 + 𝛼 ∗ (ℎ1 ∗ V1󸀠 − ℎ2 ∗ V2󸀠)
𝑏 = 𝑏 + 𝛼 ∗ (V1 − V2)
𝑐 = 𝑐 + 𝛼 ∗ (ℎ1 − ℎ2)
End while
End.

Algorithm 2: The algorithm for RBM train.

label 𝑦𝑡, 𝑦𝑡 is then treated as one item input of DBN. At time 𝑡,
the inputs of DBN not only include 𝑋𝑡 but also include 𝑦𝑡−1,
the output of DBN at time 𝑡 − 1.

The training procedure of this Cycle DBN, which is
similar to the traditional DBN, includes two procedures. The
only difference is that the output at time 𝑡 − 1 is feedback to
Cycle DBN as one of the inputs at time 𝑡. The first procedure
is unsupervised training to initiate the parameters of DBN.
After unsupervised learning, we add a softmax function on
the top layer and do a supervised training procedure.

4. Experimental Evaluation

In this section, we conduct extensive experiments to evalu-
ate the classification performance of the proposed model
Cycle DBN and compare it against traditional DBN, 𝐾NN
ED,𝐾NN DTW, and recurrent neural networks (RNN).

The 𝑘-NN is one of the most well-known classification
algorithms that are very simple to understand but performs
well in practice. An object in the testing set is classified
according to the distances of the object to the objects in the
training set and the object is assigned to the class its 𝑘 nearest
neighbors belongs to. We will choose 𝑘 = 1 in our experi-
ment and the algorithm is simply called the nearest neighbor
algorithm. In 𝐾NN ED, we use Euclidean Distance to mea-
sure the similarity between two instances.

Dynamic Time Warping (DTW) [17] is another distance
measure for time series and it was originally and typically
designed for univariate time series. However, the time series
handled in this paper is multidimensional and a multi-
dimensional version of DTW is needed. Fortunately, ten
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Figure 4: The architecture of Cycle DBN.

Holt et al. [18] proposed a multidimensional DTW and it
utilizes all dimensions to find the best synchronization. In
standardDTW, the distance is usually calculated by taking the
squared distance between the feature values of each combina-
tion of points: 𝑑(𝑞𝑖, 𝑐𝑗) = (𝑞𝑖 − 𝑐𝑗)

2. But in multidimensional
DTW, a distancemeasure for two𝐾-dimensional pointsmust
be calculated: 𝑑(𝑞𝑖, 𝑐𝑗) = ∑𝐾𝑘=1(𝑞𝑖𝑘 − 𝑐𝑗𝑘)

2. In 𝐾NN DTW,
we usemultidimensional DTWdistance tomeasure the simi-
larity between two instances.

RNN allows the identification of dynamic system with
an explicit model of time and memory, which makes it ideal
for time series classification. In this paper, we choose Elman’s
architecture, which consist of a context layer, an input layer,
one hidden layer, and an output layer.

To evaluate the performance of these methods, we test
them on real-world time series datasets, including sleeping
dataset, PAMAP2 dataset, and UCR Time Series Classifica-
tion Archive.

The performance of the classifier is reported using error
rate and the error rate of classifiers is defined as shown in

error rate

=
total number of misclassification data

total number of testing data
.

(6)

4.1. Sleep Stage Classification. We first consider the problem
of sleep stage classification.The data used in the paper is pro-
vided by St. Vincent’s UniversityHospital andUniversity Col-
lege Dublin and can be downloaded from http://www.phy-
sionet.org/pn3/ucddb/ PhysioNet.

4.1.1. Dataset. The recordings of this data set have been
obtained from 25 adult subjects with suspected sleep-dis-
ordered breathing. Each recording consists of 2 EEG channels
(C3-A2 andC4-A1), 2 EOG channels, and 1 EMG channel.We
only use one of the EEG signals (C3-A2) in our study

𝑋𝑡 = (EEG𝑡 EOG1𝑡 EOG2𝑡 EMG𝑡) . (7)

According to Rechtschaffen and Kales (R&K) [19], sleep
recordings can be divided into the following five stages:
awake, rapid eye movement (REM), stage 1, stage 2, and slow
wave sleep (SWS). Our goal is to find a map function 𝑓 that
correctly predicts the corresponding sleep stage according to
the X𝑡: 𝑦𝑡 = 𝑓(𝑋𝑡).

4.1.2. Experiment Setup. The raw signals of all subjects are
slightly preprocessed by notch filtering at 50Hz to cancel out
power line disturbances and then are prefiltered with a band-
pass filter of 0.3 to 32Hz for EEG and EOG and 10 to 32Hz
for EMG. After that they are downsampled to 64Hz.

Since the sample rate is 64 samples per second and we
set window width 𝑤 to be 1 second of data, our time series
become

𝑋𝑖 = (EEG1+𝑖
64+𝑖,EOG11+𝑖

64+𝑖,EOG21+𝑖
64+𝑖,

EMG1+𝑖
64+𝑖) .

(8)

http://www.physionet.org/pn3/ucddb/
http://www.physionet.org/pn3/ucddb/
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Table 1: Distribution of five classes in the data set.

Subject Total Awake REM Stage 1 Stage 2 SWS
trainSamples 25000 5017 5005 4993 4986 4999
Val Samples 5000 983 995 1007 1014 1001
Ucdbb009 20000 4230 3720 6420 740 4890
Ucdbb010 20000 1980 11040 2610 2480 1890
Ucdbb011 20000 3270 6170 2430 390 7740
Ucdbb012 20000 4380 7710 930 3660 3320
Ucdbb013 20000 2670 4040 3660 2010 7620
Ucdbb014 20000 0 6780 7380 1190 4650

Table 2: Classification error rate of five models on sleep datasets.

Subject Cycle DBN DBN 𝐾NN ED 𝐾NN DTW RNN
Ucdbb009 0.0061 0.27619 0.3572 0.3359 0.432568
Ucdbb010 0.0112 0.19108 0.45832 0.3971 0.5609
Ucdbb011 0.0044 0.10805 0.58243 0.57314 054586
Ucdbb012 0.0098 0.04804 0.41244 0.3379 0.45141
Ucdbb013 0.0068 0.19709 0.4964 0.4857 0.65820
Ucdbb014 0.0077 0.26535 0.47192 0.36183 0.58422

Since the length of X𝑡 is 64, we have corresponding 64 labels.
The last label is selected as the label of the time series X𝑡.

In our study, we use five people recordings as the training
set. In order to balance the samples, we select 6000 records
every category random. So we have 30000 recordings and
we divide 25000 into train samples and 5000 into validation
samples.Theother six people recordings are used for test data.
The distribution of dataset is listed in Table 1.

4.1.3. Experiment Result. Our goal is to compare the perfor-
mance of IDBNs with original DBN, 𝑘NN ED, 𝐾NN DTW,
and RNN for time series classification. We illustrate the error
rate of each model in Table 2.The best results are recorded in
boldface in Table 2.

Compared with other four algorithms, the proposed
algorithm has best performance.The classification accuracies
of Cycle DBN on all the test data are up to 90% and especially
most of them are more than 99%. Standard DBN has a higher
rate of correct classification than𝐾NN ED,𝐾NN DTW, and
RNN. RNN shows quite poor performance and the error rate
is about 50%.

4.2. Activity Classification. Our second experiment is on the
PAMAP2 dataset for activity classification. This dataset can
be downloaded at http://archive.ics.uci.edu/ml/datasets/
PAMAP2+Physical+Activity+Monitoring.

4.2.1. Dataset. This data set records 18 activities performed
by 9 subjects wearing 3 IMUs and a HR-monitor. Each of
data contains 54 columns per row and the columns contain
the following data: timestamp (1), activityID (2), heart rate
(3), IMU hand (4–20), IMU chest (21–37), and IMU ankle
(38–54). In our experiment, we only select 7 activities which
are “lying (1),” “sitting (2),” “standing (3),” “walking (4),”
“running (5),” “cycling (6),” “Nordic walking (7).” Since the

records of subject103 and subject109 do not have all the above
seven activities and we discard these two subjects. That is to
say, we select subject 101∼subject 102 and subject 104∼subject
108, seven subjects to classify seven activities. Furthermore,
the record of heart rate is not used in our experiment.

4.2.2. Experiment Setup. To improve the performance of the
proposed approach, we need to carry out a data preprocessing
process at the beginning of the experiment. Each dimension
of time series is normalized through

𝑥 = 𝑥 −mean (𝑥)
std (𝑥)

, (9)

where mean(𝑥) and std(𝑥) are the mean and standard devia-
tion of the variable for samples belonging to the same column,
not all samples.

For each subject of seven subjects, we randomly select 1/2
as training set, 1/6 as validation set, and the rest as test set.

4.2.3. Experiment Result. We evaluate classification accura-
cies of each model on these seven subjects. Table 3 shows
the detailed error rates comparison of each subject. From
Table 3 we can see that the classification accuracies of the five
models on the seven datasets are more than 90%. However,
our Cycle DBN model is either the lowest error rate one
or very close to the lowest error rate one for each subject.
𝐾NN ED also shows quite excellent performance and we
should note that𝐾NN is feature-based model.

It is well known that feature-based models have an
advantage over lazy classification models such as 𝐾NN in
efficiency. Although 𝐾NN has high classification accuracy,
the prediction time of 𝐾NN will increase dramatically when
the size of training data set grows. The prediction time of
DBN and Cycle DBN will not increase no matter how large
the training data is. Therefore, Cycle DBN shows excellent

http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
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Table 3: Classification error rate of five models on PAMAP2.

Subject Cycle DBN DBN 𝐾NN ED 𝐾NN DTW RNN
Subject 101 5.70E − 05 0.01208 0.000171 0.03 0167081
Subject 102 1.82𝐸 − 05 0.000675 0 0.034 0.036484
Subject 104 0 0.000197 3.93𝐸 − 05 0.006 0.000995
Subject 105 3.38𝐸 − 05 0.004746 0 0.024 0.101161
Subject 106 1.82E − 05 0.001546 3.64𝐸 − 05 0.018 0
Subject 107 0 0.000438 3.99𝐸 − 05 0.024 0.062604
Subject 108 3.48𝐸 − 05 0.000869 1.74E − 05 0.018 0.0833

Table 4: Classification error rate of five models on ten UCR time series datasets.

Dataset Cycle DBN DBN 𝐾NN ED 𝐾NN DTW RNN
uWaveGestureLibrary Z 0.333333 0.330656 0.350363 0.35 0.419598
UWaveGestureLibraryAll 0.095047 0.07095 0.051926 0.052 0.100503
FordA 0.489647 0.487211 0.341016 0.341 0.484865
Two Patterns 0.044365 0.032374 0.09325 0.090 0.10775
ECG5000 0.049161 0.051559 0.075111 0.075 0.072889
Wafer 0.000838 0.002513 0.004543 0.005 0.006976
StarLightCurves 0.069481 0.070779 0.151166 0.151 0.326979
ElectricDevices 0.029931 0.338983 0.449228 0.376 0.9135
InsectWingbeatSound 0.39782 0.384196 0.438384 0.438 0.408081
Face (all) 0.101333 0.106667 0.286391 0.286 0.193491

performance in terms of classification accuracy and time
consuming.

4.3. UCR Time Series Classification. Besides the above two
data sets, we also test our Cycle DBN on the ten distinct time
series datasets from UCR time series [20]. All the dataset
has been split into training and testing by default. The only
preprocessing in our experiment is normalization and divides
them into training, validating, and testing set.

Table 4 shows the test error rate and a comprehensive
comparison with 𝐾NN ED, 𝐾NN DTW, RNN, DBN, and
Cycle DBN.

Cycle DBN outperforms other four methods on five
datasets of ten datasets; 𝐾NN ED and 𝐾NN DTW achieve
best performance on the same two datasets. DBN achieves
best performance on two datasets. Although the performance
of RNN is not prominent, the effect is also acceptable.

5. Conclusion

Time series classification is becomingmore andmore impor-
tant in a broad range of real-world applications. However,
most existing methods have lower classification accuracy or
need domain knowledge to identify representative features
in data. In this paper, we proposed a Cycle DBN for clas-
sification of multivariate time series data in general. Like
DBN, Cycle DBN is an unsupervised learning algorithm
which can discover the structure hidden in the data and learn
representations that aremore suitable as input to a supervised
machine than the raw input. Comparing with DBN, the new
model Cycle DBN predicts the label of time 𝑡 𝑦𝑡 not only
based on the current input 𝑥𝑡 but also based on the label of

previous time 𝑦𝑡−1. We evaluated our Cycle DBN model on
twelve real-world datasets and experimental results show that
our model outperforms DBN, 𝐾NN ED, 𝐾NN DTW, and
RNN on most datasets.
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