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Abstract
In recent years, we have seen scientists attempt to model and explain human
dynamics and in particular human movement. Many aspects of our complex life are
affected by human movement such as disease spread and epidemics modeling, city
planning, wireless network development, and disaster relief, to name a few. Given the
myriad of applications, it is clear that a complete understanding of how people move
in space can lead to considerable benefits to our society. In most of the recent works,
scientists have focused on the idea that people movements are biased towards
frequently-visited locations. According to them, human movement is based on a
exploration/exploitation dichotomy in which individuals choose new locations
(exploration) or return to frequently-visited locations (exploitation). In this work we
focus on the concept of recency. We propose a model in which exploitation in human
movement also considers recently-visited locations and not solely frequently-visited
locations. We test our hypothesis against different empirical data of human mobility
and show that our proposed model replicates the characteristic patterns of the
recency bias.
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1 Introduction
The understanding of the fundamental mechanisms governing human mobility is of im-
portance for many research fields such as epidemic modeling [–], urban planning [,
], and traffic engineering [–]. Although individual human trajectories can seem un-
predictable and intricate to an external observer, in fact they exhibit many spatiotemporal
regularities [–]. One of these patterns, largely observed in empirical data, is the strong
tendency we have to spend most of the time in just a few locations [, , ]. More pre-
cisely, the distribution of visitations frequencies have been observed to be heavy tailed,
being better approximated by a power law distribution [, ].

However, the fundamental mechanisms responsible for shaping our visitation prefer-
ences are still not fully understood. The preferential return (PR) mechanism, proposed by
Song et al. [], offered an elegant and robust model for the visitation frequency distri-
bution. It defines the probability �i for returning to a location i as �i ∝ fi, where fi is the
visitation frequency of the location i. It implies that the more visits a location receives, the
more visits it is going to receive in the future, which in different fields goes by the names
of Matthew effect [], cumulative advantage [], or preferential attachment [].

Although the focus of the PR mechanism - as part of the Exploration and Preferen-
tial Return (EPR) individual mobility model - was to replicate the scaling properties of
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human mobility, its robustness and modularity, combined to analytical formalism the au-
thors employed in deriving its mechanisms, has turned it into a modeling platform itself,
where authors can test their hypotheses by easily replacing or adding specific mechanisms
to it []. For instance, Toole et al. [] incorporated a social mechanism to the mobility
dynamics.

However, the Preferential Return assumption as a property of human motion leads to
two discrepancies. First, the earlier a location is discovered, the more visits it is going to
receive. It implies that a early-discovered location will most likely be one of the most vis-
ited ones throughout the entire lifespan of the individual. Second, if the cumulative advan-
tage indeed holds true for human movements, people would not change their preferences,
which is clearly not true.

In this work we investigate the existence of a recency bias - a stronger influence of re-
cent events - in human mobility, a phenomenon known to play an important role to other
decision-making-related behaviors [–]. Our objective is to investigate the influences
of accumulated mobility trajectories (i.e. visitation frequencies) and recent mobility con-
text (i.e. recency) to human traveling behavior.

Notice that we are not implying a dichotomy between them but rather that recency and
frequency are complementary mechanisms that ultimately share some level of dependency.
From an individual’s trajectory standpoint, it is obvious that frequently-visited locations
are recurrent in one’s trajectory and therefore the interval between two consecutive visits
tend to be short. On the other hand, a recently-visited location does not depend on the
number of previous visits to it.

In order to extract these two traits from individual human displacements, one needs to
look at the evolution of visitation patterns over a large period of time. In this work, we
propose a novel rank-based framework for human mobility characterization beyond the
spatiotemporal dimensions, where each point in a trajectory can be decomposed into its
frequency and recency ranks.

In our analyses, we used two human mobility datasets: the first one (D) corresponding
to  months of anonymized mobile-phone traces of K users from a large metropolitan
area in Brazil. The second dataset (D) is composed of more than M check-ins produced
by more than K Brightkite users around the world.a

It is worth noting that the data we analyzed is subject to a sample bias. One way to re-
duce the influence of such bias is by analyzing multiple datasets representing differences
in the populations across multiple dimensions. In our analyses, the datasets have impor-
tant differences in terms of the population they represent. The data of D has a noticeable
socio-economic bias due to the fact that approximately % of mobile phones in Brazil
correspond to pre-paid lines, mostly used by lower-middle and working classes. Addi-
tionally, it is plausible to assume that the data in D have an age bias, with younger people
being over-represented in it. See the Materials and Methods section for more information
on the datasets.

Nevertheless, the generality of our approach and the patterns we observed across the
different datasets suggest that the recency bias we uncovered is a true universal mecha-
nism of human traveling behaviors. Also, our results show a strong tendency of individuals
to return to recently-visited locations that are not conditioned to the number of previous
visits. Last, we incorporate the recency bias into a human mobility model and show that
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it is an important mechanism of the human traveling behavior. In the next section we
contextualize our work within the current human mobility literature.

2 Related works
Traditionally, quantitative investigation of human movements was largely based on survey
data. Over the last decade the field has witnessed a paradigm shift, mostly due to the in-
creasing availability of high-resolution time-resolved digital human traces. This was made
possible thanks to the development and popularization of many information and commu-
nication technologies such as GPS devices [–], location-based social networks [–
] and mobile phone communications [, –] to name but a few.

In , Brockmann et al. [] analyzed more than K dollar bills traces conclud-
ing that both the jump length and waiting-time distributions in human traveling behavior
can be mathematically described by a two parameter continuous time random walk. In
, González et al. [] empirically found two important regularities in human travel-
ing behavior: first, humans tend to spend most their time in very few highly-frequented
locations, and second, individuals trajectories can be described by a time-independent
characteristic length scale. Later on, Song et al. further explored the fundamental scal-
ing properties of human travels, and proposed a general model of individual mobility -
namely Exploration and Preferential Return (EPR) - capable of reproducing not only the
spatiotemporal properties of mobility but also the heavy-tailed visitation frequency dis-
tribution.

In the EPR model, the probability of returning to a given location does not take into
account the current individual’s location, nor the time elapsed since the previous visit to
that place. However, when it comes to the predictability of individual’s trajectories, the
performance of Markovian predictors based on recent past history suggests the existence
of a visitation bias toward recently-visited locations on a short time scale [–].

Szell et al. [] analyzed the virtual trajectories of more than , players within the
virtual world of the MMORPG Pardus, pointing to the fact that the EPR model could not
capture sub-diffusive evolution of the mean squared displacement (MSD) exhibited by
the users within the Pardus virtual world. It was partially due to the lack of a mechanism
capable of reproducing a tendency of the players to return to recently-visited sites in the
game [].

Schneider et al. [] applied a motif approach - brought from network science - to the in-
vestigation of the underlying mechanisms of daily human mobility patterns. In that study,
individual daily trajectories were represented by directed networks, in which nodes and
edges represent visited locations and the trips between them respectively. Since it aims
at capturing the individual daily mobility graphs, a recency bias at this time scale would
be indistinguishable from the small number of locations an individual typically visits on a
day. For instance, in Ref. [] the average number of locations visited on a single day was
〈N〉 ≈ .

In this study we explore the visitation patterns that emerge from the individual mi-
crolevel traveling behavior, under a time-scale-agnostic approach.

3 A rank-based analysis of human visitation patterns
In this section, we propose a rank-based approach to the analysis of human trajecto-
ries. For such, we defined two rank variables Kf and Ks characterizing respectively the
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frequency and recency of a given location in the context of a individual trajectory. Both
ranks were measured in a expanding basis from the accumulated sub-trajectories. To illus-
trate, consider a particular user x with a trajectory T = [(l, l, . . . , ln), li ∈ [, . . . , N]] com-
posed of n steps to S ≤ N locations. For each step j > , we have the partial trajectory
T = [l, l, . . . , lj–] composed of all the previous steps, with lj– being the immediate pre-
ceding step. From the sub-trajectory T we compute the frequency-based ranks Kf of all
locations visited so far. If the step j is a return (i.e., lj ∈ T ) we say that the frequency rank
of the location lj is the rank Kf (lj).

As we mentioned, the PR mechanism suggests that the visitation probability of a partic-
ular location is proportional to the number of previous visits to it. Our claim is that the
Zipf ’s Law observed in visitation frequencies distribution is influenced by a recency bias
expressed as a tendency to return to recently-visited locations, represented here as Ks.

In other words, we can describe the two rank variables as:
• Ks is the recency-based rank. A location with Ks =  at time t means that it was the

previous visited location. Ks =  means that such location was the second-most-recent
location visited up to time t, and so on.

• Kf is the frequency-based rank. A location with Kf =  at time t means that it was the
most visited location up to that point in time. Similarly, a location with Kf =  is the
second-most-visited location up to time t, and so on.

Given the definitions above, we first analyzed the frequency of returns as a function of
Ks. This analysis shows that such probability decays vary rapidly with Ks (Figure ). More
precisely, for D, the probability p(Ks) follows a truncated power-law distribution, defined
as

p(x) = Cx–αe–x/κ

with exponent αKs ≈ . ± . and exponential cut-off κKs ≈ . ± . whereas the
best fit for the frequency-based rank distribution is achieved when αKf ≈ . ± .
and κKf ≈ . ± .. For D, the best fit for the return ranks distribution is obtained with
parameters αKs ≈ . ± . and κKs ≈ . ± . for the recency rank, whereas the

Figure 1 Comparison between the probability of return by recency and frequency ranks. The
distributions of both ranks can be better approximated by truncated power laws (dashed lines). (a) The
recency-based rank of D1 has exponents αKs ≈ 1.644 and exponential cut-off κKs ≈ 40.94, whereas the
frequency-based rank distribution has a better fit for αKf

≈ 1.56 with κKf ≈ 23.6. (b) The best fit for the return
ranks distribution in D2 is achieved with parameters αKs ≈ 1.699 and κKs ≈ 206.6 for the recency rank
whereas the frequency rank has parameters αKf

≈ 1.521 and κKf ≈ 64.3.
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frequency rank has the exponent αKf ≈ . ± . and cut-off κKf ≈ . ± . (see
the Supporting Information (Additional file ) for details on the curve fitting methods and
results).

Notice that the exponents for the rank distributions were very similar for both datasets,
regardless of their significant differences in terms of spatial coverage, number of users
and time scale, suggesting that the distribution of the rank variables might be capturing a
common underlying mechanism.

However, one can notice that the recency rank is a convolution of both frequency and
recency biases, since highly-visited locations implies short intervals between visits. In or-
der to quantify and decompose the recency bias from the recency rank we explore the
intuition that even though low Kf implies low Ks, the opposite is not true. The recency
dimension is memoryless in the sense that the Ks value of a location at time t +  does not
depend on the Ks at t and therefore, even recently-discovered locations can have a low
Ks. The following analyses exploit this property of the recency rank by testing whether
infrequently-visited locations can help us identify - and measure - the recency bias.

3.1 Recency over frequency: the role of recent events in human mobility
From the joint distribution of the rank variables we investigated the conditional frequen-
cies of P(Ks|Kf ). If users have a bias for recently-visited locations we should observe:

. lower values of Ks must be frequently observed over a wider range of Kf . It would
suggest that we tend to return to recently-visited locations even if it was just
discovered (i.e., lower Kf rank);

. higher values of Kf must deviate from lower Kf values, suggesting that the
probability of return to a location decays with time, especially if it was a
highly-visited location.

To test these hypotheses, we analyzed P(Ks|Kf ) for all Kf and Ks values. For example, a
visit to a location with ranks (, ) means a return to the th most visited site after visiting
 other locations. The conditional frequencies are here represented as two-dimensional
histograms (shown as heatmaps) (Figure ).

The first pattern we can observe is that for both datasets the conditional probability
distributions (Figure (a) and (b)) are highly right-skewed and asymmetric. The right-
skewness results not only from a combination of the heavy tails of p(Kf ) and p(Ks) indi-
vidually, but also from the convolution of them.

From the asymmetries in the distribution we can extract important insights regarding
the dynamics of the recency bias in human mobility. The first one is the fact that recency
bias is more pronounced up to Ks ≈  visits, beyond which the return probability van-
ishes. One possible explanation for such upper bound to the recency effect is due to the
maximum long-term temporal regularities observable in D and D (i.e. monthly and
yearly respectively). In D, the average number of visits per month a user made is .
whereas in D, the average number of visits per year was .. Since it is difficult to de-
termine the recency bias in such long-term regularities, from here on we will focus our
attention on the short-term returns.

When it comes to our most-visited locations, we tend to return to them after visiting
very few locations. It can be seen by the rapid decrease in the returns frequencies when
Ks grows. For instance, in D, more than % of the returns to the most-visited place oc-
curred after visiting fewer than five other locations, while for D, it was more than %
(see Figure ).
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Figure 2 Return probabilities. Each point represents a return, whereas the color encodes the density of
points. The top panels correspond to the rank-based recency distribution. The ranks here were shifted to have
the highest-ranked locations at (0, 0) and a point (x, y) in the histogram represents a return to the (x + 1)th
most-visited location after y + 1 steps. (a) Looking at the return ranks distribution for D1 we can observe that
the recency influence is less pronounced in D1 in comparison with D2. (b) On the other hand, the
finer-grained data of D2 shows a strong influence of recency. Return probability ratio �(Kf ,Ks) for D1 (c) and
D2 (d). In particular, signatures of the dominance of recency should manifest themselves in the plot as red for
x > y.

4 The recency bias to recently-discovered locations
As we mentioned before, one way to decompose the recency from the frequency bias is by
looking at the returns to recently-discovered or infrequently-visited locations, character-
ized by a Kf > Cf , where Cf is a Kf value above which the recency bias stands out from the
frequency bias in a given dataset. In fact, what we really want to measure is the likelihood
of returning to a location whose frequency rank is Kf = x after having visited Ks = y loca-
tions such as p(Kf = x|Ks = y) > p(Kf = y|Ks = x) and x � y. Thus, we define the probability
ratio �(x, y) as

�(x, y) =
p(Kf = x|Ks = y)
p(Kf = y|Ks = x)

,

where for p(x, y) > p(y, x), the ratio �(x, y) > . For instance, �(, ) quantifies the propor-
tion between: the number of visits to the th most visited location after visiting  other
locations and the number of visits to the nd most-visited location after visiting  other
locations. Figure  (bottom panels) shows the distribution of �(x, y). Hence, we defined
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Figure 3 Fraction of returns to the Kf most-visited location occurring after the visitation of L different
locations. Another way to look at the recency effect is by analyzing the correlation between the number of
different visited locations between two visits to a location. We can see that people tend to return to their
most-visited locations after visiting very few places. (a) In D1, more than 91% of the returns to the
most-visited location occurred after visiting four or fewer locations while for D2 (b) it was about 86%.

Cf simply as

Cf = min
x

{
�(x, y)|∀y : �(x, y) > ; x > y

}
.

From Figures (c) and (d), we can visually estimate Cf ≈  and Cf ≈  for D and D
approximately. Again, as expected, we can observe that the recency bias evident indeed
becomes more and more prominent for larger Kf .

Based on what we described as the transient nature of the recency effect, it is clear that
if a location is recurrently visited within short intervals for a reasonable time, it can climb
up positions in the Kf rank. Moreover, since the recency information is entirely encoded
within the order in which the places were visited. One simple but very useful implication
of this property is that if we randomly shuffle a trajectory, the visitation frequencies are
preserved whereas the recency bias is lost.

The first feature we can observe is that when we shuffle the trajectories in D (Fig-
ure (a)), the ranks distribution exhibit a similar pattern as observed on the original data.
However, it supports our claim that the predominance of the preferential return, as cap-
tured by the aggregated mobile phone data of D, is hindering the micro-level dynamics
characteristic of the recency effect. A closer look at the bottom rows of Figure (a) does not
show any increased probability due to recency. When we artificially destroy the power-law
distribution of the visitation frequencies (Figure (b)) we can observe a dramatic change
in the ranks distribution. It suggests that a significant part of the ranks distribution of D
is indeed rooted on the visitation frequencies, as predicted by the PR mechanism.

When we analyze the randomized versions of D the influence of the recency becomes
even more evident. As before, shuffling the individuals trajectories (Figure (d)) removes
the features we described in Figure  (as before, the evidence in the bottom rows is not
there). Moreover, by removing the temporal information from visitation sequences in D,
the rank distributions acquire the same form as the one of D.

In summary, when we look at the recency rank distributions for the randomized data in
both datasets, we see that the recency rank on the shuffled trajectories deviate from the
empirical data. showing that the recency effect is indeed present in both datasets. More
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Figure 4 The rank-based analyses of randomized versions of the empirical datasets. (a) and (c)
Conditional probabilities distribution of the randomized version R1 of D1 and D2 respectively (additional plots
for the other randomization methods are on the Supporting Information). Rank variables were extracted from
randomized versions of the datasets. Overall, the conditional probabilities have similar patterns as observed
on the original data. However, when we look at the Ks distribution (in log-linear scale) ((b) and (d)), we see
that the shuffled data deviates from the empirical data for Ks ≤ 4. It is interesting to observe that when Ks > 4
the distributions for R1 and the original data converge again into a single curve.

striking, however, is the fact that this analysis not only shows that the recency effect is
bounded to the most recently-visited locations but also suggests a possible existence of an
upper limit to the effect. For instance, the recency effect could be observed more strongly
when returns occur after visiting two locations in D and three locations in D. It means
that if an individual returns to a recently-discovered location before having visited  other
locations, it is likely that this location will be visited again soon.

5 The recency-based model
Based on the empirical evidence of the recency bias in human mobility, the next natural
step is to test the generative mechanisms of the features described on the previous section.
For such, we propose a recency-based variation to the EPR model where the recency bias is
incorporated. Also, we disregarded the CTRW component of the model. The noninclusion
of CTRW let us better capture the recency visitation bias; in our analyses only the individ-
uals’ displacements (i.e., successive observations in different locations) were considered.
Therefore, waiting times would have absolutely no effect in our analyses since they would
be removed in the pre-processing phase. A high-level representation of the model is de-
picted in Figure . Notice that in our definition we used uppercase K for the rank variables
whereas in Ref. [] the authors used lowercase k.
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Figure 5 Recency-based individual mobility model.
Notice that the exploration mechanism is kept the same as
in the EPR model. In addition to the PR mechanism, the
proposed model incorporates the recency effect, where
recently-visited locations have also a high visitation
probability.

The model can be described as follows: first, a population of N agents is initialized and
scattered randomly over a discrete lattice with M × M cells, each one representing a pos-
sible location. The initial position of each agent is accounted as its first visit. At each time
step agents can visit a new location if probability pnew = ρS–γ , where S corresponds to
the number of distinct locations visited thus far. The parameters values were estimated
from the empirical data (see Supporting Information for details) as γD = . ± .
and ρD = . ± .. For D, the estimated parameters were γD = . ± . and
ρD = . ± ..

With complementary probability  – pnew an agent returns to a previously visited loca-
tion. If the movement is selected to be a return, with probability  – α the ith last visited
location is selected from a Zipfian distribution (Zipf ’s law) with probability

p(i) ∝ Ks(li)–η,

where Ks(li) is the recency-based rank of the location li. The parameter η controls the
number of previously visited locations a user would consider when deciding to visit a lo-
cation. With probability α the destination is selected based on the visitation frequencies
with probability

�i ∝ Kf (li)––γ ,

where Kf (li) is the frequency rank of location li. Notice that when α =  we recover the
original preferential return behavior of the EPR model while when α = , visitation re-
turns will be based solely on the recency. We experimentally tested different parameters
configuration for the model. Our analyses have shown that when α = , the heavy tail of
the visitation frequency disappears while for α =  the power law of the recency distribu-
tion vanishes. It suggests that both mechanisms must be present in order to reproduce those
two features.

The synthetic data produced by the EPR model seems to have a good approximation with
the empirical data (see Figure (a)). However, when we compare the bottom-most rows
of the histogram, it deviates from the empirical evidence, by not capturing the broader
distribution of p(Kf , Ks) for recently-visited locations. On the other hand, the recency-
based mechanism (RM) reproduced the recency influence as observed in the empirical
data (Figure (b)).

When we look at the Kf distribution, the EPR model recovers its heavy tail, as one would
expect (inset of Figure (d)). On the other hand, when we look at each variable individually
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Figure 6 Comparison between the EPR model and the recency-based (RM) model. (a) The analysis of
the return ranks generated by the EPR model shows that it reproduces a pattern similar to the one observed
from the empirical analysis, especially of D1. (b) On the other hand, on the presence of the recency
mechanism, we can observe the same high probability of return to recently-visited locations (i.e., low Ks) as
observed on the empirical data. (c) When we look at the distribution of the frequency ranks, the preferencial
return mechanisms (labelled EPR) successfully exhibited a power-law distribution, in agreement with the
empirical observations. Since the R1 data maintains the visitation frequencies, the Kf distribution of both
variables are identical and hence their curves overlap. The activation of the recency mechanism does not
affect the frequency rank distribution. (d) However, when we look at the Ks distribution, the EPR mechanism
does not capture the power-law behavior observed on the empirical data.

we notice that the Ks distribution, as produced by the EPR model deviates from a power
law. In fact, it is better approximated by an exponential distribution whereas recency-
model maintains its power-law behavior. The differences in the Ks distribution as pro-
duced by both models become more evident in log-linear scale, where we can clearly see
that the EPR model does not capture the preference for recently-visited locations (see
main plot of Figure (c) and Figure (d)).

The validity of our approach in reproducing the recency bias was tested using a two-
sample Kolmogorov-Smirnov (KS) test. As previously discussed, one way to observe the
recency bias is by looking at the distribution of Kf for small Ks. Hence we tested the
same-distribution hypothesis of Kf by comparing the empirical distributions from the data
against those produced by the simulation models. In other words, we want to compare
the visitation frequencies of the locations being visited after visits to at least Ks locations
(Figure ). To serve as a reference we applied the same approach comparing the Kf distri-
butions of D against D.

We can clearly see that the Recency model was the only one to reproduce the Kf distri-
bution for small Ks values (i.e., the recently-visited locations). Although the full Kf distri-
bution produced by the EPR has strong agreement with the empirical data, it could not
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Figure 7 Two-sample KS statistic. Here we
compare the goodness of fit offered by both the EPR
and our Recency model with both the empirical
datasets. Our analyses suggest that the recency
effect is more noticeable in specific regions of the
rank space. For this reason, we tested the same Kf
distribution hypothesis for increasingly larger Ks
ranges. In other words, this test evaluates the
distance between the empirical and synthetic
distribution of the Kf ranks of the visited locations up
to a given Kf . θD1 and θD2 correspond to the EPR
parameters vector as empirically estimated from D1
and D2 respectively, whereas EPR(θ ) represents the
synthetic data produced by the EPR model using the
parameters vector θ . Additionally, we applied the same approach to both empirical datasets to serve as a
baseline for comparison.

reproduce recency effect as captured by conditional frequencies. For larger Ks values (e.g.,
greater than ), the EPR approximates again to the data, showing a fit even better than
our approach, showing that the recency effect is indeed bounded.

Another interesting pattern observed in Figure  is that the goodness-of-fit test not only
confirmed our findings that the importance of the Recency bias decays as we visit more
locations between consecutive visits, but also it supports the evidence that such influence
is bounded to approximately five locations.

6 Discussion
When it comes to visitation patterns, humans are extremely regular and predictable, where
recurrent travels respond for most of our movements. An external observer can identify
from ones’s trajectories locations such as home and work, even after a very short period
of observation. On the long term, however, these visitation patterns are not expected to
remain the same. New locations are discovered. New social ties are established. New op-
portunities arise.

Akin to other human behaviors, traveling patterns evolve from the convolution between
internal and external factors. A better understanding on the mechanisms responsible for
transforming and incorporating individual events into regular patterns is of fundamental
importance. In this work, we revealed that the recency bias - as observed in other human
behaviors - also plays a role in human traveling patterns. Our results show that a single
visit to a place strongly affects its likelihood of the further visits. More surprisingly, the
recency influence is highly bounded to a few recently-visited locations. Our findings were
drawn from a novel bivariate rank-based approach from which we could decompose the
recency and frequency dimensions in determining individual visitation patterns.

Finally, we extended the EPR model to include a recency mechanism, which managed to
successfully replicate some of the recency and frequency visitation patterns we described
here. The importance of our results go beyond its scientific value for the human mobility
community and their traditionally related areas such as urban planning and public health.
The recency bias can be of great interest for areas such as public security (e.g., detection
of anomalies in individual trajectories) and strategic management (e.g., offering a better
understanding of customer visitation patterns) to name but a few. In a broader sense, our
results add a small but important piece to our understanding of the human traveling be-
havior.



Barbosa et al. EPJ Data Science  (2015) 4:21 Page 12 of 14

7 Materials and methods
7.1 The empirical datasets
In this work, we used two mobility datasets: the first one (D) corresponds to  months of
anonymized mobile-phone traces from a large metropolitan area in Brazil. This dataset is
composed of ,, records from , users between January -June , . The
second dataset (D) is composed of ,, check-ins from , Brightkite users
in , different locations. Unlike the mobile phone data, locations in the Brightkite
dataset correspond to the actual places where the users checked in - phone data locations
correspond to the antenna tower the phone communicates with and hence are approxi-
mations of the user’s actual location.

Since our interest here is on the individuals’ trajectories, in this analysis we considered
only the data that provides information relating to the users’ displacements. Hence, we fil-
tered out multiple repeated observations on the same place, resulting in a time series for
each individual, representing their trajectories over the observed period. The rationale for
removing the successive points in a same location is because in the context of this work,
recency is defined in terms of visits to recent past destinations. Hence, successive obser-
vations within the same location cannot be considered as being influenced by a recency
bias. Thus, since human displacements are interspersed by longer periods with no jumps,
the bursty behavior, observed in many human activities (including mobile phone com-
munications) [, ] would otherwise wrongfully boost the measurements of a recency
preference.

To illustrate how the filtering works, if we assume that A, B and C are locations, and the
data shows a user in the locations (in this order) [A, B, B, B, C, C, A, A, A, B], the multiple
consecutive observations at the same locations are filtered out. Hence, the trajectory to be
analyzed would be [A, B, C, A, B]. Furthermore, to reduce the influence of co-located an-
tennas (common in densely-populated sites), we merged those within less than  meters
apart under the just one id.

7.2 The randomized datasets
Additionally, in order to verify whether the power law observed in the recency rank dis-
tribution is rooted on the temporal semantics of individuals’ trajectories, we applied our
rank-based approach to randomized versions of both empirical datasets (D and D). The
first randomized dataset we analyzed (R) was obtained from uniformly shuffling each
individual trajectory. This way, we artificially remove any temporal information possibly
encoded within the individual trajectories, while maintaining the visitation frequencies in-
tact. On the second randomization method (R), we also remove the visitation frequencies
by generating for each user a new random trajectory with the same number of displace-
ments, and the same number of distinct visited locations. To serve as the baseline for the
analyses, the data of the third randomization approach (R) produces a new dataset with
the same size as the original one, but keeping only the total number of users and locations.
More precisely, for each of the datasets, we generated a randomized version of them with
M random points

vm = [um, lm, m], m ∈ [, . . . , M],

where each um, lm is uniformly sampled from U users and N locations respectively, with
M, U and L the same as in D and D.
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