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The superspace description of incommensurable crystals is used to calculate
the symmetry adapted crystal field potential for an incommensurable crystal.
With this crystal field potential the perturbation of the high temperature phase
energy levels by the incommensurable modulation can be calculated using
perturbation theory. The results of such calculations on ThBr, are compared
with the experimental results obtained from optical and magnetic resonance
spectroscopy.

1. Introduction

Incommensurable crystals occupy a special place within solid state physics. On
the one hand they possess a long range order leading to a periodic distortion of the
crystalline structure; on the other hand, the lack of three-dimensional lattice
translation defies the classification of incommensurable crystals in terms of crystallo-
graphic space groups.

For a description of incommensurable crystals, an extended form of the Landau
theory for structural phase transitions can be used [1, 2]. An alternative description
was developed by De Wolff, Janner and Janssen, in which the three-dimensional
space 1s extended to a higher dimensional so-called superspace. In this space,
superspace groups are defined analogously to the crystallographic space groups. This
allows the symmetry properties of the incommensurable crystals to be defined in
terms of superspace groups.

The most conspicuous change in structure on entering the incommensurable
phase is the disappearance of the three-dimensional lattice translation symmetry. The
absence of the lattice translation symmetry leads to very characteristic lineshapes in
optical and magnetic resonance spectra, resembling those of a powder spectrum. The
calculation of magnetic resonance spectra using the Landau theory of phase
transitions 1s well established, and is based on the variation with position of the
phase and the amplitude of the modulation wave in the incommensurable crystal
[2-4]. In this paper we present an alternative way to calculate the optical and
magnetic resonance spectra of incommensurable crystals using the theory of super-
space symmetry of incommensurable crystals as developed by De Wollf, Janner and
Janssen [5-8]. This theory has the advantage over Landau theory that the
incommensurable phase has a well defined symmetry, making it possible to calculate
the form of the crystal field potential. From the crystal field thus found the parameters
can be calculated that determine the optical and magnetic resonance spectra.
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We have organized this paper as follows: first we calculate the crystal field
operator for an incommensurable crystal, which, in the following section, we shall
use to calculate the form of the optical and magnetic resonance spectra for a specific
incommensurable crystal, thorium tetrabromide, ThBr,. We conclude with a discussion

of our results.

2. The crystal field operator in incommensurable crystals

We derive the crystal field operator for an incommensurable crystal in order to
be able to use the symmetry relations that hold in an incommensurable crystal for
the determination of the form of optical and magnetic resonance spectra for these
crystals.

The crystal field potential is defined as

V(r)=J P ar (1)

¥ —r]

[t can be written as a Fourier sum over vectors K and q, where
K = ha* + kb* + Ic*, (2)

with a*, b* and ¢* the basis vectors of the reciprocal lattice AF, and q is the wavevector
of the incommensurable modulation

q = «a* + fb* + yc*, (3)
with at least one of o, f8, or y irrational. Thus, the Fourier expansion becomes:
V(r) = Vo(r) + ), Vi), (4)
A0
where
Vir) = 3. V(K + Aq) exp [i(K + 2q)-r], (5)
KeAp

where 4 runs over positive and negative integers.

The fact that the crystal field potential must be real is used to write V(r) as a
sum over positive values of 4 only:

)= Vo) + ) Y. Vi(K + Aq) exp [i(K + Aq)-r]

A>0 Kedg
+ V%K + Aq) exp [—i(K + Aq)-r]. (6)

To find the crystal field potential at the position r + t, where t is a vector of the
high temperature lattice, the translation operator Py, 1s applied to the potential V(r):

PuigV) = Vir — ) = %y(r) + ), Y. V(K + Aq) exp [i(K + Aq)-r] exp [ —ilq-t]

A>0 KeAg
+ VXK + 1q) exp [—i(K + 1q)*x] exp [iAq-t]. (7)

From the expression it is clear that in the incommensurable phase the three-
dimensional translation symmetry is lost due to the incommensurable nature of the
wavevector ¢, and the-crystal field potential is no longer invariant under translations
over a lattice vector t. Because q 1s incommensurable with the high temperature lattice
vector t, the phasefactor q-t varies continuously as t ‘moves’ through the crystal.
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The phase in the modulation wave is determined up to an arbitrary phase ¢, because
q-t is the phase of r + t relative to the phase of r. In the following we write for the
phase in the modulation wave q-t = ¢, thereby setting ¢, = 0.

We now express the crystal field potential in symmetry-adapted spherical
harmonics. The decomposition of V(r, ¢) into spherical harmonics Y}, is achieved
using the plane wave decomposition

0 !
exp (k)= Y Y 4nijkr)YE(8, @) Yl O)rs (8)
=0 ! .

nm= -

where j(kr) 1s a spherical Bessel function of order | with argument kr = |[K + Aq||r|.
The crystal field potential in terms of spherical harmonics thus becomes:

Y, 0) = Vot) + 3. 3 {Af B, 0)s exp (—ide) + ARITED, @) exp (A4}, (9)

A0 I,m
with

Al = Y VK + 1q)dni’j(kr) YE (S, o), (10)
KeAg

and k is the unit vector in the direction of K + Aq.

The phase dependent crystal field potential for incommensurable crystals, equation
(9), 1s completely analogous to the crystal field potential in ‘normal’ crystals. In the
latter, the number of terms in the expansion of the crystal field in spherical harmonics
1s restricted by the symmetry of the site for which the crystal field is determined. In an
incommensurable crystal it 1s the site symmetry in superspace that determines the
terms that are to be retained in the crystal field expansion in equation (9).

3. Superspace symmetry

In an incommensurable crystal with a displacive modulation, the atoms are
displaced from their high temperature equilibrium positions by a periodic displace-
ment:

X(nj) =1+ 0+ Gl (5 + 0) + 6, (1)

where r; gives the position of the atom with index j in the unit cell, and
Lu(q-(r; + n) + ¢;) 1s the periodic displacement of the atom in the incommensurable
phase. As was noted in the previous section, because of the incommensurable nature
of the modulation, the phases ¢, of the atoms are distributed uniformly and densely
between 0 and 2w, and therefore are taken as continuous variables. For the phase of
the modulation wave we introduce the phase parameter v. A translation over a lattice
vector t changes the phase in the modulation wave by an amount q-t, and thus the
phase of the atom after translation is different from the phase beflore the translation,
as can be seen from equation (11). The translation symmetry can be restored by
accompanying the translation with a change in the phase such that

q't+v,=0v mod?2r (12)
Thus, a lattice translation t accompanied by a phase shift
vy=10v—q't mod2w (13)

leaves the crystal invariant.
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Note that the parameter v defines a lattice direction with lattice parameter 2m: if
p is incremented by multiples of 2n the amplitude of the modulation wave stays the
same, just as a normal crystal is invariant for translations over a lattice vector K.
Therefore, the phase parameter v is considered to be an additional lattice coordinate
that is needed to specify the position of the atoms. If there are more than one
incommensurable wavevectors, more extra lattice directions can be specified. In this
paper we shall restrict ourselves to a one-dimensional modulation.

The axis of the additional coordinate is chosen in the direction d perpendicular
to a, b, and ¢. The atoms now appear as strings along the d direction of the
four-dimensional superspace spanned by a, b, ¢, and d with positions

r,; = (r; + 1 -+ fu(q-(x; + n) + ‘;bj + v), vd). (14)

An incommensurable crystal can be considered as a cross-section of these strings of
constant v of the four-dimensional space [ 5, 6, 9]. This description can be formalized
by embedding the crystal in a (3 + 1)-dimensional superspace ¥, [ 10]:

=Va h, (15)

formed by the direct sum of the position or external space V in which the three high
temperature lattice vectors a, b, and ¢ are defined and the one-dimensional internal
space J4 1n which the vector d 1s defined.

A vector In superspace 1s written as r, = (r, Iy), where r is a vector in the external
and r; a vector in the internal space. The pattern of the strings considered above
describes a modulated crystal which is invariant with respect to a translation of the
lattice 2’ with basis vectors

a, = (a, —ad), b,=(b,—fd), c¢,=(c, —yd), d,=(0,d). (16)

The basis vectors for the reciprocal lattice Z* are orthogonal to these basis vectors
and defined as:

a¥ = (a*,0), b¥=(b*0), c*=(c*0), d*=(q,d*). (17)
The crystal field operator can be expanded as a Fourier sum in superspace [107:
Vi) = 3 Pk exp (ik,'r), (18)
hok, 1,2

where r, = (ry, 1y, 3, 1) 1S a vector of the lattice £, equation (16), and k, = (h, &, [, 1)
is a vector of the reciprocal lattice 2*, equation (17), and [11]

Vak) = V(K + Aq). (19)

Although an incommensurable crystal does not belong to a three-dimensional
space group, in the four-dimensional superspace it is possible to find a superspace
group G, for which the crystal is invariant. The elements of G, are defined by an
external part g, operating on ¥, and an internal part g,, operating on ¥

g = {R|t} (20)

Because /7 1s one-dimensional, € = + 1. Different notations for the elements of G, are
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in use. In the split basis notation the elements of G, are defined as

ds = {R,El(t, tl)}ﬁ (21)

and in the lattice basis notation as

gs = {R |t} (22)

We now use the invariance of the superspace crystal for transformations g, € G.
to derive the transformation properties of the incommensurable crystal under the
external part g of g.. In the appendix we derive that

PV, (r) = V_;(r) exp (2miedty). (23)

The extra phase factor exp (2mielt;) can be interpreted as a ‘correction’ for the change
in phase associated with the change in position after the transformation g.

On the other hand, we can expand F,(r) in terms of irreducible basis functions
¢, :(r), of the high temperature space group G

ZOEDWIRT N} (24)

where c; ; is the expansion coefficient of the ith basis function ¢,; of the pth
irreducible representation of G,. Under an element g = {R |t} of the group of q, G,
the coefficients ¢, ; transform as:

Pychi = ). exp (—idq-)DE(R)c} (25)

J

where D(R) are the matrix elements of the pth irreducible representation of the
point group of q. For the elements of G, e = + 1 since Rq = q [7]. Comparing
equation (23) with (25) gives:

> exp (—ilg-t)D%(R)ch ; = exp (2midty)cy ;. (26)
J

This expression can be simplified further using (cf. equation (13))

q-t
ty =t . 27
1=t = o (27)
Thus, equation (26) becomes
> DE(R)c; ; = exp (milty)cy ;. (28)
J

The above expression imposes restrictions on the irreducible representations that
can be present in the expansion of the crystal field operator in terms of 4; however,
it 18 not limited to the crystal field operator alone: it holds for any scalar operator
and can be extended to tensor operators of higher rank [8].

4. Application to ThBr,

Thorium tetrabromide, ThBr,, occurs in two modifications. Below 700 K, the
a-form with space group symmetry 14, /a (C§,) is stable. The high temperature form,
B-ThBr,, is stable above 700 K but is often obtained as a metastable form at lower
temperatures when crystals are grown from the melt [12]. B-ThBr, exhibits a
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Table 1. Character table of the t* representation of the group of q, I4,md; t = (0, 1/2, 1/4).

Chlt {Cul0}  {Calt  {oul0 (ol {oal0) (ol

(E [0}
] 1 1 1 1 1 1 1

s

structural phase transition to an incommensurable phase at 95 K, as was discovered
with Raman spectroscopy [13]. Later, elastic and inelastic neutron scattering
experiments revealed the structural and dynamic characteristics of the phase transition
[14, 157]. It was found that the phase transition originates in a frozen optical soft
mode that transforms as the t* representation of 14, md, the group of the wavevector
q. The characters of this representation are given in table 1. Measurements of the q
vector from 95 K down to 1-:5 K shows that the length of the modulation wavevector
1s almost independent of temperature, with a value g = (0-:3115 + 0-:0015)¢*.

The superspace group of ThBr, in the notation of De Wolff, Janner and Janssen
1s I4,/amd(00y)(s0s0) [16, 17]. In this notation, the direction of the wavevector q is
indicated after the space group symbol of the high temperature phase: q = (0, 0, y),
see also equation (3). The expression (s0s0Q) gives the fractional lattice translations
in the direction of d; (see equation (16)). The position of the symbol, 0 or s,
corresponds with the position of the generator in the space group symbol; 0 indicates
no 1nternal translation while s corresponds to an internal translation ¢, = 1/2. Thus,
both the fourfold screw axis, 4,, and the mirror plane m are associated with an
mternal translation ¢, = 1/2.

To determine the crystal field potential of ThBr, in the incommensurable phase,
the crystal field potential is expanded in irreducible basis functions of the group of
g, 14, md with corresponding point group C,,. The character table of C,, is given in
table 2. This expansion 1s subject to the restrictions imposed by equation (28).
Application of these conditions shows that the expansion of ¥(r) in irreducible basis
functions contains only basis functions that transform as I, for odd values of A, and
basis functions that transform as I'y for even values of 1. The symmetry-adapted
spherical harmonics that transform according to the I', representation are [18]

'—%1-\/2( Ylm T I-—m): (29)
where [ takes only even values, and the values of m are given by
m=2+4+4n 2<<m<l, (30)

with 1 integer, while symmetry-adapted spherical harmonics for the I', representation
are
2+ Y,) (31)

Table 2. Character table of C,,.

C4-v E Cg;_- C:E; Jyz: T sz Og> Oy
I | ] ] i
I 1 .| 1 —1 —1
Iy 1 | — 1 1 — 1
[y 1 1 —1 — ] 1
I 2 ~2 0 0 0
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Again, | is even, but now m takes the values
m=4n 0<m<l. (32)

When these restrictions are imposed on the general form of the crystal field
potential as given by equation (9), the crystal field potential becomes

V(l', (,E'J) = VC‘(r) + Z Z Z! IAﬁn T Ylm CXp (—-l/ll;b) K-—m BXP (M'(nb))

Aodd leven m=2

+ 5 Y Y AL (Y, exp (—ikd) + Y,_,, exp (iA)), (33)

Aeven feven m=0

where the prime on the summation sign indicates that the m values increase by
increments of 4. To bring out the ¢ dependence more explicitly, this is written as

Vir, ¢) = Vo(r) + ), cosdg ), 37 idj(— Yo + Yiop)

Aodd leven m=2

— 2, sindg ) ) AL(Yi + ¥-,)

Aodd feven m=2

+ 2, cosAd > 37 ALY + Yiow)

Aeven leven m=0

T Z S ’14) Z Z; IAf;u( Km_ I—nt)' (34)

Aeven leven m=0

To calculate the optical or EPR spectra of ThBr, in the incommensurable phase,
the crystal field potential at the optical or paramagnetic active thorium site has to
be determined. In the frozen solt mode that determines the incommensurable phase,
only terms with A = 1 contribute to the displacements of the bromine atoms [14].
Therefore, we shall consider only these terms in the expansion of the crystal field
potential. A further reduction in the number of terms 1s obtained by making use of
the accidental symmetry of the thorium site. The frozen solt mode can be written as
the sum of two symmetry adapted eigenvectors, one that reduces the thorium site
symmetry from D,, to D, and one that leaves the D,, symmetry unaltered. Through
the particular mixing of these two modes, the site symmetry of the thorium position
1s D,4 for phases ¢ = 0,n and D, [or all other phases [4, 14, 19]. This accidental
symmetry implies that terms with D, symmetry must vanish for ¢¢ = 0,;m. This leaves
the following expansion for the crystal field potential at the thorium sites

Vv, 0) = Vo®) +singd Y ) Ap(Y, + Yo, (35)

leven m=2

The form of V,(r) is determined by the D,, site symmetry of the high temperature
phase:

o(r) = A§ Yo+ Ao Yoo + AG(Yau + Yy_ o) + AQYeo + AZ(Yes + Ys-4).  (36)

5. Optical experiments on ThBr,

The incommensurable modulation manifests itself in the optical spectra of ThBr,
doped with actinide ions. Krupa and co-workers have observed the characteristic
singularities in absorption and emission spectra Pa*" in ThBr, and in the isomor-
phous compound ThCl, [20, 21]. The optical spectra of ThBr, doped with U** (5f?)

were studied by Delamoye et al. [22, 23]. The spectra show a continuous distribution
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of U** sites bounded by two edge singularities. Selective excitation experiments
showed that the lines could be assigned to a continuous distribution of sites with D,
symmetry; the singularities are attributed to sites with D, symmetry and sites with
D, symmetry.

The symmetry spectra could be explained by assuming that the energy levels
depend on the phase in the modulation wave according to

E¥¢) = Eb + n*(e; + B, sin® ¢) £ y;n sin ¢, (37)

where j is the index of the energy levels of a U*" ion in the ThBr, host and 7
corresponds to the amplitude of the modulation. The coefficient y; equals zero for
states which transform according to the irreducible representations Iy, I3, I3, and
I, of the group D,,4, and is non-zero for states that transform as [,

To see how these results compare with the results that are obtained from the
application of the ¢-dependent crystal field potential, we determine the effect of the
modulation on the energy levels by considering the ¢-dependent part of V(r, ¢) as
a small perturbation:

e, ¢)=sing ), 3 Ap(Yim + Yiop). (38)
leven m=2

As was shown earlier, V(r, ¢) transforms according to the I, representation of
C,.. The unperturbed states of the U*” ions transform according to one of the
irreducible representations of D,4. To first order in the energy, the only non-zero
matrix elements are between states that belong to the twofold degenerate I
representation of D,,. The perturbation splits the degenerate energy level into two

non-degenerate levels with energies:

E, = E, + E, sin ¢. (39)

The energy levels that belong to the one-dimensional representations of D,, are
changed only in second order, in agreement with the experimental observation that

y; In equation (37) is non-zero only for states that transform according to the I
representation.

6. EPR experiments on ThBr,

The results of EPR experiments on ThBr, doped with Pa** in the incommensur-
able phase were reported in a series of earlier papers [4, 19, 24]. To explain the
spectra, a heuristic model was proposed in which it was assumed that the parameters
of the spin Hamiltonian all varied linearly with the amplitude of the incommensurable
modulation. With this heuristic model excellent agreement with the experimental
spectra was obtained [4, 19, 24]. Here we use the symmetry adapted crystal field to
calculate the effect of the incommensurable modulation on the spin Hamiltonian
parameters of Pa** in ThBr,. Because all observed EPR transitions are within the

ground doublet formed by states 1) and rf; that transform according to the I,

representation of the double group D,,, we calculate only the perturbation of the
ground state. The term of WV(r, ¢), with A = 1 connects the ground state with the
excited states that transform according to the I'; representation. In this way, the first

excited state is mixed with the ground state, and to first order the ground state
becomes:

1), =|1) + e sin ¢|2), (40)



Application of superspace symmetry 483

where € is a small constant that depends on the strength of the perturbation and
hence on the amplitude of the modulation. The g values for the ground state are
determined by diagonalization of the matrix [25]

(d,ile,; +2511)5 4<HL + 2&@,1,), 1)

oSlHILy + 251, oL + 25;(1)4

and are found to be [27] |
9(¢) =gy +g,sinp+ - -+, (42)
g,(¢) =g, —g,sing + -, | (43)
g:(¢) =g; + gasin®* p + - - - (44)

An important point to note is that the matrix elements of the hyperfine interaction
are proportional to the matrix elements of the Zeeman interaction because both the
Zeeman interaction and the hyperfine interaction are vector operators which operate
within the same j manifold [25]. Therefore, the phase dependence of the hyperfine
interaction is the same as for the Zeeman interaction. The quadrupole interaction is
the scalar product of two tensor operators of rank two [26]. Therefore, the matrix
elements of the quadrupole operator are not proportional to those of the Zeeman
and hyperfine interactions, but transform as irreducible tensor operators of rank 2:

Vex = Vyy = J3UY + U, (45)
Vee = 2U5, (46)

where the quadrupole coupling constant V,, and V|, are elements ol the quadrupole
matrix

Vex 00
V={0 V¥, 0. (47)
6 0 P,

Evaluation shows that V. — V,, is proportional to the amplitude of the modulation,
and that V,, 1s proportional to the square ot the modulation amplitude [25].

The phase dependence of the spin Hamiltonian parameters as calculated with the
phase dependent crystal field potential is in agreement with the phase dependence
ol the spin Hamiltonian parameters observed experimentally [4, 19 24]. From the
fact that the z components of the g tensors of the two sites are equal within the
experimental uncertainties, and that the same holds for the z components of the hy-
perfine tensors of the two sites, it is concluded that the coefficient of the quadratic
term g, in equation (44), and the corresponding term for the hyperfine interaction,
are smaller than the experimental uncertainties in the g and A values. The agreement
of the measured quadrupole tensor with the calculated tensor is more difficult to
establish because of the large uncertainty in the directions of the principal axes. It
was found [4] that the z components of the quadrupole tensors of both sites are
equal, in agreement with the quadratic dependence on the modulation amplitude of
V.- The linear dependence on the modulation amplitude of V,, — ¥, is not so easy
to establish experimentally because the principal directions of the quadrupole tensor
are inaccurate. If, however, it is assumed that the quadrupole tensors of both sites
are rotated with respect to one another by 90° around the z axis, like the g and
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A tensors, the experimental observations are in agreement with the theoretical
dictions.

7. Conclusion

We have found the crystal field operator for an incommensurable crystal by
extending the three-dimensional space to a higher-dimensional superspace. The
symmetry properties of the crystal in this phase were used to derive constraints on
the form of the crystal field operator. We compared the experimental results from
optical and electron paramagnetic resonance studies on ThBr, in the incom-
mensurable phase with calculations using the symmetry adapted crystal field
potential. The results were found to be in excellent qualitative agreement. We propose
that this method may also be used as an aid in the interpretation of the optical and
magnetic resonance spectra when ambiguities such as pinning effects complicate
interpretation. |

The authors thank Professor A, Janner for his continual interest and for fruitful
discussions.

Appendix

In this appendix we derive equation (23). To begin we need to calculate the
dot product k,-r, in the split basis notation. With respect to this basis, the vectors
k. and r, take the following form:

k, = hak + kb} + le¥ + Ad*
= (ha* + kb* + l¢* + Aq, Ad*)

= (K + Aq, 4d*) = (k, k), (A1)
I, = rag + by + rye, + ryd,
_{, * °r _
= | ra + b + rye, o ry Jd ) = (r, rp). (A 2)
T

The incommensurable crystal belongs to a four-dimensional superspace group G,
thus, the crystal field opererator ¥(r,) is invariant for transformations g, € G,:

Frs Ve(ry) = W(ry), (A 3)
Qr,
KZ,-., Vak) exp (kg7 'r) = 5 7,(k,) exp (k. 1.). (A 4)
, K, 4

First we rewrite the left hand side:

Y. Valk)exp (kg7 'r) = T V(K + Aq) exp (gk. ), (A 5)
K, 1

K, 2

where we have used the definition in equation (19). This can be expanded further in
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the split basis notation:

Y V(K + Aq) exp (g:k, 1)
K, 4
= Y V(K + 1q) exp [iR(K + 2q)-r + 2miler; — iR(K + Aq)-t — 2milet;]. (A6)
K,

Because of the invariance condition, this must be identical to

Y VK + Aq) exp [i(K + Aq)-r + 2miln]. (A7)
K, 4

To compare equations (A 6) and (A7) we change the summation in the latter. The
surmnmation over K is replaced by RK and the summation over A is replaced by a

summation over €A

Y V(RK + eAq) exp [i(RK + €Aq)-r + 2mielr;] (A 8)
K, 2

We now use the relation Rq = €q (see, e.g., Janner and Janssen [7]) to obtain

S Vo (R(K + Aq)) exp [iR(K + Aq)*r + 2mieir]. (A 9)
K. 2

We can now compare this with equation (A 6) to find the condition for equivalence:
V(K + Aq) = V,(R(K + Aq) exp [iR(K + Aq)-t + 21tie At ]. (A 10)

Now, we want to compare the transformation g, in four-dimensional space with
the effect of the external part g of g, on the crystal in real space, i.e., we want to
compare P,V (r) with P V(r). We write

PV(r) =Y V(K + Aq) exp [iR(K + 4q)‘r — iR(K + Aq)-t]. (A 11)

K, 4

Substitution of the invariance condition gives

P V(r) = KZ 7 (R(K + Aq)) exp [iR(K + Aq)‘r + 2mielt; ]
, A

=Y Via(r) exp [2mielt;], (A 12)
A

which gives the desired relation, equation (23).
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