
Research Article
Particle Dynamics around Weakly Magnetized
Reissner-Nordström Black Hole

Bushra Majeed,1 Mubasher Jamil,1 and Saqib Hussain2

1Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST),
H-12, Islamabad 44000, Pakistan
2Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST),
H-12, Islamabad 44000, Pakistan

Correspondence should be addressed to Bushra Majeed; bushra.majeed@sns.nust.edu.pk

Received 7 September 2015; Revised 24 November 2015; Accepted 25 November 2015

Academic Editor: Juan José Sanz-Cillero
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Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of
neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the
escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also,
the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present
in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on
the angular motion of neutral and charged particles is observed graphically.

1. Introduction

The geometrical structure of the spacetime around black hole
(BH) could be understood better by studying the dynamics
of particles in the vicinity of black holes [1, 2]. Circular
geodesics give information about geometry of spacetime
[3, 4]. The motion of test particles helps to study the
gravitational fields of objects experimentally and to compare
the observationswith the predictions about observable effects
(light like deflection, gravitational time delay, and perihelion
shift). Presence of plasma is responsible for magnetic field
[5], in the surroundings of the black hole [6, 7]. Near the
event, horizon effect of magnetic field is strong but not
enough to disturb the geometry of the black hole. Motion
of a charged particle around black hole in the presence of
magnetic field gets influenced [8, 9]. Black holes with such
scenario are known as “weakly magnetized” [10]; that is,
the magnetic field strength lies within 𝐵 ∼ 10

4–108 ≪
10
19 Gauss. Magnetic field is responsible for transferring

energy to the particles moving in the geometry around black
hole, so that their escape to spatial infinity is possible [11].
Hence, the collision of charged particles near the black hole

may producemuch higher energy in the presence ofmagnetic
field than in its absence. In [12–15], the effects of magnetic
fields on the charged particles around black holes were inves-
tigated. Timelike geodesics in modified gravity black hole in
the presence of axially symmetric magnetic field are studied
in [16]. In [17], authors have studied the dynamics of a charged
particle around a weaklymagnetized naked singularity, in the
Janis-Newman-Winicour (JNW) spacetime. Kaya [18] stud-
ied themotion of charged particles around a five-dimensional
rotating black hole in a uniformmagnetic field and found sta-
ble circular orbits around the black hole. In literature, many
aspects of the particles motion in the vicinity of RN-black
hole have been studied. In [19], authors have studied the high
energy collisions phenomenon between the particles, cur-
rently termed as BSWmechanism. In [20], the spatial regions
for circular motion of neutral and charged test particles
around RN-BH and naked singularities have been studied.
Critical escape velocity for a charged particle moving around
a weakly magnetized Schwarzschild black hole has been
studied in [21]. We consider Reissner-Nordström (RN) black
hole is surrounded by an axially symmetric magnetic field
which is homogeneous at infinity. Particles in the accretion
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disc move in circular orbits in the equatorial plane. Following
the work done by Al Zahrani et al. [21], collision of a neutral
and a charged particle with another neutral particle is studied
in the vicinity of magnetized RN-BH. We focus on under
what circumstances the particle can escape to infinity after
collision. To evade the complication inmodeling the particle’s
motion around a black hole under the influence of both grav-
itational and magnetic forces, we first consider the motion of
a neutral particle in the absence of magnetic field. The study
of particle dynamics around RN spacetime is also relevant
as this metric represents the extreme RN-BH and a naked
singularity as special cases.

Outline of the paper is as follows. In Section 2, metric of
RN-BH is discussed and escape velocity of a neutral particle
is calculated. In Section 3, the equations of motion of a
charged particle moving around weakly magnetized RN-BH
are derived. Trajectories of the particles moving around the
extremal RN-BH are plotted in Section 4. In Section 5, the
dimensionless form of the equations is given. In Section 6,
trajectories for escape energy and escape velocity of the
particle are presented. Motion of the particle is initially con-
sidered in the equatorial plane for the sake of simplicity. The
metric signature is (−, +, +, +) and 𝑐 = 1, 𝐺 = 1.

2. Escape Velocity for a Neutral Particle

We first work for the escape velocity of a neutral particle in
the absence of magnetic field. The RN-BH metric is given by

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+

1

𝑓 (𝑟)
𝑑𝑟
2
+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) , (1)

where

𝑓 (𝑟) = 1 −
2𝑀

𝑟
+
𝑄
2

𝑟2
. (2)

Here,𝑀 is the mass and𝑄 is electric charge of the black hole.
Horizon of the RN-BH is located at

𝑟
±
fl𝑀±√𝑀2 − 𝑄2. (3)

If 𝑀 > 𝑄, there are two real positive roots; the larger root
corresponds to the event horizon and the smaller root refers
to the Cauchy horizon which is associated with the timelike
singularity at 𝑟 = 0. Black hole is known to be extremal black
hole if𝑀 = 𝑄 and it has only one event horizon at 𝑟 = 𝑀 = 𝑄.
If𝑀 < 𝑄, there is no real root of the equation 𝑓(𝑟) = 0 and
there is no event horizon.This case is known as naked singu-
larity of RN spacetime. Symmetries of the black hole metric
are along the time translation and rotation around sym-
metry axis. The corresponding constants of motion can be
calculated using the Killing vectors:

𝜉
𝜇

(𝑡)
𝜕
𝜇
= 𝜕
𝑡
,

𝜉
𝜇

(𝜙)
𝜕
𝜇
= 𝜕
𝜙
.

(4)

Here, 𝜉𝜇
(𝑡)
= (1, 0, 0, 0) and 𝜉𝜇

(𝜙)
= (0, 0, 0, 1). The correspond-

ing conserved quantities are the total energyE of the moving
particle and its azimuthal angular momentum 𝐿

𝑧
:

̇𝑡 =
E

𝑓
,

̇𝜙 =
𝐿
𝑧

𝑟2
.

(5)

Over dot is the differentiation with respect to proper time 𝜏
and 𝑓 fl 𝑓(𝑟). From the normalization condition 𝑢𝜇𝑢

𝜇
= −1,

we have

̇𝑟
2
= E
2
− 𝑈eff ,

𝑈eff = (1 −
2𝑀

𝑟
+
𝑄
2

𝑟2
)(1 +

𝐿
2

𝑧

𝑟2
) .

(6)

We considered 𝜃 = 𝜋/2, that is, the planar motion of the
particle. Solving 𝑑𝑈eff/𝑑𝑟 = 0, we get the value of 𝑟 corre-
sponding to the extreme values of the effective potential (the
convolution point) [22]:

𝑟
±
=

𝐿
2

𝑧
± √𝐿4
𝑧
− 𝐿2
𝑧
8𝑀2

2𝑀
.

(7)

The ISCO is at 𝑟 = 4𝑀 for extreme RN-BH (𝑄 = 𝑀). For𝑄 =
0, it reduces to 𝑟 = 6𝑀 (Schwarzschild black hole) [21]. The
corresponding energy and the azimuthal angularmomentum
of the particle (in ISCO) are, respectively,

E
𝑜
=

(𝑄
2
+ 𝑟
𝑜
(−2𝑀 + 𝑟

𝑜
))
2

𝑟2
𝑜
(2𝑄2 + 𝑟

𝑜
(−3𝑀 + 𝑟

𝑜
))
,

𝐿
𝑧𝑜
=

√𝑄2𝑟2
𝑜
−𝑀𝑟3
𝑜

√−2𝑄2 + 3𝑀𝑟
𝑜
− 𝑟2
𝑜

.

(8)

For extremal black hole case, that is, at 𝑄 = 𝑀, (8) becomes

E
(𝑒)

𝑜
=

(𝑀
2
+ 𝑟
𝑜
(−2𝑀 + 𝑟

𝑜
))
2

𝑟2
𝑜
(2𝑀2 + 𝑟 (−3𝑀 + 𝑟

𝑜
))
,

𝐿
(𝑒)

𝑧𝑜
=

√𝑀(𝑀 − 𝑟
𝑜
) 𝑟2
𝑜

√−2𝑀2 + 3𝑀𝑟
𝑜
− 𝑟2
𝑜

.

(9)

Now, consider the collision of a particle, moving in the
ISCO, with another particle which is coming from infinity
(initially at rest).This collisionmay result in three possibilities
(depending on the progression of the collision): (i) a bounded
motion, (ii) particle captured by black hole, and (iii) particle
escape to infinity. Orbit of the particle alters slightly if
the energy and angular momentum of the particle do not
undergo a major change; otherwise, the particle can move
away from the original path resulting in captured by black
hole or an escape to infinity may occur. Collision of the par-
ticles changes the equatorial plane of the moving particle, but
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since the metric is spherical symmetric, all the equatorial
planes are similar. We consider the collision occurring in
such away that (i) the azimuthal angularmomentum remains
invariant and (ii) initial radial velocity also remains the
same. Hence, only the change in energy will be considered
for determining the motion of particle after collision. These
conditions are imposed for simplification only. Particle gains
an escape velocity (Vesc) = V

⊥
in orthogonal direction of the

equatorial plane after collision [23] and its momentum and
energy (in the new equatorial plan) become

𝐿
2
= 𝑟
2

𝑜
V2esc + 𝐿

2

𝑧𝑜
. (10)

Here, Vesc ≡ −𝑟 ̇𝜃𝑜 and ̇𝜃
𝑜
denotes the particles’ initial polar

angular velocity. Energy of the particle is

Enew = √(1 +
𝑄
2

𝑟2
𝑜

−
2𝑀

𝑟
𝑜

) V2esc +E2𝑜,

E
(𝑒)

new =
√
(𝑀 − 𝑟

𝑜
)
2 V2esc

𝑟2
𝑜

+E2
𝑜
,

(11)

with E
𝑜
, given in (9). After collision, particle gains greater

angular momentum and energy as compared to that before
collision. From (11), it is clear that, in the asymptotic limit
(𝑟 → ∞), Enew → E

𝑜
= 1. So for unbounded motion

(escape), particle requiresE ≡ Enew ≥ 1. Hence, for escape to
infinity, the necessary condition is

Vesc ≥
𝑟
𝑜
√1 −E

𝑜

√−𝑄2 + 2𝑀𝑟
𝑜
− 𝑟2

,

V(𝑒)esc ≥
𝑟
𝑜
√1 −E

𝑜

√−𝑀2 + 2𝑀𝑟
𝑜
− 𝑟2
𝑜

.

(12)

We have solved (11) taking Enew ≥ 1 and the quantities with
subscript 𝑒 denote the extremal black hole case.

3. Charged Particle around RN-BH
Surrounded by Magnetic Field

The presence of magnetic field interrupts the motion of a
charged particle around black hole. To know the aftermath
of this perturbation, let us start with the Lagrangian of the
moving particle as

L =
1

2
𝑔
𝜇]𝑥̇
𝜇
𝑥̇
]
+
𝑞

𝑚
𝐴
𝜇
𝑥̇
𝜇
. (13)

Here,𝑚 is mass of the particle and 𝑞 is the charge of particle.
The Killing vector equation ◻𝜉𝜇 = 0 resembles the Maxwell
equation for 𝐴𝜇 in the Lorentz gauge 𝐴𝜇

;𝜇
= 0 [24, 25]; here,

𝜉
𝜇 denotes the Killing vector and𝐴𝜇 is the 4-potential defined
as [24, 25]

𝐴
𝜇
=
B

2
𝜉
𝜇

(𝜙)
−
𝑞

2𝑚
𝜉
𝜇

(𝑡)
, (14)

withB as the magnetic field strength given as

B
𝜇
= −

1

2
𝑒
𝜇]𝜆𝜎

𝐹
𝜆𝜎
𝑢], (15)

and using Levi Civita symbol, 𝜖𝜇]𝜆𝜎, one can write

𝑒
𝜇]𝜆𝜎

=
𝜖
𝜇]𝜆𝜎

√−𝑔
, 𝜖
0123

= 1, 𝑔 = det (𝑔
𝜇]) . (16)

The Maxwell tensor, 𝐹
𝜇], is defined as

𝐹
𝜇] = 𝐴],𝜇 − 𝐴𝜇,] = 𝐴];𝜇 − 𝐴𝜇;]. (17)

For a local observer in RN geometry, 𝑢𝜇
0
= (1/√𝑓)𝜉

𝜇

(𝑡)
. The

only two components of𝐹
𝜇] will survive which are𝐹10 = −𝐹01

and 𝐹
13
= −𝐹
31
.

Using the Euler-Lagrange equations for the Lagrangian
defined in (13), one can get easily

̇𝑡 =
E

𝑓 (𝑟)
,

̇𝜙 =
𝐿
𝑧

𝑟2sin2𝜃
− 𝐵.

(18)

Here, 𝐵 ≡ 𝑞B/2𝑚.The normalization condition (𝑢𝜇𝑢
𝜇
= −1)

gives

E
2
= ̇𝑟
2
+ 𝑟
2
𝑓 ̇𝜃
2
− 𝑈eff ,

𝑈eff = 𝑓[1 + 𝑟
2sin2𝜃 (

𝐿
𝑧

𝑟2sin2𝜃
− 𝐵)

2

] .

(19)

Equation of motion of a charged particle moving in an
external electromagnetic field 𝐹

𝜇] satisfies

𝑥̈
𝜇
+ Γ
𝜇

]𝜎𝑥̇
]
𝑥̇
𝜎
=
𝑞

𝑚
𝐹
𝜇

𝛼
𝑥̇
𝛼
. (20)

Using (20) for the metric defined in (1), we get the dynamical
equations for 𝜃 and 𝑟 given as

̈𝜃 =
−2

𝑟
̇𝑟 ̇𝜃 +

𝐿
2

𝑧
cos 𝜃

𝑟4sin3𝜃
− 𝐵
2 sin 𝜃 cos 𝜃,

̈𝑟 = ̇𝜃
2
(

2𝑟
2
− 3𝑟𝑟
𝑔
+ 4𝑄
2

2𝑟
) −

𝑟
𝑔

2𝑟2
+
𝑄
2

𝑟3

+
𝐿
2

𝑧

2𝑟2sin2𝜃
(

2𝑟
2
− 3𝑟𝑟
𝑔
+ 4𝑄
2

𝑟3
)

− 𝐵
2sin2𝜃(

2𝑟
2
− 𝑟𝑟
𝑔

2𝑟
) + 𝐵𝐿

𝑧
(

𝑟𝑟
𝑔
− 2𝑄
2

𝑟3
)

+
𝑞
2E

2𝑚2
(

𝑟𝑟
𝑔
− 2𝑄
2

𝑟3
) .

(21)

Here, 𝑟
𝑔
= 2𝑀.
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4. Dynamical Equations in
Dimensionless Form

For the sake of convenience, we can rewrite the dynamical
equations of 𝑟 and 𝜃 in dimensionless form by introducing
the following dimensionless quantities [23]:

𝜎 =
𝜏

𝑟
𝑔

,

𝜌 =
𝑟

𝑟
𝑔

,

ℓ =
𝐿
𝑧

𝑟
𝑔

,

𝑏 = 𝐵𝑟
𝑔
,

𝑞 =
𝑄

𝑟
𝑔

,

𝑞
󸀠
=
𝑞

𝑟
𝑔

,

𝑚
󸀠
=
𝑚

𝑟
𝑔

.

(22)

Here, 𝑟
𝑔
= 2𝑀. Using the quantities defined in (22), (18), and

(21), take the following forms:

𝑑𝜙

𝑑𝜎
=

(ℓ − 𝑏𝜌
2sin2𝜃)

𝜌2sin2𝜃
, (23)

𝑑
2
𝜃

𝑑𝜎2
=
−2

𝜌

𝑑𝜌

𝑑𝜎

𝑑𝜃

𝑑𝜎
+
ℓ
2 cos 𝜃
𝜌4sin3𝜃

− 𝑏
2 sin 𝜃 cos 𝜃, (24)

𝑑
2
𝜌

𝑑𝜎2
=

1

2𝑚󸀠2𝜌5
(E𝜌
2
𝑞
󸀠2
(−2𝑞
2
+ 𝜌)) +

1

2𝜌5
(2𝑞
2
𝜌
2

− 4𝑏ℓ𝑞
2
𝜌
2
− 𝜌
3
+ 2𝑏ℓ𝜌

3
+
4ℓ
2
𝑞
2
− 3ℓ
2
+ 𝜌2ℓ

2
𝜌

sin 𝜃

+ 𝑏
2
(1 − 2𝜌) 𝜌

5sin2𝜃

+ (
𝑑𝜃

𝑑𝜎
)

2

𝜌
4
(4𝑞
2
+ 𝜌 (−3 + 2𝜌))) .

(25)

For extremal black hole case, it becomes

𝑑
2
𝜌

𝑑𝜎2

(𝑒)

=
−1

4𝜌5
[(−1 + 2𝜌)(𝜌

2
− 2𝑏ℓ𝜌

2
+
2ℓ
2
− 2ℓ
2
𝜌

sin 𝜃

+ 2𝑏
2
𝜌
5sin2𝜃 − 2(𝑑𝜃

𝑑𝜎
)

2

(−1 + 𝜌) 𝜌
4
)]

+
E𝜌2𝑞󸀠2

4𝜌5𝑚󸀠2
(−1 + 2𝜌) .

(26)

For the particle moving in equatorial plane, (25) and (26)
become

𝑑
2
𝜌

𝑑𝜎2
=

1

2𝑚󸀠2𝜌5
(E𝜌
2
𝑞
󸀠2
(−2𝑞
2
+ 𝜌)) +

1

2𝜌5
(2𝑞
2
𝜌
2

− 4𝑏ℓ𝑞
2
𝜌
2
− 𝜌
3
+ 2𝑏ℓ𝜌

3
+ 4ℓ
2
𝑞
2
− 3ℓ
2
𝜌 + 2ℓ

2
𝜌

+ 𝑏
2
(1 − 2𝜌) 𝜌

5
) ,

(27)

𝑑
2
𝜌

𝑑𝜎2

(𝑒)

=
−1

4𝜌5
[(−1 + 2𝜌)

⋅ (𝜌
2
− 2𝑏ℓ𝜌

2
+ 2ℓ
2
− 2ℓ
2
𝜌 + 2𝑏

2
𝜌
5
)]

+
E𝜌2𝑞󸀠2

4𝜌5𝑚󸀠2
(−1 + 2𝜌) .

(28)

Using the built-in command NDSolve in Mathematica 8.0,
(28) can be solved and the behavior of the obtained interpo-
lating function can be better understood by plotting it against
𝜎. Using (22) for (19), we obtain

E
2
= (

𝑑𝜌

𝑑𝜎
)

2

+ 𝜌
2
(1 +

𝑞
2

𝜌2
−
1

𝜌
)(

𝑑𝜃

𝑑𝜎
)

2

+ 𝑈eff , (29)

and for extreme black hole,

E
2
(𝑒)

= (
𝑑𝜌

𝑑𝜎
)

2

+ 𝜌
2
(
2𝜌 + 1

2𝜌
)

2

(
𝑑𝜃

𝑑𝜎
)

2

+ 𝑈eff . (30)

The effective potential given in (19) becomes

𝑈eff = (1 +
𝑞
2

𝜌2
−
1

𝜌
)[

[

1 +

(ℓ − 𝑏𝜌
2sin2𝜃)

2

𝜌2sin2𝜃
]

]

, (31)

and for extreme black hole it becomes

𝑈
(𝑒)

eff = (
2𝜌 − 1

2𝜌
)

2

[

[

1 +

(ℓ − 𝑏𝜌
2sin2𝜃)

2

𝜌2sin2𝜃
]

]

. (32)

For the particle moving around RN-BH in the equatorial
plane, 𝜃 = 𝜋/2, at radius 𝜌

𝑜
, (30)–(32) become

E
2

𝑜
= (

𝑑𝜌
𝑜

𝑑𝜎
)

2

+ 𝑈eff , (33)

𝑈eff = (1 +
𝑞
2

𝜌2
𝑜

−
1

𝜌
𝑜

)[

[

1 +

(ℓ − 𝑏𝜌
2

𝑜
)
2

𝜌2
𝑜

]

]

. (34)

For extreme black hole,

𝑈
(𝑒)

eff = (
2𝜌
𝑜
− 1

2𝜌
𝑜

)

2

[

[

1 +

(ℓ − 𝑏𝜌
2

𝑜
)
2

𝜌2
𝑜

]

]

. (35)

Again, considering the ideal scenario of collision which
does not change the azimuthal angular momentum of
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the particle except its energy, that is, E
𝑜
→ E, defined

as

E = [E
𝑜
+ (1 +

𝑞
2

𝜌2
𝑜

−
1

𝜌
𝑜

) V2esc]
1/2

, (36)

for extremal black hole,

E
(𝑒)
= [E
𝑜
+ (

2𝜌
𝑜
− 1

2𝜌
𝑜

)

2

V2esc]
1/2

, (37)

whereE
𝑜
is the energy defined in (33). As alreadymentioned,

when 𝜌 → ∞ the energy E → 1. So for the unbound
motion the energy of the particle should be E ≥ 1. Solving
(36) at E = 1, for escape velocity of the particle, we get the
following expression:

Vesc =
√
1 − (1 + (ℓ/𝜌

2

𝑜
− 𝑏)
2

)

2

(1 + 𝑞
2
/𝜌
2

𝑜
− 1/𝜌
𝑜
)
2

1 + 𝑞2/𝜌2
𝑜
− 1/𝜌
𝑜

,
(38)

and for extremal RN-BH

V2
(𝑒)

esc =
−ℓ
2
(1 − 2𝜌

𝑜
)
2

+ 2𝑏ℓ (1 − 2𝜌
𝑜
)
2

𝜌
2

𝑜
− 𝜌
2

𝑜
(1 + 𝜌

𝑜
(−4 + 𝑏

2
(1 − 2𝜌

𝑜
)
2

𝜌
𝑜
))

(1 − 2𝜌
𝑜
)
2

𝜌2
𝑜

. (39)

For simplicity, we are considering the particle to be initially in
ISCO; further, we discuss the behavior of the particle when it
escapes to asymptotic infinity. The only parameters required
for describing the motion of the particle are the parameters ℓ

and 𝑏 defined in terms of 𝜌
𝑜
and the energy of the particle.The

expression for the parameters ℓ and 𝑏 in terms of 𝜌 could be
obtained by dealingwith (35).Thefirst and second derivatives
of the effective potential defined in (35) are

𝑑

𝑑𝜌
𝑈eff =

(−1 + 2𝜌
𝑜
) (−2ℓ

2
(−1 + 𝜌

𝑜
) + 𝜌
2

𝑜
− 2𝑏ℓ𝜌

2

𝑜
+ 2𝑏
2
𝜌
5

𝑜
)

2𝜌5
𝑜

,

𝑑
2
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2

𝑜
(−3 + 4𝜌

𝑜
) + 2ℓ

2
(5 + 6 (−2 + 𝜌

𝑜
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𝑜
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2

𝑜
(3 − 4𝜌

𝑜
+ 4𝑏
2
𝜌
4

𝑜
)

2𝜌6
𝑜

.

(40)

The values of ℓ and 𝑏 can be found by solving simultaneously
(𝑑/𝑑𝑟)𝑈eff = 0 and (𝑑2/𝑑𝑟2)𝑈eff = 0, as given in the
following:

ℓ = ±

√−3𝜌5
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𝑜
)
3
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,
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2
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(41)

In Section 7, the parameters ℓ and 𝑏 are plotted against 𝜌.

5. Effect of Magnetic Field on
Motion of Particles

Consider the neutral particle moving around RN-BH. Writ-
ing the equations associated with the constants of motion, in
dimensionless form, we have

𝑑𝜌

𝑑𝜎
= ±

√𝜌4E2 − (𝜌2 − 𝜌 + 𝑞2) (𝜌2 + ℓ2)

𝜌2
,

(42)

where positive sign is for the particle going away from the
black hole and negative sign is for the path of an ingoing
particle; also

𝑑𝜙

𝑑𝜎
=
ℓ

𝜌2
. (43)
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Using (42) and (43) together, we have

𝑑𝜙

𝑑𝜌
=

ℓ

√𝜌4E2 − ((𝜌2 − 𝜌 + 𝑞2) (𝜌2 + ℓ2))
. (44)

For extremal black hole, it becomes

𝑑𝜙

𝑑𝜌
=

2ℓ

√4𝜌4E2 − ((2𝜌 − 1)
2

(𝜌2 + ℓ2))

. (45)

It is observed graphically that a particle having less angu-
lar momentum approaches the black hole more closely as
compared to the one having large angular momentum. This
shows that when a particle does notmove radially, its chances
for approaching the black hole event horizon are very less
(Figure 1). For a charged particle moving around RN-BH in
the presence of magnetic field, we can write

𝑑𝜌

𝑑𝜎
= ±

√E2𝜌4 − (𝜌2 − 𝜌 + 𝑞2) (𝜌2 + (ℓ − 𝑏𝜌2)
2

)

𝜌2
,

(46)

𝑑𝜙

𝑑𝜎
=

(ℓ − 𝑏𝜌
2
)

𝜌2
. (47)

Using (46) and (47) together, we have

𝑑𝜙

𝑑𝜌
= ±

(ℓ − 𝑏𝜌
2
)

√𝜌4E2 − (𝜌2 − 𝜌 + 𝑞2) (𝜌2 + (ℓ − 𝑏𝜌2)
2

)

. (48)

For extremal black hole,

𝑑𝜙

𝑑𝜌
= ±

2 (ℓ − 𝑏𝜌
2
)

√4𝜌4E2 − (2𝜌 − 1)
2

(𝜌2 + (ℓ − 𝑏𝜌2)
2

)

. (49)

Change in 𝜙 during the motion of particle, around RN-BH,
starting its motion from some finite distance is shown in
Figure 2. It is observed that behavior of angular motion of
particle is linked with the strength of magnetic field.

6. Behavior of Effective Potential

In this section, the behaviors of effective potentials of particle
are studied graphically and the energy required for its escape
to infinity or for boundedmotion is discussed. In Figure 3, we
have plotted the effective potential as a function of 𝜌. There
are two minima 𝑢min and 𝑢1min, in the presence of magnetic
field, while in the absence of magnetic field there is only
one minimum, 𝑢min. Hence, we can say that the presence
of magnetic field increases the possibility of the particle to
move in a stable orbit. A comparison of effective potential of
Schwarzschild black hole with that of RN-BH is established
in Figure 4. It is clear that the maxima for the effective
potential of particle moving around RN-BH have greater
value in comparison with the maxima of effective potential
for Schwarzschild black hole. Since a particle moving around
black hole could be captured if it has energy greater than
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Figure 1: Behavior of angular motion linked with angular momen-
tum of the particle.
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Figure 2: Effect of magnetic field on the charged moving particle,
for E = 1, ℓ = 10.

maxima of its effective potential, it will move back to infinity
or may reside in some stable orbit. Therefore, we can say that
the possibility for a particle to escape from the vicinity of
RN-BH or to stay in some stable orbit is more as compared
to its behavior while moving around Schwarzschild black
hole. In Figure 5, different regions of effective potential which
are linked to escape and bounded motion of the particle are
shown. Here, 𝛼 and 𝛽 are the regions which correspond to
stable orbits for 𝑏 = 0.5. For 𝑏 = 0, there is only one stable
region represented by 𝛾 which is related to stable orbits. Dot-
ted line represents the minimum energy required to escape
from the vicinity of black hole. If the particle has energy
E ≥ 1 and moves toward the black hole, it will bounce back
to infinity which is represented by 𝜅. In Figure 6, we are com-
paring the effective potentials of extremal black hole in the
presence of magnetic field and without magnetic field. One
can notice that, for 𝑏 = 0.5, the effective potential has two
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Figure 4: Effective potentials (34) as a function of 𝜌.

local minima which corresponds to two stable regions while
for 𝑏 = 0 it has only one minimum. We use the notations
𝑈max and 𝑈min for unstable and stable circular orbits of the
particle, respectively. Here,𝑈

1min corresponds to ISCOwhich
coincides with ISCO of the case when 𝑏 = 0 (dotted curve)
and 𝑈

2min correspond to stable circular orbits which occur
due to presence of magnetic field. Therefore, we can say that
magnetic field contributes to increasing the stability of the
orbits. In Figure 7, we have plotted the magnetic field as a
function of 𝜌. One can notice that magnetic field decreases
abruptly as particle moves away from the source (black hole).
We have plotted the angular momentum ℓ as a function of
𝜌 in Figure 8; it is clear that ℓ → ∞ for 𝜌 = 0.5. Angular

b = 0

b = 0.5

3

2

1

0

U
ef

f

𝜌

0.5 1.0 1.5 2.0

Different regions of effective potential

𝜅

𝜀 = 1

𝛾

𝛽
𝛼

Figure 5: 𝛼 and 𝛽 are the regions which correspond to stable orbits
for 𝑏 = 0.5. For 𝑏 = 0, the region 𝛾 corresponds to stable orbits.
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Figure 6: Behavior of effective potentials (34) with and without
magnetic field versus 𝜌.

momentum ℓ
±
for ISCO as a function of magnetic field 𝑏 is

plotted in Figure 8.

7. Trajectories of Escape Velocity

Escape velocity of the charged particle is plotted in Figure 9;
the shaded region corresponds to escape of particle from
ISCO to∞ and −∞, respectively. The solid curve represents
the minimum velocity which is required to escape from
the ISCO. The unshaded region represents that if the value
of velocity lies in this region then particle will remain in
the ISCO or some other stable orbits. In Figure 10, we are
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Figure 7: Magnetic field 𝑏 as a function of 𝜌. One can notice that
magnetic field decreases abruptly away from the black hole.
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Figure 9: Solid curved line represents the minimum velocity
required to escape from the ISCO. We have plotted the escape
velocity (Vesc) for 𝑏 = 0.9 and ℓ = 1.5.

comparing the escape velocity of a particle moving around
the Schwarzschild black hole with the particlemoving around
the RN-BH. It is clear that the difference between the
velocities is large near the black hole and it becomes almost
the same as we move away from the black hole.Therefore, we
can conclude that the effect of the charge of black hole on the
motion of the particle is large and it is reducing as particle
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Figure 10: Escape velocity as function of 𝜌 for both Schwarzschild
black hole and RN-BH.
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Figure 11: Escape velocity (Vesc) against 𝜌 for different values of
angular momentum ℓ, for extremal RN-BH.

moves away from it. The behavior of escape velocity for
extreme RN-BH is shown in Figure 11. The paths followed by
the kicked (escaping) particle, moving initially in the ISCO,
are shown in Figures 12, 13, and 14, which are obtained by
solving (23), (24), and (25) numerically; we have taken initial
radial velocity after collision as zero. We are interested to
know the effect of magnetic field on the motion of charged
particle (the magnitude of deformation produced in oscilla-
tory motion). This effect increases as strength of magnetic
field increases. Escape velocity is plotted in Figure 15 for
different values ofmagnetic field 𝑏. Escape of the particle from
the vicinity of black hole becomes easier in the presence of
stronger magnetic field. As particle goes away from the black
hole, its escape velocity becomes almost constant, just like
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Figure 12: Trajectory of the escaping particle around RN-BH, for
𝑏 = 1.5, ℓ = 1, E = 2, 𝜌[0] = 1.

Figure 13: Trajectory of the escaping particle around RN-BH, for
𝑏 = 1, ℓ = 1, E = 1, 𝜌[0] = 1.2.

the strength of magnetic field. Hence, presence of magnetic
field will provide more energy to particle, so that it might
easily escape from the vicinity of black hole. In Figure 16,
connection of escape velocity with angular momentum is
shown. It is clear that escape velocity of a particle with larger
value of ℓ is greater compared to the particle with smaller
value of ℓ.

8. Summary and Conclusion

Motion of particles in the RN geometry in the presence
of magnetic field is investigated in this paper. To avoid
complications in the analysis, some assumptions are made, as
mentioned in Section 2. We first studied the neutral particle
moving around RN-BH and derived the expressions for the

Figure 14: Trajectory of the escaping particle around RN-BH, for
𝑏 = 0.5, ℓ = 1, E = 1, 𝜌[0] = 0.51.
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Figure 15: Effect of magnetic field 𝑏 on escape velocity (Vesc).

energy and azimuthal angularmomentum of the particle cor-
responding to ISCO. We obtained the expressions for escape
velocity of the particle, after its collision with some other
particles. Then, analysis for a charged particle is done, and
dynamical equations of 𝜃 and 𝑟 are obtained. Effect of angular
momentum and magnetic field on motion of neutral and
charged particles is observed graphically. It is noticed that a
particle with less angular momentumwill approach the black
hole more closely, as compared to the case when angular
momentum is large. We find out the condition on energy of
the particle required to escape or to remain bounded in orbit.
Expressions for escape velocity of a charged particle moving
aroundRN-BH, in the presence ofmagnetic field in the vicin-
ity of black hole, are also obtained. Trajectories of the escaping
charged particle are also shown graphically. It is observed that
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Figure 16: Escape velocity (Vesc) against 𝜌 for different values of
angular momentum ℓ.

a slight change in the initial condition of the colliding particle
affects the escaping behavior. Presence of magnetic field
also disturbs the escaping trajectories. Behavior of effective
potentials is studied in detail and its effect on the stability
of the orbits is explained graphically. More importantly, a
comparison of effective potentials, obtained in the presence
and absence of magnetic field, is established. It is seen that
presence of magnetic field increases the stability of the orbits
of the moving particles; in fact, two stable regions (local
minima) are obtained in contrast to the only stable region
obtained in the case whenmagnetic field is absent. Such anal-
ysis helps us to understand the effect of black hole on its sur-
rounding matter. We intend to extend the similar analysis for
RN-de-Sitter black hole.
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