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As computer and network technologies evolve, the complexity of cybersecurity has dramatically increased. Advanced cyber
threats have led to current approaches to cyber-attack detection becoming ineffective. Many currently used computer systems
and applications have never been deeply tested from a cybersecurity point of view and are an easy target for cyber criminals. The
paradigm of security by design is still more of a wish than a reality, especially in the context of constantly evolving systems. On
the other hand, protection technologies have also improved. Recently, Big Data technologies have given network administrators
a wide spectrum of tools to combat cyber threats. In this paper, we present an innovative system for network traffic analysis and
anomalies detection to utilise these tools. The systems architecture is based on a Big Data processing framework, data mining, and
innovative machine learning techniques. So far, the proposed system implements pattern extraction strategies that leverage batch
processing methods. As a use case we consider the problem of botnet detection by means of data in the form of NetFlows. Results

are promising and show that the proposed system can be a useful tool to improve cybersecurity.

1. Introduction

The cyber ecosystem is constantly changing as new tech-
nology stacks are being created [1]. However, many existing
solutions have vulnerabilities and are frequent targets of
cyber criminals. Signature-based detection techniques are
ineffective when faced with current cyber threats and the
sophistication of precisely crafted malware software that con-
stantly evolves and changes. Of course, protection technolo-
gies have also improved. For example, Big Data, distributed
data mining, and machine learning are increasingly common
candidate technologies to counter cyber attacks and cyber
crime. Nowadays, one of the major cybersecurity challenges
is to counter malicious software [2]. Usually, malware samples
are carefully crafted pieces of computer programs that stay
dormant while performing detailed surveillance of infected
infrastructures and assets. Infected computers commonly
connect via a telecommunication network and form a so-
called botnet that can be easily centrally controlled by cyber-
criminals for different malicious purposes such as DDoS
attacks, SPAM distribution, ransomware, sensitive data thefts,

and extortion attacks. Advancements in machine learning
and data mining techniques in the area of Big Data introduce
new possibilities to fight against the latest malware. In this
paper, we propose a cybersecurity system to counter botnets,
based on the Big Data concept and architecture. The main
contribution of this work is the proposal of an innovative
tool enhancing the cybersecurity of a local area network.
The tool supports the network administrator in network
traffic analysis by providing a distributed framework for
visualisation, data mining, and feature extraction. More-
over, we propose scientific contributions in the form of an
application of a distributed random forest classifier, and an
algorithm for solving the problem of imbalanced data. The
paper is structured as follows. First, we provide an overview
of existing solutions and methods for botnet detection. Next,
we describe the proposed system architecture as well as
pattern extraction and classification methods for NetFlow
analysis. Then, in the section devoted to experiments, we
present the evaluation methodology and obtained results. The
paper is concluded with final remarks and plans for future
work.
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FIGURE 1: Overview of the proposed system for Big Data patterns extraction for cybersecurity.

2. Related Work in Countering
Botnets and Malware

There are two approaches for cyber-attack detection:
signature-based and anomaly-based. The signatures (in the
form of reactive rules) of an attack used by software like Snort
[3] are provided by experts from the cyber community. Typ-
ically, for deterministic attacks, it is easy to develop patterns
that will identify the specific attack. Then, those patterns (in
the form of signatures) are added to the database, and when-
ever they match the examined traffic, the attack is recognised
and the alarm is raised. However, the task of developing
new signatures becomes more complicated when it comes
to polymorphic worms or viruses. Such software commonly
modifies and obfuscates its code (without changing the
internal algorithms) to be less predictive and harder to detect.
In such situations, signatures do not work as an efficient
approach to attack detection. The development of an efficient
and scalable method for malware detection is currently chal-
lenging also due to the general unavailability of raw network
data. This is largely due to the trend of protecting users
privacy for administrative and legal reasons (such as General
Data Protection Regulation in Europe). Unfortunately, these
important regulations create difficulties for research and
development [4, 5]. A common alternative to solve the
above-mentioned problem of the lack of the traffic data is
called NetFlow [6] data, which is often captured by ISPs for
auditing and performance monitoring purposes. NetFlow
samples do not contain sensitive information and therefore
are widely available to the research community. However,
the disadvantage is that such samples do not contain the raw
content of network packets. In the literature, there are differ-
ent approaches focusing on the analysis of NetFlow data. In
[7], the authors focused on host dependency modelling using
NetFlow data analysis and malware detection. However, they
focus only on peer-to-peer communication schemes. On the
other hand, the BClus algorithm proposed in [8] uses a more
generic approach based on behavioral analysis for botnet
detection. In particular, the BClus method uses (similar

to our proposed approach) low-level features to identify
potentially malicious traffic. The algorithm aggregates
NetFlows for specific IP addresses and clusters them
according to statistical characteristics. The properties of the
clusters are described and used for further botnet detection.
However, the EM-based clustering procedure may lead to
a situation where some significant information is missing
or the Gaussian model is not accurate enough (due to the
limited amount of the data in the cluster). The CCDetector
method presented in [9] uses a state-based behavioral model
of the known command and control channels. The author
of this algorithm proposes to use a Markov Chain to model
malware behavior and to detect similar traffic in unknown
real networks. The key difference from both BClus and our
own approach is that, instead of analysing the complete
traffic of an infected computer as a whole, the authors
separate each individual connection from each IP address
and treat them as an independent connection. The results
obtained with this method are very promising. However, one
of the concerns is the complex and time-consuming learning
phase. Another approach is used in the BotHunter [10] tool.
It monitors the two-way communication flows between hosts
within both an internal network and the Internet. BotHunter
employs the Snort intrusion detection system. It models an
infection sequence as a composition of participants and a
loosely ordered sequence of network information exchanges.
However, as shown in [8, 11], the effectiveness of this tool
is unsatisfactory in some setups. In this paper, we propose
another approach based on a Big Data architecture and
distributed machine learning methodologies. The details of
our contribution are given in the next section.

3. Architecture Overview

In Figure 1 the general overview of the system design is
presented. The information flow follows the typical data
processing pipeline used in Big Data processing. Hereby,
we propose to deploy such an approach as a cybersecurity
solution.
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3.1. Apache Spark. The proposed system adapts the Big
Data lambda architecture built on top of the scalable data
processing framework named Apache Spark. It provides an
engine that processes Big Data workloads. There are several
key elements of the architecture that facilitate distributed
computing. These terms will be further used in this paper;
thus here we briefly explain the definitions:

(i) Node (or host) is a machine that belongs to the
computing cluster.

(ii) Driver (an application) is a module that contains the
application code and communicates with the cluster
manager.

(iii) Master node (a cluster manager) is the element
communicating with the driver and responsible for
allocating resources across applications.

(iv) Worker node is a machine that can execute applica-
tion code and holds an executor.

(v) Context (SparkContext) is the main entry for Spark
functionalities, which provides API for data manipu-
lations (e.g., variables broadcasting, data creations).

(vi) Executor is a process on a worker node that runs tasks.

(vii) Task is a unit of work sent to the executor.

Apache Spark uses the data abstraction called Resilient
Distributed Dataset (RDD) to manage the data distributed in
the cluster and to implement fault-tolerance.

3.2. The Analysed Data. The data acquired by the system
have a form of NetFlows. NetFlow is a standardised format
for describing bidirectional communication and contains
information such as IP source and destination address,
destination port, and amount of bytes exchanged.

The collected NetFlows are stored in the HDFS (Hadoop
Distributed File System [12]) for further processing. In the
current version of the proposed system, the data mining and
feature extraction methods work in a batch processing mode.
However, in the future, we plan to allow the system to analyse
the streams of data containing the raw NetFlows directly as
they are received.

It must also be noted that, in this paper, the problem
of realistic testbed construction is not considered. This is
because in order to evaluate the effectiveness of the proposed
algorithms we have used the benchmark CTU-13 [8] dataset,
and we followed the experimental setup of its authors in
order to methodologically compare our results. The dataset
contains different scenarios representing different infections
and malware communication schemes with command and
control centre. More details on the datasets are given in the
following sections.

3.3. Feature Extraction. A single NetFlow usually does not
provide enough evidence to decide if a particular machine is
infected or if a particular request has malicious symptoms.
Therefore, it is quite common [8, 9] that NetFlows are aggre-
gated in so-called time windows, so that more contextual data

can be extracted and malicious behavior recorded (e.g., port
scanning, packet flooding effects).

In such approaches, various statistics are extracted for
each time window. In the current version of the proposed
system, the SparkSQL [13] language is used to extract such
statistics. Following the information pipeline, this step is
related to the “data processing” stage. The result of the SQL
query is data abstraction called DataFrame, which can be
further processed, stored, or converted to any other specific
format that will satisfy the machine learning or pattern
extraction algorithms.

In general, the proposed feature extraction method aggre-
gates the NetFlows within each time window. For each time
window, we group the NetFlows by the IP source address. For
each group (containing NetFlows with the same time window
and IP source address) we calculate the following statistics:

(i) Number of flows
(ii) Sum of transferred bytes
(iii) Average sum of bytes per NetFlow

(iv) Average communication time with each unique IP
addresses

(v) Number of unique destination IP addresses
(vi) Number of unique destination ports

(vii) Most frequently used protocol (e.g., TCP, UDP).

The advantages of such an approach are that it allows
the network administrator to identify possibly infected IP
addresses, and statistics are efficiently calculated with the
Apache Spark SQL queries.

3.4. Multiscale Analysis. When it comes to malware behav-
iors recorded over a time period, it may be noticed that
for different kinds of malware different time-scales may
be observed. For example, some time-intensive malicious
activities can be observed in a short time windows (e.g., spam
sending or scanning) and these usually exhibit significant
volume of data that is of a specific type (e.g., a number of
opened connections, a number of distinct port numbers). On
the other hand, more sophisticated attacks will be stretched
over time and may exhibit relevant information in time
windows of a varying length.

To address the above-mentioned issues, we have adopted
a sort of multiscale analysis. This technique is often used in
the image processing area to recognise an object at different
scales. In this process, the original image is scaled by different
magnification factors and an analysis is conducted for each
of them. Moreover, the features calculated at specific scales
can be used to build a more complex model (e.g., we can first
detect wheels and a frame to help detect a bike). A similar
approach can be used in our case, but instead of scaling the
original signal, we scale the size of the time window where
the feature vectors are calculated.

As it is shown in Figure 2, multidimensional NetFlows
can be seen as a time series. Moreover, as it was described
in the previous section, the NetFlows are grouped by time
windows, and for each time window statistics are calculated.
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FIGURE 2: Overview of the technique used to multiscale NetFlows
time series analysis.

For simplicity, in the presented example we are using two
scales (one and two seconds wide time windows), but this
approach can be easily extended to any number of scale
factors. In the presented example, the final feature vector
is a concatenation of vectors that are calculated for both
of the time windows. From a technical point of view, the
calculations for each of the time windows are happening in
parallel on the Apache Spark cluster.

4. Distributed Machine Learning

4.1. Decision Trees Bagging. Decision trees have often been
used in various machine learning tasks [14]. However, a
common problem of this classifier is its accuracy. It is often
related to the issue of the overfitting, as the structure of the
tree may grow deep. Typically, the decision trees have low bias
but high variance. One of the solutions to overcome this issue
is to use the bagging algorithm, which allows for averaging
multiple decision trees, each trained on different portions of
the data.

In general, training the set of decision trees on the same
data will produce highly correlated (or in many cases identi-
cal) trees. Therefore, the idea behind the bagging algorithm is
to achieve an ensemble [15, 16] of decorrelated trees.

Let L represent the learning dataset, which is a col-
lection of N pairs of input vectors and label values
(x5 ¥:)s s (X505 ¥,), where x; € X and y; € Y.
Following the bagging Algorithm 1, the learning dataset L is
sampled (with replacement) B times. For each data sample,
the decision tree is trained producing a classifier D, : X — Y.
As we have B classifiers, the average is computed using the
following formula:

B
D)= £ YD, (). <1)
b=1
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Input:
A training set {X, Y} = {x;, y;}Y,
Output:
An ensemble of Decision Trees D : X — Y
Training phase:
Forb=1,...,B:
(1) Sample B training samples from X and Y
(2) Train the Decision Tree D,, on the sampled data

AvrGoriTHM I: Decision trees bagging.

4.2. Classical Random Forest Classifier. The random forest
(RF) classifier adapts a modification of the bagging algorithm.
The difference is in the process of growing the trees. The
classical implementation of the RF classifier works according
to the following procedure.

The final prediction obtained from the B trained trees is
calculated using the average in (1) or majority vote repre-
sented by (2), where I stands for indicator function and D,
indicates the b-th random tree in the ensemble.

B
D(x) = argmax » I (D, =1). (2)
" bm1

4.3. Distributed Random Forest Classifier. The implementa-
tion of the random forest classifier in the MLlib Apache Spark
library, in general, follows the classical algorithm presented
in the previous section. However, it heavily leverages the
distributed computing environment.

In principle, the algorithm works in so-called batch mode,
meaning that a large portion of the data needs to be available
to begin learning the classifier. This is one of the drawbacks of
the current implementation (v2.1.0), as nowadays significant
value is put into the availability to perform online and stream
classification. In fact, this is our plan for the further work.

In general, the dataset provided to Apache Spark is
arranged into rows of training instances (feature vectors
with labels) and distributed across a number of nodes and
partitions. The training algorithm can benefit from the
distributed environment, since the learning process for each
decision tree can be performed in parallel.

When the random forest is trained in the Apache Spark
environment, the algorithm samples the learning data and
assigns it to the decision tree, which is trained on that
portion of the data. To optimise the memory and space
usage, the instances are not replicated explicitly but instead
augmented with additional data that hold the probability that
the given instance belongs to the specific data partition used
for training.

The workload is distributed among a master node and
workers. The main loop manages a queue of nodes and runs
iteratively. In each iteration the algorithm searches for the
best split for a node. In this procedure, the statistics are
collected by a worker node.
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Input:

Output:

trees.

is no data to split.

N training samples of the form {(x;, y,), ..., (x5, ¥a)}
such that x; € R™ is the feature vector and y; is its label

Random Forest Classifier D : X — Y
The N training samples (each with M input variables) are
sampled with replacement to produce B partitions.
(1) Each of the B partitions is used to train one of the

(2) In the process of splitting, m out of the M variables
are selected randomly.

(3) One variable out of m is selected according to the
impurity measure (e.g. Gini index or entropy [21]).

(4) The procedure is terminated either when the
maximal depth of a tree is achieved or when there

ALGoORITHM 2: Random forest training.

The feature used for splitting is chosen among the
sampled list using the impurity criterion:

C
Zﬂhﬂ, (3)

where C is the number of unique labels and f; is the frequency
of label i. The algorithm terminates when the maximum
height of the decision tree is reached, or whenever there is
no data point that is misclassified.

Another option for this classification task is the entropy
measure:

C
me@) (4)

The final output produced by the ensemble is the majority
vote of the results produced by all decision trees.

Another drawback of the current version of the Apache
Spark random forest classifier is that it does not handle cost-
sensitive learning (e.g., assigning higher importance to data
samples indicating an anomaly or cyber attack). As a result,
it may be biased towards the majority class. Finding the right
balance between detection effectiveness and the number false
alarms is important from the perspective of anomaly detec-
tion or intrusion detection systems. In principle, such systems
should have high recognition ratio but should not overwhelm
the administrator with a large number of false alarms.
Therefore, our proposals to handle this issue and improve the
detection effectiveness are presented in the next section.

4.4. Data Imbalance Problem and Cost-Sensitive Learning.
The problem of data imbalance has recently been deeply
studied [17-19] in the areas of machine learning and data
mining. In many cases, this problem negatively impacts the
machine learning algorithms and deteriorates the effective-
ness of the classifier. Typically, classifiers in such cases will
achieve higher predictive accuracy for the majority class, but
poorer predictive accuracy for the minority class.

This phenomenon is caused by the fact that the classifier
will tend to bias towards the majority class. Therefore, the
challenge here is to retain the classification effectiveness even
if the proportion of class labels is not equal. The imbalance
of labels in our case is significant, as we may expect that in
common cases of cybersecurity incidents only a few machines
in the network will be infected and produce malicious traffic,
while the majority will behave normally. In other words, most
data contains clean traffic, while only a few data samples
indicate malware.

The solutions for solving such a problem can be cate-
gorised as data-related and algorithm-related. The methods
belonging to the data-related category use data oversampling
and undersampling techniques, while the algorithm-related
ones introduce a modification to training procedures. This
group can be further classified into categories using cost-
sensitive classification (e.g., assigning a higher cost to major-
ity class) or methods that use different performance metrics
(e.g., Kappa metric).

Cost-sensitive learning is an effective solution for class-
imbalance in large-scale settings. The procedure can be
expressed with the following optimisation formula:

min LA+ LS Wie? ©)
B 2 2i=1 ill%ill >

where f indicates classifier parameters, e; the error in clas-
sifier response for i-th (out of N) data samples, and W, the
importance of the i-th data sample. In cost-sensitive learning,
the idea is to give a higher importance to the minority class,
so that the bias towards the majority class is reduced.

In general, our approach to cost-sensitive random forest
classifier can be categorised as data-related. In our case,
we have heavily imbalanced data. In some scenarios, we
have more than 2.8M normal samples while having only
40k of samples related to malware activities. Therefore,
we have adopted the undersampling technique within the
process of learning the distributed random forest. As it is
shown in Algorithm 2, the training procedure already adapts



the sampling technique. The Apache Spark implementation
adapts Poisson sampling in order to produce subportions of
the data for training the random tree. In our case, before
introducing the data to the classifier, we undersample the
majority class with an experimentally chosen probability.

5. Experiments

5.1. Evaluation Methodology. To prove the effectiveness of
the proposed method, the test methodology exploiting time-
based metrics (defined in [8]) have been used. In order to
keep this paper self-contained, the methodology is briefly
introduced in this section. The authors of the methodology
have created and published a tool called Botnet Detectors
Comparer. It is publicly available for download [20]. We
decided to follow their experiments and compare our results
directly to their work. Their tool analyses the NetFlow
file augmented with prediction labels produced by different
methods and executes the following steps to produce the final
effectiveness results [8]:

(1) NetFlows are separated into comparison time win-
dows (we have used default time windows of 300 s
length).

(2) The ground-truth NetFlow labels are compared to the
predicted labels and the TP (true positive), TN (true
negative), FP (false positive), and FN (false negative)
values are accumulated.

(3) At the end of each comparison time window, the
following performance indicators are calculated: FPR
(false positive rate), TPR (true positive rate), TNR
(true negatives rate), FNR (false negatives rate), preci-
sion, accuracy, error rate, and F-measure for that time
window.

(4) When the whole file with NetFlows is processed the
final error metrics are calculated and produced. As
explained in [8], calculating the TP count at the
NetFlow level does not make practical sense, because
the administrator would be overwhelmed by the high
amount of information (the number of NetFlows
per second is high). Instead, IP-based performance
metrics are used accordingly:

(i) TP: a true positive counter is incremented dur-
ing the comparison time window whenever a
Botnet IP address is detected as Botnet at least
once.

(ii) TN: a true negative counter is incremented
during the comparison time window whenever
a Normal IP address is detected as nonbotnet
during the entire time window.

(iii) FP: a false positive counter is incremented dur-
ing the comparison time window whenever a
Normal IP address is detected as botnet at least
once.

(iv) FN: a false negative counter is incremented
during the comparison time window whenever
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a Botnet IP address is detected as nonbotnet
during the entire time window.

The authors of the tool have also incorporated time
into the above-mentioned metrics to emphasise the fact that
detecting a malicious IP earlier is better than later. The time-
based component is called the correction function (cf) and is
calculated using the following formula:

cf(n)=1+e", (6)

where n indicates a comparison time window and « is
a constant value set to 0.01 (as suggested in [9]). Using
the correction function the error metrics are calculated as
follows:

¢TP (n) = L L) )

BOT
where tTP indicates time-based true positive number, cf
the correction function, and Nygp the number of unique
botnet IP addresses present in the comparison time window.
Similarly, we can define

(BN (1) = FN s cf (n), ®)

BOT
tFP and tTN do not depend on the time and are defined as
follows:

FP
tFP = , )
NORM

where Nyorym indicates the number of unique normal IP
addresses present in the comparison time window. Similarly,
the authors of the evaluation framework define

TN

NNORM

tTN = 10)

Following the previous notations, the authors of [9]
defined the final error metrics as follows.

(i) True positives rate is as follows:
tTP

TPR= ——. 11)
tEN + tTP
(ii) False positives rate is as follows:
FP
FPR= — & (12)
tTN + tFP
(iii) Precision is as follows:
tTP
P=—. (13)
tTP + tFP
(iv) F-measure is as follows:
P« TPR
FM=2%— " (14)
P+ TPR
(v) Accuracy is as follows:
tTP + tTN
ACC = * . (15)
tTP + tTN + tFP + tFN
(vi) Error rate is as follows:
tFP + tFN
ERR * (16)

= TP + {IN + tFP + (EN
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5.2. Evaluation Dataset. For the evaluation, we have used
the CTU-13 dataset [8] and the same experimental setup as
its authors. This dataset includes different scenarios which
represent various types of attacks including several types of
botnets. Each of these scenarios contains collected traffic in
the form of NetFlows. The data was collected to create a
realistic testbed. Each of the scenarios has been recorded in
a separate file as a NetFlow using CSV notation. Each of the
rows in a file has the following attributes (columns):

(i) StartTime: start time of the recorded NetFlow
(ii) Dur: duration
(iii) Proto: IP protocol (e.g., UTP, TCP)
(iv) SrcAddr: source address
(v) Sport: source port
(vi) Dir: direction of the recorded communication
(vii) DstAddr: destination address
(viii) Dport: destination port
(ix) State: protocol state
(x) sTos: source type of service
(xi) dTos: destination type of service

(xii) TotPkts: total number of packets that have been
exchanged between source and destination

(xiii) TotBytes: total bytes exchanged
(xiv) SrcBytes: number of bytes sent by source

(xv) Label: label assigned to this NetFlow (e.g., back-
ground, normal, and botnet).

It must be noted that the “Label” field is an additional
attribute provided by the authors of the dataset. Normally,
the NetFlow will have 14 attributes and the “Label” will be
assigned by the classifier. The dataset consists of 13 scenarios.
In order to obtain comparable results presented in [8],
the evaluation procedure must be preserved. Therefore, the
scenarios available in the CTU-13 dataset have been used in
the same manner as proposed by its author, in which the
system is trained on one set of scenarios and evaluated on
different ones.

6. Results

6.1. Comparison with Other Methods. During the exper-
iments, different configurations of the proposed pattern
extraction methods have been analysed. The extracted feature
vectors have been used to feed the random forest machine
learning algorithms, which were also evaluated for different
configurations. The following notation is used in Table 1 to
describe a different configuration of the proposed method:

RE{N},{W}, {S}, (17)

where N indicates the number of trees used by the random
forest classifier, W indicates the width of disjoint time win-
dows, and S represents the friction of vectors undersampled

Input:

N training samples of the form {(x,, ¥,),..., (xx> Ya)}
such that x; € R™ is a feature vector and y; € L is its
class label.

P ={p,; | i € L} sampling rates of labels L, where p;
indicates the sampling probability of the i-th label

Output:
Random Forest Classifier D : X —» Y
Fort=1,...,T:

(1) Sample {X, Y} using P sampling rates
(2) Train Random Forest Classifier D,
(3) Calculate the effectiveness E, of the D, classifier
on the remaining training data
Return the D, classifier with the highest accuracy, where
t* = argmax,E,

ALGORITHM 3: Cost-sensitive random forest training.

from the majority class (in order to balance the data before
learning).

Table 1 also includes other algorithms that have been
mentioned in the related work section, namely, BClus [8],
CCD [9], and BotHunter [10]. The effectiveness of these
methods (for the CTU-13 dataset) has already been presented
in [8] and [9], respectively. We are able to also compare
our approach with these tools, since we have used the same
experimental setup. In Table 1 we report the performance
metrics defined in the previous section, such as precision,
accuracy, and F-measure.

Table 1 presents results obtained for five scenarios
recorded in the testing dataset containing botnet activities.
Scenario 1 corresponds to an IRC-based botnet that sends
spam. In this scenario, CCD outperforms our proposed
approach in terms of TPR, but it suffers a higher FPR rate.
Moreover, in this scenario the proposed algorithm for cost-
sensitive random forest classifier learning allows us to find
an improved balance between the TP and FP rates. For all
experiments we report the results for the same sampling
ratios P (Algorithm 3).

In Scenario 2, the same IRC-based botnet as Scenario
1 sends spam, but for a shorter timespan. Similarly with
the previous scenario, the cost-sensitive learning allows us
to decrease the number of false positives in contrast to the
original classifier. Moreover, for the same number of false
positives (2%), our approach allowed us to achieve higher
values of TPR.

In Scenario 6, the botnet scans the SMPT mail servers
for several hours and connects to several remote desktop
services. However, it does not send any spam. The proposed
approach performs very well for this type of attack when
compared to the other methods.

In Scenario 8, the botnet contacts different C&C hosts
and receives some encrypted data. All of the methods achieve
a relatively low value of TPR. However, the cost-sensitive
random forest gives a higher detection rate in contrast to
CCD.
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TaBLE 1: Effectiveness of the proposed cost-sensitive distributed random forest classifiers compared to the other benchmark methods reported

by the authors of the benchmark dataset in [8, 9].

Algorithm Scenario 1

TPR FPR Precision Accuracy Error rate F-measure
RF30,1m,0.7 0.81 0.01 0.96 0.95 0.06 0.88
RF30,1m,0.01 0,90 0,14 0,68 0,87 0,13 0,77
CCD 1,00 0,05 0,86 0,96 0,03 0,92
BClus 0,40 0,40 0,50 0,50 0,40 0,48
BH 0,01 0,00 0,80 0,40 0,50 0,02
Algorithm Scenario 2

TPR FPR Precision Accuracy Error rate F-measure
RF30,1m,0.7 1.00 0.02 0.97 0.99 0.01 0.99
RF30,1m,0.01 0.95 0.25 0.73 0.83 0.17 0.82
CCD 0.74 0,02 0,96 0,88 0,11 0,92
BClus 0,30 0,20 0,60 0,50 0,40 0,41
BH 0,02 0,00 0,90 0,30 0,60 0,04
Algorithm . Scenario 6

TPR FPR Precision Accuracy Error rate F-measure
RF30,1m,0.7 1.00 0.00 1.00 1.00 0.00 1.00
RF30,1m,0.01 0.96 0.19 0.74 0.86 0.14 0.83
CCD 0.00 0,00 — 0,64 0,35 0,00
BClus 0,00 0,00 0,40 0,40 0,50 0,04
BH 0,06 0,00 0,98 0,38 0,61 0,11
Algorithm N Scenario 8

TPR FPR Precision Accuracy Error rate F-measure
RF30,1m,0.7 0.20 0.04 0.94 0.81 0.19 0.33
RF30,1m,0.01 0.25 0.13 0.37 0.73 0.27 0.30
CCD 0.00 0,00 — 0,64 0,35 0,00
BClus 0,00 0,04 0,00 0,66 0,33 —
BH 0,00 0,00 0,00 0,42 0,57 —
Algorithm . Scenario 9

TPR FPR Precision Accuracy Error rate F-measure
RF30,1m,0.7 0.92 0.01 0.99 0.95 0.05 0.96
RF30,1m,0.01 0.94 0.09 0.99 0.94 0.06 0.95
CCD 0,38 0,04 0,93 0,59 0,40 0,54
BClus 0,10 0,20 0,40 0,40 0,50 0,25
BH 0,02 0,00 0,90 0,40 0,50 0,03

In Scenario 9, some hosts are infected with the Neris
malware, which actively starts sending spam e-mails. As in
the previous scenarios, our approach also allows us to achieve
higher effectiveness than the other methods.

In summary, the results of our system are good in
comparison to the state of the art. It is worth noting that, even
if TPR is not higher, usually the FPR is lower which satisfies
the requirements of security administrators.

The first aspect that should be commented on here
is the poor performance of BClus and CCD in Scenarios
6 and 8. Upon consulting the original authors regarding
this, it turned out that their results reported in [8, 9] are
achieved for unidirectional NetFlows, while the published
dataset contains only bidirectional NetFlows. This may cause
deterioration of the results. It may also be caused by the fact

that (e.g., in the case of Scenario 6) the malware has used
only a few and quite specific communication channels to
communicate with C&C, which has not been reflected in the
training data. On the other hand, the poor performance of
BClus could also be related to the fact that this method builds
a statistical model that utilises GMM clustering in NetFlow
parameters feature space, and probably the dataset (at least
for some scenarios) cannot be modelled well by a Gaussian
distribution.

It must be noted that high error rates are also reported for
BotHunter. The BotHunter (BH) is a popular tool that uses
a mix of anomaly- and signature-based techniques. As was
noted in [22], the reason for such poor performance could
be (a) the fact that BH is not able to detect machines that
have already been infected before the BH deployment and (b)
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TaBLE 2: Comparison of TP and FP obtained for different time window scaling factors.
Feature Error Scenarios
Vectors Metrics 1 2 6 8 9
Im TPR 0.81 1.00 1.00 0.20 0.92
FPR 0.01 0.02 0.00 0.04 0.01
TPR 0.75 0.90 1.00 0.20 0.82
Im+4m
FPR 0.01 0.07 0.00 0.01 0.01
TPR 0.86 0.92 1.00 0.20 0.94
Im+3m
FPR 0.02 0.05 0.01 0.01 0.01
TPR 0.84 0.95 1.00 0.20 0.92
Im+2m
FPR 0.01 0.07 0.01 0.01 0.01

the fact that the data from the external bots are not directly
observed and are not sufficient for dialog analysis.

The second aspect is the statistical significance of the
results. The reason why we did not include the confidence
levels for the presented results is due to the procedure
proposed by the authors of the CTU benchmark dataset in
[9]. The dataset consists of 13 cybersecurity related scenarios,
which have been divided into two parts: one for training and
one for validation. Therefore, we can train the system on
one part of the data and present the results (generated with
the dedicated software tool) for another part. In a similar
way, other authors present their results in [8, 22]. In such
experimental protocol, it is not relevant to provide confidence
levels.

6.2. Evaluation of Multiscale Feature Extraction Technique.
In this section, we present results for our feature extraction
algorithm, which uses a multiscale analysis technique. In
particular, we have investigated under which circumstances
the concatenation of feature vectors obtained for several
time windows of different lengths can further improve the
performance of our approach.

Results are presented in Table 2. In all experiments, we
trained the proposed cost-sensitive random forest algorithm
using feature vectors created from two time windows. The
first row in the table presents the basic (using only one time
window) algorithm indicated in Table 1 as RF30,1m,0.7. It
can be noted that the proposed multiscale feature extraction
technique improves results in 3 of the 5 analysed scenarios.
Concatenating the feature vectors calculated for 1-minute
time windows with feature vectors calculated for 3-minute
time windows (1m + 3 m) allows us to improve the TPR in
Scenarios 1 and 9 by 5% and 2%, respectively. In both of
these scenarios, the algorithm was able to achieve similar
values of FPR. In the case of Scenario 8, the proposed method
was also able to decrease the FPR. However, we observed a
deterioration of results for Scenario 2.

When concatenating l-minute time windows with 2-
minute time windows, an improvement in results can be
observed; however, it is less significant.

7. Conclusions

In this paper, the results of a proposed malware detection
distributed system based on a Big Data analytics concept and

architecture have been presented. The proposed approach
analyses the malware activity that is captured by means
of NetFlows. This paper presented the architecture of the
proposed system, the implementation details, and an analysis
of promising experimental results. Moreover, we contributed
a method utilising a distributed random forest classifier to
address the problem of data imbalance (typical in cyberse-
curity). Future work is dedicated to further improvements
towards online machine learning concept (e.g., to analyse
online streams).
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