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China is one of the countries vulnerable to adverse climate changes.The potential climate change hotspots in China throughout the
21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of
the Coupled Model Intercomparison Project (CMIP5) atmosphere-ocean general circulation models. Both high (RCP8.5) and low
(RCP4.5) greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation
are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as
persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change
increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature
are two climate variables that greatly contribute to the hotspots calculation in all regions.The contribution of other climate variables
exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event,
especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the
designing of national and cross-national adaptation and mitigation policies.

1. Introduction

Global warming in the late 20th century has been primar-
ily attributed to the anthropogenic greenhouse gas (GHG)
emissions. According to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC),
the average global warming is measured at 0.74∘C (0.56∘C
to 0.92∘C) over the last hundred years (1906 to 2005). The
panel also predicts significant changes in the temperature and
precipitation patterns by the end of the 21st century, which
depends on the underlying GHG emission pathway [1]. The
combined thermal and hydrological changes will increase
the severity and frequency of droughts and floods, which
will significantly affect water supply, agriculture, and human
health [2–8].Therefore, themanifestation of long-term global
warming at regional scales must be identified even in highly

uncertain terms [9–12]. For countries with large territory like
China, it is important to assess local climate change impacts
and to plan national policies response to global warming.
In fact, observational studies reveal different climate trends
in different areas of China [13–18]. Climate change hotspots
that are most responsive to anthropogenic change must be
identified to understand, prevent, and prepare for the impacts
of climate change [19].

The hotspot is the region which is particularly vulner-
able to the current or future climate change impacts and
where the human security may be placed at risk. Identifying
the potential impacts of climate change and showing the
results in a map format can facilitate the communication
and interpretation of such impacts [20]. The mapping of
climate change hotspots has been widely practiced over the
recent years [21–25]. Despite the lack of a standard practice
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for quantitatively exploring these regions, climate change
hotspots can be identified based on projected changes in
temperature and precipitation.The Regional Climate Change
Index (RCCI) of Giorgi is the first to determine climate
change hotspots based on climate model outputs. RCCI is
a comparative index that identifies the hotspot regions that
will reveal the greatest relative changes in these variables
[21]. Baettig et al. introduced the Climate Change Index
(CCI) to measure the strength of future climate changes
relative to the present natural variability [23]. Williams et al.
[24] developed the standard Euclidean distance (SED) to
measure the relative responses of different regions to GHG-
induced global warming. Diffenbaugh et al. identified climate
change hotspots in the United States using the SED and the
squared cord distance dissimilarity coefficient (SCD), with
both approaches yielding similar results [19]. Xu et al. used
the RCCI to investigate the hotspots under 21st century global
warming in East Asia [25]. The implementation of CMIP5
has paved the way for a new generation of global climate
model simulations that can identify climate change hotspots
and yield highly reliable projections [26–28].

The climate change hotspots in China that are identified
based on the CMIP5 ensembles have not been sufficiently
investigated. We focus our analysis on China for several
reasons. First, China encompasses a large continental area
with complex climatic conditions, fragile ecological envi-
ronment, and frequent natural disasters and is one of the
countries most vulnerable to adverse impact of climate
change. Second, China has a massive population and a large
and diverse economy that is at least partly dependent on
climate, including a large fraction of the agricultural area
[29, 30].Third, as the largest developing country in the world,
China plays a significant role in climate change negotiations
because of the largest GHG emitters [31, 32] and because of
the pressure to shoulder more responsibility for everything
from curtailing carbon emissions to developing its economy,
eradicating poverty, and improving people’s livelihood.

This paper quantifies the hotspots in China through SED
analysis. Section 2 describes the climate model data and the
hotspot identificationmethod. Section 3 discusses the results,
and Section 4 presents the main conclusions and discussions.

2. Data and Methodology

2.1. Climate Model Data. CMIP5 multimodel experiments
(obtained from the PCMDI website: http://pcmdi9.llnl.gov/
esgf-web-fe/) are used in this study. 28 models in CMIP5
experiments from international laboratories that span a hor-
izontal resolution of 1 degree to 4 degrees (Table 1) are used
in this study. These models successfully capture the structure
of temperature and precipitation over China [33, 34]. We
quantify the climate change hotspots in the three periods of
the CMIP5 RCP4.5 and RCP8.5 simulations, namely, 2010 to
2039, 2040 to 2069, and 2070 to 2099. These two simulations
diverge dramatically over the 21st century, which can reach
GHG concentrations of ∼650 and >1370 ppm CO

2
-e [35],

respectively, and median global warming of 2.4∘C and 4.9∘C,
respectively, above the preindustrial baseline by 2100 [36].
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Figure 1: The elevation of study area and the five key analysis
regions.

Following Giorgi [21] and Diffenbaugh et al. [19, 37],
the analysis is performed after interpolating the output from
each model to a common 1-degree geographical grid. Five
subregions (Figure 1), namely, Northwest China, Tibetan
Plateau, Northeast China, North China, and South China, are
classified to compare the aggregate climate change of different
climate zones.

2.2. Hotspot Identification. The SED of Williams et al. [24]
and Diffenbaugh and Giorgi [37] is used to quantify the
climate change hotspots in the CMIP5 ensemble. The SED
synthesizes the changes in selected climate indicators to
quantify the total change in amultidimensional climate space
between the present and future periods. The SED has been
widely used in previous studies to identify the potential
climate change hotspots based on a large set of climate
models. Diffenbaugh et al. [19, 37] used an improved version
of SED to identify U.S. and global climate change hotspots.
The total SED between the present and future periods at each
grid point is calculated tomeasure the distance that is traveled
in the multivariate climate space. The total SED is calculated
as follows:

SEDtotal = (∑
V
SEDV)

1/2

.
(1)

We have

SEDV =
(𝑥

𝑓V − 𝑥𝑝V)
2

{max [abs (𝑥
𝑓V − 𝑥𝑝V)]

𝑖𝑗

}

2

, (2)

where 𝑥
𝑓V denotes the value of variable V in the future

period, 𝑥
𝑝V denotes the value of variable V in the reference

(present) period, andmax [abs(𝑥
𝑓V − 𝑥𝑝V)]

𝑖𝑗

, which is used to
normalize the metric, denotes the maximum land-grid-point
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Table 1: Horizontal resolution (longitude × latitude in degree) of the 28 CMIP5 global climate models used.

Model Institution Spatial resolution
1 BCC-CSM1.1 Beijing Climate Center (BCC), China 2.8125 × 2.8125

2 BCC-CSM1.1M Beijing Climate Center (BCC), China 1.125 × 1.125

3 BNU-ESM Beijing Normal University, China 2.8125 × 2.8125

4 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.8125 × 2.8125

5 CMCC-CM Canadian Centre for Climate Modelling and Analysis, Canada 0.75 × 0.75

6 CMCC-CMS Canadian Centre for Climate Modelling and Analysis, Canada 1.875 × 1.875

7 CSIRO-Mk3-6-0 Australian Commonwealth Scientific and Industrial Research
Organization (CSRIO), Australia 1.875 × 1.875

8 CSIRO-ACCESS1-0 CSRIO, Australia 1.875 × 1.2414

9 FIO-ESM The First Institute of Oceanography, China 2.8125 × 2.8125

10 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2

11 GISS-E2-H-CC NASA Goddard Institute for Space Studies 2.5 × 2

12 GISS-E2-R-CC NASA Goddard Institute for Space Studies 2.5 × 2

13 HadGEM2-AO Met Office Hadley Centre, UK 1.875 × 1.2414

14 HadGEM2-ES Met Office Hadley Centre, UK 1.875 × 1.2414

15 INM-CM4 Institute for Numerical Mathematics 2 × 1.5

16 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.75 × 1.875

17 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 2.5 × 1.2587

18 IPSL-CM5B-LR Institut Pierre-Simon Laplace, France 3.75 × 1.875

19 MIROC5
AORI (Atmosphere and Ocean Research Institute), NIES (National
Institute for Environmental Studies), JAMSTEC (Japan Agency for

Marine-Earth Science and Technology), Japan
1.4063 × 1.4063

20 MIROC-ESM AORI, NIES, JAMSTEC, Japan 2.8125 × 2.8125

21 MIROC-ESM-CHEM AORI, NIES, JAMSTEC, Japan 2.8125 × 2.8125

22 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875 × 1.875

23 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875 × 1.875

24 MRI-CGCM3 Max Planck Institute for Meteorology, Germany 1.125 × 1.125

25 NCAR-CCSM4 National Center for Atmospheric Research (NCAR), USA 1.25 × 0.9375

26 NCAR-CESM1-BGC NCAR, USA 1.25 × 0.9375

27 NCAR-CESM1-CAM5 NCAR, USA 1.25 × 0.9375

28 NorESM1-M Norwegian Climate Centre, Norway 2.5 × 1.875

absolute value change in the climate indicator V over all land
grid points 𝑖𝑗 in the future period (2070–2099) under RCP8.5
scenario. An area with a high SEDV score experiences more
significant changes in variable V as compared to other areas
with lower SEDV scores.

Seven indicators are considered in the analysis, namely,
absolute change in mean 2m temperature (𝑇), fractional
change in interannual standard deviation of de-trend 2m
temperature (𝑇var), fractional change in mean precipitation
(𝑃), fractional change in interannual coefficient of de-trend
precipitation variation (𝑃var), frequency of occurrence of
years above the baseline maximum seasonal surface air
temperature (Hot), frequency of occurrence of years above
the baseline maximum seasonal precipitation (Wet), and
frequency of occurrence of years below the baseline mini-
mum seasonal precipitation (Dry). The last three indicators
represent extreme climate conditions that can severely affect

human welfare and the environment. Each climate indica-
tor is treated separately in each of the four seasons (DJF,
MAM, JJA, and SON), which yields 28 climate dimensions.
We calculate these 28 variable changes between the baseline
(1970 to 1999) and future periods (2010 to 2039, 2040 to
2069, and 2070 to 2099) at each 1-degree grid point for the
SED calculation. Temperature variability and precipitation
variability are calculated as follows.

Temperature variability is

Δ𝑇var =
(𝑇SD,future − 𝑇SD,baseline)

𝑇SD,baseline
. (3)
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Figure 2:The relative aggregate climate change calculated using the standard Euclidean distance (SED) between the period from 1970 to 1999
and the RCP4.5 and RCP8.5 periods: 2010–2039, 2040–2069, and 2070–2099.

Precipitation variability is

Δ𝑃var

=

[(𝑃SD,future/𝑃mean,future) − (𝑃SD,baseline/𝑃mean,baseline)]

(𝑃SD,baseline/𝑃mean,baseline)
,

(4)

where SD denotes the standard deviation of the variable and
future and baseline denote the future (2070 to 2099) and the
baseline (1970 to 1999) periods, respectively.

The SED is a comparative index that compares climate
change signals across regions. It provides ametric aggregation
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Figure 3: The change in each variable between the period from 1970 to 1999 and the period from 2070 to 2099.

of positive and negative changes in a number of climate
variables of different scales and units. The regions with the
strongest aggregate climate changes exhibit large relative
changes in several climate indicators. However, the SED
cannot be considered as an absolute indication of the signal
magnitude which means that the small SED values are not
necessarily an indication of a small magnitude of the climate
change signal.

3. Results

Figure 2 shows the hotspot patterns for the three future time
periods of RCP4.5 and RCP8.5.The relative aggregate climate
change that is reflected by SED increases over time and
across different scenarios because of its dependence on GHG
emissions and concentrations.The dominant hotspot pattern
in China, including Tarim Basin and south Tibetan Plateau,
emerges in the early 21st century and exhibits relatively high
aggregate climate change in all three periods of both forcing
pathways. The other areas in China exhibit a relatively small
yet increasing aggregate climate change throughout the 21st
century. The relative aggregate climate change in RCP8.5 is
more significant than that in RCP4.5, except for the average
value in the period from 2010 to 2039, which shows similar
changes because of the similar GHG concentrations in the
two scenarios during this period [35]. The relative aggregate
climate change of the two forcing pathways is fairly robust
across different periods.The pattern of SED hotspots exhibits
low sensitivity to time evolution and total concentration.
Our metric also reveals that the North China Plain exhibits
relatively small aggregate change to global warming.

Figure 3 shows the changes in the mean, variability, and
extremes of seasonal temperature and precipitation between
the period from 1970 to 1999 and the period from 2070 to
2099. The seasonal temperature in most parts of China will
increase more than 3∘C by the end of the 21st century, and the
increase will exceed 4∘C during MAM and JJA. The temper-
ature variability in the south Tibetan Plateau will generally
increase and slightly decrease during MAM and SON. The
mean precipitation will increase in north China, while it will
decrease in South China especially during DJF and SON.The
precipitation variability in China will increase as a whole,
increase significant in Tarim Basin and southwest China in
SON, while decrease in Tibetan Plateau in JJA. The extreme
hot event will significantly increase by the end of the 21st
century, which is expected to covermore than 80%of the year.
These events are hotter than their corresponding maximum
seasonal temperature in the baseline period, especially during
the JJA and SON. The change of extreme dry events is not
obvious, except for the 10% increase in South China during
DJF and SON. The extreme wet event will slightly increase
in most parts of China, and there was an obvious increase
in the Tibetan Plateau. The regions that exhibit the strongest
aggregate climate changes also demonstrate large relative
changes in several climate indicators. For example, in the
period from 2070 to 2099, the Tibetan Plateau will exhibit
relatively large changes in mean temperature during DJF and
MAM, temperature variability andmean precipitation during
DJF and JJA, precipitation variability during DFJ, extreme
hot during MAM, and extreme wet during all seasons. The
Tarim Basin will also exhibit relatively large changes in
mean temperature during JJA; temperature variability in all
seasons; mean precipitation during DJF, MAM, and JJA;
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precipitation variability during SON; extreme hot during
MAM; and extreme wet during DJF and MAM.

For the quantitative evaluation of the contribution from
each variable to the relative aggregate climate change, the
absolute value of change normalized to the maximum abso-
lute value in the period from 2070 to 2099 (Figure 4).
The change and the normalized change of variable share
similar spatial distribution, which facilitates their compar-
ison with other variables in terms of relative aggregate
climate change contribution. Mean temperature and extreme
hot event contributed more to aggregate climate change
especially during JJA and SON than the other variables.
The regions where mean precipitation increases significantly,
like Tarim Basin and south Tibetan Plateau, exhibit a large
contribution to SED and lead to a large extreme wet index.
In contrast, the region precipitation decreases, like in South
China, having a large extreme dry index especially during
SON.

Figure 5 shows the normalized absolute change of each
variable in different subregions. The extreme hot event has
the greatest contribution to the hotspot identification index
(greater than 0.7 and greater than 0.9 during JJA) of all
subregions and with minimal spatial difference. The mean
temperature has the second greatest contribution, especially
during JJA and SON, in Northwest China, Tibetan Plateau,
and Northeast China. The other variables have relatively
small contributions to hotspot identification but with obvious
spatial differences. Northwest China and Tibetan Plateau
are identified as hotspots by other variables, such as mean
precipitation, extreme wet event, and temperature variability.
Northeast China exhibits the most obvious increase in mean
precipitation during DJF. South China exhibits the most
obvious changes in temperature and precipitation variability
and extreme dry event, and North China Plain exhibits
minimum changes as compared to other regions.

4. Conclusions and Discussion

Based on the CMIP5 projection, the seasonal temperature in
most parts of China will increase more than 3∘C, especially
more than 4∘C increase during MAM and JJA by the end of
21st century. The mean precipitation will increase in North
China but will decrease in South China, especially during
DJF and SON.The future increase in temperature and change
in precipitation will also induce extreme climate events that
can significantly affect human welfare and the environment
especially in the countries vulnerable to the adverse impact
of climate change, such as China. Therefore, the changes in
themean and extreme climatesmust be aggregated to identify
the climate change hotspots in China within a special global
warming target [38].

This paper applies SED to analyze the climate change
signal over China from the CMIP5 ensemble. The relative
aggregate climate change index includes several variables,
such as the seasonal mean temperature and precipitation
and their variability, extreme hot event, extreme dry event,
and extreme wet event. SED increases over time and across
different scenarios depending on the GHG emissions and
concentrations. Our statistical metric of multidimensional
climate change identifies Northwest China and Tibetan
Plateau as two regional climate change hotspots in both
the RCP4.5 and RCP8.5 forcing pathways. Our results are
consistent with those from Xu et al. [25]. North China
Plain exhibits a relatively small aggregate change to global
warming, which is inconsistent with the results of Xu et al.
[25]. Xu et al. [25] calculated theRCCI based on four variables
(changes in mean temperature and precipitation as well as
their variability) for two seasons (JJA and DJF). However, the
variables and seasons that they employed in their calculations
were different from those that we used in our analysis.
For example, we project an increase and a decrease in the
mean precipitation in North China during DJF and SON,
respectively, but other studies may yield different projections
by choosing different seasons.
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Each climate variable offers different contributions to the
relative aggregate climate change index. The extreme hot
event and mean temperature are the two largest contribu-
tors to hotspot identification index over all subregions and
with minimal spatial difference, which is consistent with
the findings of Diffenbaugh and Giorgi [37]. In contrast,
Diffenbaugh et al. [19] found that the hotspot pattern in
the USA was shaped by the changes in the interannual
variabilitymore than by the changes in the long-termmean of
the contributing variables. Such inconsistency is partly
attributed to the differences in the variables, study area,
and different methodologies of these studies. Given that
we consider both the mean and extreme climate variables
in our SED, we are able to evaluate the importance of
extreme climate events in the identification of climate change
hotspots.

The SED combines information from different indicators
without weighting the importance of each indicator on the
local climate change impacts. The adoption of different
climate model data, subregion division, multidecadal scales,
hotspots identification method, and variables may generate
different measures of change. In addition, non-hotspot areas
must not be considered as immune to climate change because
such phenomenon can still exert a substantial impact on
these areas. South China is identified as a climate change
hotspot based on the change of extreme dry event during
SON and DJF. However, this region has not been identified
as a climate change hotspot based on the aggregate climate
change index SED. The extreme drought events have been
observed in South China [39–41] and are expected to become
more frequent by the end of the century.

The SED is limited to represent the bidirectional change
of the hotspots, and thus a strong increase in precipitation,
which can be regarded as positive in some regions, may
be perceived equally problematic as a strong decrease in
precipitation. But it is still useful to identify the regions that
are responsive and possibly vulnerable to climate change.
Our hotspot analysis may significantly contribute to climate
impact assessment, detection, and attribution as well as to
the designing of national and cross-national adaptation and
mitigation policies.
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