WEAKLY COMPATIBLE MAPS IN 2-NON-ARCHIMEDEAN MENGER PM-SPACES

RENU CHUGH and SANJAY KUMAR

Received 19 March 2001

Abstract

The aim of this paper is to introduce the concept of weakly compatible maps in 2-nonArchimedean Menger probabilistic metric (PM) spaces and to prove a theorem for these mappings without appeal to continuity. We also provide an application.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction. In 1999, Chugh and Sumitra [2] introduced the concept of 2-N.A. Menger PM-space as follows.

DEFINITION 1.1. Let X be any nonempty set and L the set of all left continuous distribution functions. An ordered pair (X, F) is said to be a 2-non-Archimedean probabilistic metric space (briefly 2-N.A. PM-space) if F is a mapping from $X \times X \times X$ into L satisfying the following conditions (where the value of F at $x, y, z \in X \times X \times X$ is represented by $F_{x, y, z}$ or $F(x, y, z)$ for all $\left.x, y, z \in X\right)$:
(i) $F_{x, y, z}(t)=1$ for all $t>0$ if and only if at least two of the three points are equal,
(ii) $F_{x, y, z}=F_{x, z, y}=F_{z, y, x}$,
(iii) $F_{x, y, z}(0)=0$,
(iv) if $F_{x, y, s}\left(t_{1}\right)=F_{x, s, z}\left(t_{2}\right)=F_{s, y, z}\left(t_{3}\right)=1$, then $F_{x, y, z}\left(\max \left\{t_{1}, t_{2}, t_{3}\right\}\right)=1$.

DEFINITION 1.2. A t-norm is a function $\Delta:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1]$ which is associative, commutative, nondecreasing in each coordinate and $\Delta(a, 1,1)=a$ for every $a \in[0,1]$.

DEFINITION 1.3. A 2-N.A. Menger PM-space is an order triplet (X, F, Δ) where Δ is a t-norm and (X, F) is $2-\mathrm{N} . \mathrm{A}$. PM-space satisfying the following condition:
(v) $F_{x, y, z}\left(\max \left\{t_{1}, t_{2}, t_{3}\right\}\right) \geq \Delta\left(F_{x, y, s}\left(t_{1}\right), F_{x, s, z}\left(t_{2}\right), F_{s, y, z}\left(t_{3}\right)\right)$ for all $x, y, z, s \in X$ and $t_{1}, t_{2}, t_{3} \geq 0$.

DEFINITION 1.4. Let (X, F, Δ) be a 2 -N.A. Menger PM-space and Δ a continuous t-norm, then (X, F, Δ) is a Hausdorff in the topology induced by the family of neighbourhoods of x

$$
\begin{equation*}
\left\{U_{x}\left(\epsilon, \lambda, a_{1}, a_{2}, \ldots, a_{n}\right), x, a_{i} \in X, \epsilon>0, i=1,2, \ldots, n, n \in \mathbb{Z}^{+}\right\} \tag{1.1}
\end{equation*}
$$

where \mathbb{Z}^{+}is the set of all positive integers and

$$
\begin{align*}
U_{x}\left(\epsilon, \lambda, a_{1}, a_{2}, \ldots, a_{n}\right) & =\left\{y \in X ; F_{x, y, a_{i}}(\epsilon)>1-\lambda, 1 \leq i \leq n\right\} \\
& =\bigcap_{i=1}^{n}\left\{y \in X ; F_{x, y, a_{i}}(\epsilon)>1-\lambda, 1 \leq i \leq n\right\} \tag{1.2}
\end{align*}
$$

Definition 1.5. A 2-N.A. Menger PM-space (X, F, Δ) is said to be of type $(C)_{g}$ if there exists a $g \in \Omega$ such that

$$
\begin{equation*}
g\left(F_{x, y, z}(t)\right) \leq g\left(F_{x, y, a}(t)\right)+g\left(F_{x, a, z}(t)\right)+g\left(F_{a, y, z}(t)\right) \tag{1.3}
\end{equation*}
$$

for all $x, y, z, a \in X$ and $t \geq 0$, where $\Omega=\{g ; g:[0,1] \rightarrow[0, \infty)\}$ is continuous, strictly decreasing, $g(1)=0$ and $g(0)<\infty$.

Definition 1.6. A 2-N.A. Menger PM-space (X, F, Δ) is said to be of type $(D)_{g}$ if there exists a $g \in \Omega$ such that

$$
\begin{equation*}
g\left(\Delta\left(t_{1}, t_{2}, t_{3}\right)\right) \leq g\left(t_{1}\right)+g\left(t_{2}\right)+g\left(t_{3}\right) \quad \forall t_{1}, t_{2}, t_{3} \in[0,1] . \tag{1.4}
\end{equation*}
$$

Definition 1.7. Let (X, F, Δ) be a 2-N.A. Menger PM-space where Δ is a continuous t-norm and $A, S: X \rightarrow X$ be mappings. The mappings A and S are said to be weakly compatible if they commute at the coincidence point, that is, the mappings A and S are weakly compatible if and only if $A x=S x$ implies $A S x=S A x$.

Remark 1.8. (1) If 2-N.A. PM-space (X, F, Δ) is of type $(D)_{g}$, then (X, F, Δ) is of type $(C)_{g}$.
(2) If (X, F, Δ) is a 2-N.A. PM-space and $\Delta \geq \Delta_{m}$, where $\Delta_{m}(r, s, t)=\max \{r+s+t-$ $1,0,0\}$, then (X, F, Δ) is of type $(D)_{g}$ for $g \in \Omega$ defined by $g(t)=1-t$.

Throughout this paper, let (X, F, Δ) be a complete 2-N.A. Menger PM-space of type $(D)_{g}$ with a continuous strictly increasing t-norm Δ.
Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying the condition (Φ) :
$(\Phi) \phi$ is upper semi-continuous from right and $\phi(t)<t$ for all $t>0$.
Lemma 1.9 (see [1]). If a function $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfies the condition (Φ), then
(1) for all $t \geq 0, \lim _{n \rightarrow \infty} \phi^{n}(t)=0$ where $\phi^{n}(t)$ is the nth iteration of $\phi(t)$;
(2) if $\left\{t_{n}\right\}$ is a nondecreasing sequence of real numbers and $t_{n+1} \leq \phi\left(t_{n}\right), n=$ $1,2, \ldots$, then $\lim _{n \rightarrow \infty} t_{n}=0$. In particular, if $t \leq \phi(t)$ for all $t \geq 0$, then $t=0$.

Lemma 1.10 (see [1]). Let $\left\{y_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} F_{y_{n}, y_{n+1}, a}(t)=1$ for all $t>0$. If the sequence $\left\{y_{n}\right\}$ is not Cauchy sequence in X, then there exist $\epsilon_{0}>0$, $t_{0}>0$, and two sequences $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$ of positive integers such that
(i) $m_{i}>n_{i}+1$ and $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$,
(ii) $F_{y_{m_{i}}, y_{n_{i}}, a}\left(t_{0}\right)<1-\epsilon_{0}$ and $F_{y_{m_{i}}-1, y_{n_{i}}, a}\left(t_{0}\right)>1-\epsilon_{0}, i=1,2, \ldots$.

Chugh and Sumitra [2] proved the following theorem.
Theorem 1.11. Let $A, B, S, T: X \rightarrow X$ be mappings satisfying the following conditions:
(i) $A(X) \subset T(X)$ and $B(X) \subset S(X)$;
(ii) the pairs A, S and B, T are weak compatible of type (A);
(iii) S and T are continuous;
(iv) for all $a \in X$ and $t>0$,

$$
\begin{align*}
g\left(F_{A x, B y, a}(t)\right) \leq \phi(\max \{ & g\left(F_{S x, T y, a}(t)\right), g\left(F_{S x, A x, a}(t)\right), g\left(F_{T y, B y, a}(t)\right), \tag{1.5}\\
& \left.\left.\frac{1}{2}\left(g\left(F_{S x, B y, a}(t)\right)+g\left(F_{T y, A x, a}(t)\right)\right)\right\}\right),
\end{align*}
$$

where a function $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfies the condition (Φ).
Then A, B, S, and T have a unique common fixed points in X.
Now we prove the following theorem.
Theorem 1.12. Let $A, B, S, T: X \rightarrow X$ be mappings satisfying

$$
\begin{equation*}
A(X) \subset T(X), \quad B(X) \subset S(X) \tag{1.6}
\end{equation*}
$$

the pairs A, S and B, T are weakly compatible,

$$
\begin{array}{r}
g\left(F_{A x, B y, a}(t)\right) \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S x, T y, a}(t)\right), g\left(F_{S x, A x, a}(t)\right), g\left(F_{T y, B y, a}(t)\right),\right.\right. \tag{1.7}\\
\left.\left.\frac{1}{2}\left(g\left(F_{S x, B y, a}(t)\right)+g\left(F_{T y, A x, a}(t)\right)\right)\right\}\right)
\end{array}
$$

for all $t>0, a \in X$ where a function $\phi:[0, \infty) \rightarrow(0, \infty)$ satisfies the condition (Φ). Then A, B, S, and T have a unique common fixed point in X.

Proof. By (1.6) since $A(X) \subset T(X)$, for any $x_{0} \in X$, there exists a point $x_{1} \in X$ such that $A x_{0}=T x_{1}$. Since $B(X) \subset S(X)$, for this x_{1}, we can choose a point $x_{2} \in X$ such that $B x_{1}=S x_{2}$ and so on, inductively, we can define a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
y_{2 n}=A x_{2 n}=T x_{2 n+1}, \quad y_{2 n+1}=B x_{2 n+1}=S x_{2 n+2}, \quad \text { for } n=0,1,2, \ldots \tag{1.9}
\end{equation*}
$$

First we prove the following lemma.
Lemma 1.13. Let $A, B, S, T: X \rightarrow X$ be mappings satisfying conditions (1.6) and (1.8), then the sequence $\left\{y_{n}\right\}$ defined by (1.9), such that $\lim _{n \rightarrow \infty} \mathcal{G}\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $t>0, a \in X$, is a Cauchy sequence in X.
Proof. Since $g \in \Omega$, it follows that $\lim _{n \rightarrow \infty}\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$ if and only if $\lim _{n \rightarrow \infty} \mathcal{G}\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$. By Lemma 1.10, if $\left\{y_{n}\right\}$ is not a Cauchy sequence in X, there exist $\epsilon_{0}>0, t_{0}>0$, and two sequences $\left\{m_{i}\right\},\left\{n_{i}\right\}$ of positive integers such that
(A) $m_{i}>n_{i}+1$ and $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$,
(B) $g\left(F_{y_{m_{i}}, y_{n_{i}}, a}\left(t_{0}\right)\right)>g\left(1-\epsilon_{0}\right)$ and $g\left(F_{y_{m_{i}}-1, y_{n_{i}}, a}\left(t_{0}\right)\right) \leq g\left(1-\epsilon_{0}\right), i=1,2, \ldots$.

Thus we have

$$
\begin{align*}
& g\left(1-\epsilon_{0}\right)< g\left(F_{y_{m_{i}}, y_{n_{i}}, a}\left(t_{0}\right)\right) \leq g\left(F_{y_{m_{i}}, y_{n_{i}}, y_{m_{i}}-1}\left(t_{0}\right)\right) \\
&+\boldsymbol{g}\left(F_{y_{m_{i}}, y_{m_{i}}-1, a}\left(t_{0}\right)\right)+\boldsymbol{g}\left(F_{y_{m_{i}}-1, y_{n_{i}}, a}\left(t_{0}\right)\right) \tag{1.10}\\
& \leq g\left(F_{y_{m_{i}}, y_{n_{i}}, y_{m_{i}}-1}\left(t_{0}\right)\right)+\boldsymbol{g}\left(F_{y_{m_{i}}, y_{m_{i}}-1, a}\left(t_{0}\right)\right)+\boldsymbol{g}\left(1-\epsilon_{0}\right) .
\end{align*}
$$

Letting $i \rightarrow \infty$ in (1.10), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(F_{y_{m_{i}}, y_{n_{i}}, a}\left(t_{0}\right)\right)=g\left(1-\epsilon_{0}\right) \tag{1.11}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
g\left(1-\epsilon_{0}\right)< & g\left(F_{y_{m_{i}}, y_{n_{i}}, a}\left(t_{0}\right)\right) \leq g\left(F_{y_{m_{i}}, y_{n_{i}}, y_{n_{i}}+1}\left(t_{0}\right)\right) \tag{1.12}\\
& +\boldsymbol{g}\left(F_{y_{m_{i}}, y_{n_{i}}+1, a}\left(t_{0}\right)\right)+\boldsymbol{g}\left(F_{y_{n_{i}}+1, y_{n_{i}}, a}\left(t_{0}\right)\right) .
\end{align*}
$$

Now, consider $g\left(F_{y_{m_{i}}, y_{n_{i}}+1, a}\left(t_{0}\right)\right)$ in (1.12), without loss of generality, assume that both n_{i} and m_{i} are even.

Then by (1.8), we have

$$
\begin{align*}
& g\left(F_{y_{m_{i}}, y_{n_{i}}+1, a}\left(t_{0}\right)\right)= g\left(F_{A x m_{i}, B x n_{i}+1, a}\left(t_{0}\right)\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S x m_{i}, T x n_{i}+1, a}\left(t_{0}\right)\right),\right.\right. \\
& g\left(F_{S x m_{i}, A x m_{i}, a}\left(t_{0}\right)\right), g\left(F_{T x n_{i}+1, B x n_{i}+1, a}\left(t_{0}\right)\right), \\
&\left.\left.\frac{1}{2}\left(g\left(F_{S x m_{i}, B x n_{i}+1, a}\left(t_{0}\right)\right)+g\left(F_{T x n_{i}+1, A x m_{i}+1, a}\left(t_{0}\right)\right)\right)\right\}\right) \\
&=\phi\left(\operatorname { m a x } \left\{g\left(F_{y_{m_{i}},-1, y_{n_{i}}, a}\left(t_{0}\right)\right),\right.\right. \\
& g\left(F_{y_{m_{i}},-1, y_{m_{i}}, a}\left(t_{0}\right)\right), g\left(F_{y_{n_{i}}, y_{n_{i}}+1, a}\left(t_{0}\right)\right), \\
&\left.\left.\frac{1}{2}\left(g\left(F_{y_{m_{i}},-1, y_{n_{i}}+1, a}\left(t_{0}\right)\right)+g\left(F_{y_{n_{i}}, y_{m_{i}}, a}\left(t_{0}\right)\right)\right)\right\}\right) . \tag{1.13}
\end{align*}
$$

By (1.11), (1.12), and (1.13), letting $i \rightarrow \infty$ in (1.13), we have

$$
\begin{equation*}
g\left(1-\epsilon_{0}\right) \leq \phi\left(\max \left\{g\left(1-\epsilon_{0}\right), 0,0, g\left(1-\epsilon_{0}\right)\right\}\right)=\phi\left(g\left(1-\epsilon_{0}\right)\right)<g\left(1-\epsilon_{0}\right) \tag{1.14}
\end{equation*}
$$

which is a contradiction. Therefore, $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Now, we are ready to prove our main theorem.
If we prove $\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$, then by Lemma 1.13, the sequence $\left\{y_{n}\right\}$ defined by (1.9) is a Cauchy sequence in X. First we prove that $\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$. In fact, by (1.8) and (1.9), we have

$$
\begin{align*}
& g\left(F_{y_{2 n}, Y_{2 n+1}, a}(t)\right)= g\left(F_{A x_{2 n}, B x_{2 n+1}, a}(t)\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S x_{2 n}, T x_{2 n+1}, a}(t)\right)\right.\right. \\
& g\left(F_{S x_{2 n}, A x_{2 n}, a}(t)\right), g\left(F_{T x_{2 n+1}, B x_{2 n+1}, a}(t)\right) \\
&\left.\left.\frac{1}{2}\left(g\left(F_{S x_{2 n}, B x_{2 n+1}, a}(t)\right)+g\left(F_{T x_{2 n+1}, A x_{2 n}, a}(t)\right)\right)\right\}\right) \\
&=\phi\left(\operatorname { m a x } \left\{g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right), g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right),\right.\right. \\
&\left.\left.g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right), \frac{1}{2}\left(g\left(F_{y_{2 n-1}, y_{2 n+1}, a}(t)\right)+g(1)\right)\right\}\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right), g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right),\right.\right. \\
&\left.\left.\frac{1}{2}\left(g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right)+g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right)\right)\right\}\right) \tag{1.15}
\end{align*}
$$

If $g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right) \leq g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right)$ for all $t>0$, then by (1.8),

$$
\begin{equation*}
g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right) \leq \phi\left(g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right)\right) \tag{1.16}
\end{equation*}
$$

and thus, by Lemma 1.9, $g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$. Similarly, we have $g\left(F_{y_{2 n+1}, y_{2 n+2}, a}(t)\right)=0$, thus we have $\lim _{n \rightarrow \infty} \mathcal{G}\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$. On the other hand, if $g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right) \geq g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right)$, then by (1.8), we have

$$
\begin{equation*}
g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right) \leq \phi\left(g\left(F_{y_{2 n-1}, y_{2 n}, a}(t)\right)\right) \quad \forall a \in X, t>0 \tag{1.17}
\end{equation*}
$$

Similarly, $g\left(F_{y_{2 n+1}, y_{2 n+2}, a}(t)\right) \leq \phi\left(g\left(F_{y_{2 n}, y_{2 n+1}, a}(t)\right)\right)$ for all $a \in X$ and $t>0$. Thus we have $g\left(F_{y_{n}, y_{n+1}, a}(t)\right) \leq \phi\left(g\left(F_{y_{n-1}, y_{n}, a}(t)\right)\right)$ for all $a \in X$ and $t>0$ and $n=1,2,3, \ldots$, therefore by Lemma 1.9, $\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}, a}(t)\right)=0$ for all $a \in X$ and $t>0$, which implies that $\left\{y_{n}\right\}$ is a Cauchy sequence in X by Lemma 1.13. Since (X, F, Δ) is complete, the sequence $\left\{y_{n}\right\}$ converges to a point $z \in X$ and so the subsequences $\left\{A x_{2 n}\right\}$, $\left\{B x_{2 n+1}\right\},\left\{S x_{2 n}\right\},\left\{T x_{2 n+1}\right\}$ of $\left\{y_{n}\right\}$ also converge to the limit z. Since $B(X) \subset S(X)$, there exists a point $u \in X$ such that $z=S u$.

Now

$$
\begin{equation*}
g\left(F_{A u, z, a}(t)\right) \leq g\left(F_{A u, B x_{2 n+1}, Z}(t)\right)+g\left(F_{B x_{2 n+1}, z, a}(t)\right)+g\left(F_{A u, B x_{2 n+1}, a}(t)\right) . \tag{1.18}
\end{equation*}
$$

From (1.8), we have

$$
\begin{align*}
g\left(F_{A u, B x_{2 n+1}, a}(t)\right) \leq \phi(\max \{ & g\left(F_{S u, T x_{2 n+1}, a}(t)\right), g\left(F_{S u, A u, a}(t)\right), g\left(F_{T x_{2 n+1}, B x_{2 n+1}, a}(t)\right), \\
& \left.\left.\frac{1}{2}\left(g\left(F_{S u, B x_{2 n+1}, a}(t)\right)+g\left(F_{T x_{2 n+1}, A u, a}(t)\right)\right)\right\}\right) . \tag{1.19}
\end{align*}
$$

From (1.18) and (1.19), letting $n \rightarrow \infty$, we have

$$
\begin{align*}
& g\left(F_{A u, z, a}(t)\right) \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S u, z, a}(t)\right), g\left(F_{S u, A u, a}(t)\right), g\left(F_{z, z, a}(t)\right),\right.\right. \\
&\left.\left.\frac{1}{2}\left(g\left(F_{S u, z, a}(t)\right)+g\left(F_{z, A u, a}(t)\right)\right)\right\}\right) \tag{1.20}\\
&=\phi\left(g\left(F_{z, A u, a}(t)\right)\right) \quad \forall a \in X, t>0,
\end{align*}
$$

which means $z=A u=S u$. Since $A(X) \subset T(X)$, there exists a point $v \in X$ such that $z=T v$. Then, again using (1.8), we have

$$
\begin{align*}
g\left(F_{z, B v, a}(t)\right)= & g\left(F_{A u, B v, a}(t)\right) \\
\leq & \phi\left(\operatorname { m a x } \left\{g\left(F_{S u, T v, a}(t)\right), g\left(F_{S u, A u, a}(t)\right), g\left(F_{T v, B v, a}(t)\right),\right.\right. \tag{1.21}\\
& \left.\left.\frac{1}{2}\left(g\left(F_{S u, B v, a}(t)\right)+g\left(F_{T v, A u, a}(t)\right)\right)\right\}\right) \\
= & \phi(g(F z, B v, a(t))), \quad \forall a \in X, t>0,
\end{align*}
$$

which implies that $B v=z=T v$.

Since pairs of maps A and S are weakly compatible, then $A S u=S A u$, that is, $A z=$ $S z$. Now we show that z is a fixed point of A. If $A z \neq z$, then by (1.8),

$$
\begin{align*}
g\left(F_{A z, z, a}(t)\right)= & g\left(F_{A z, B v, a}(t)\right) \\
\leq & \phi\left(\operatorname { m a x } \left\{g\left(F_{S z, T v, a}(t)\right), g\left(F_{S z, A z, a}(t)\right), g\left(F_{T v, B v, a}(t)\right),\right.\right. \tag{1.22}\\
& \left.\left.\frac{1}{2}\left(g\left(F_{S z, B v, a}(t)\right)+g\left(F_{T v, A z, a}(t)\right)\right)\right\}\right) \\
= & \phi\left(\max \left\{g\left(F_{A z, z, a}(t)\right)\right\}\right), \quad \text { implies } A z=z
\end{align*}
$$

Similarly, pairs of maps B and T are weakly compatible, we have $B z=T z$. Therefore,

$$
\begin{align*}
& g\left(F_{A z, z, a}(t)\right)= g\left(F_{A z, B z, a}(t)\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S z, T z, a}(t)\right), g\left(F_{S z, A z, a}(t)\right), g\left(F_{T z, B z, a}(t)\right)\right.\right. \tag{1.23}\\
&\left.\left.\frac{1}{2}\left(g\left(F_{S z, B z, a}(t)\right)+g\left(F_{T z, A z, a}(t)\right)\right)\right\}\right) \\
&= \phi\left(\max \left\{g\left(F_{z, T z, a}(t)\right)\right\}\right)
\end{align*}
$$

Thus we have $B z=T z=z$.
Therefore, $A z=B z=S z=T z$ and z is a common fixed point of A, B, S, and T. The uniqueness follows from (1.8).

2. Application

THEOREM 2.1. Let (X, F, Δ) be a complete 2-N.A. Menger PM-space and A, B, S, and T be the mappings from the product $X \times X$ to X such that

$$
\begin{gather*}
A(X \times\{y\}) \subseteq T(X \times\{y\}), \quad B(X \times\{y\}) \subseteq(X \times\{y\}), \\
g\left(F_{A(T(x, y), y), T(A(x, y), y), a}(t)\right) \leq g\left(F_{A(x, y), T(x, y), a}(t)\right), \tag{2.1}\\
g\left(F_{B(S(x, y), y), S(B(x, y), y), a}(t)\right) \leq g\left(F_{B(x, y), S(x, y), a}(t)\right)
\end{gather*}
$$

for all $a \in X$ and $t>0$ and

$$
\begin{align*}
& g\left(F_{A(x, y), B\left(x^{\prime}, y^{\prime}\right), a}(t)\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S(x, y), T\left(x^{\prime}, y^{\prime}\right), a}(t)\right), g\left(F_{S(x, y), A(x, y), a}(t)\right), g\left(F_{T\left(x^{\prime}, y^{\prime}\right), B\left(x^{\prime}, y^{\prime}\right), a}(t)\right)\right.\right. \tag{2.2}\\
& \\
& \left.\left.\quad \frac{1}{2}\left(g\left(F_{S(x, y), B\left(x^{\prime}, y^{\prime}\right), a}(t)\right)+g\left(F_{T\left(x^{\prime}, y^{\prime}\right), A(x, y), a}(t)\right)\right)\right\}\right)
\end{align*}
$$

for all $a \in X, t>0$, and $x, y, x^{\prime}, y^{\prime}$ in X, then there exists only one point b in X such that

$$
\begin{equation*}
A(b, y)=S(b, y)=B(b, y)=T(b, y) \quad \forall y \text { in } X \tag{2.3}
\end{equation*}
$$

Proof. By (2.2),

$$
\begin{align*}
& g\left(F_{A(x, y), B\left(x^{\prime}, y^{\prime}\right)}(t)\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{S(x, y), T\left(x^{\prime}, y^{\prime}\right), a}(t)\right), g\left(F_{S(x, y), A(x, y), a}(t)\right), g\left(F_{T\left(x^{\prime}, y^{\prime}\right), B\left(x^{\prime}, y^{\prime}\right), a}(t)\right)\right.\right. \tag{2.4}\\
& \left.\left.\quad \frac{1}{2}\left(g\left(F_{S(x, y), B\left(x^{\prime}, y^{\prime}\right), a(t)}\right)+g\left(F_{T\left(x^{\prime}, y^{\prime}\right), A(x, y), a}(t)\right)\right)\right\}\right)
\end{align*}
$$

for all $a \in X$ and $t>0$; therefore by Theorem 1.12, for each y in X, there exists only one $x(y)$ in X such that

$$
\begin{equation*}
A(x(y), y)=S(x(y), y)=B(x(y), y)=T(x(y), y)=x(y) \tag{2.5}
\end{equation*}
$$

for every y, y^{\prime} in X,

$$
\begin{align*}
& g\left(F_{x(y), x\left(y^{\prime}\right), a}(t)\right) \\
& =\quad g\left(F_{A(x(y), y), A\left(x\left(y^{\prime}\right), y^{\prime}\right), a}(t)\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{g\left(F_{A(x, y), A\left(x^{\prime}, y^{\prime}\right), a}(t)\right), g\left(F_{A(x, y), A(x, y), a}(t)\right), g\left(F_{T\left(x^{\prime}, y^{\prime}\right), A\left(x^{\prime}, y^{\prime}\right), a}(t)\right),\right.\right. \tag{2.6}\\
& \left.\left.\quad \frac{1}{2}\left(g\left(F_{A(x, y), A\left(x^{\prime}, y^{\prime}\right), a}(t)\right)+g\left(F_{A\left(x^{\prime}, y^{\prime}\right), A(x, y), a}(t)\right)\right)\right\}\right) \\
& = \\
& =g\left(F_{x(y), x\left(y^{\prime}\right), a}(t)\right) .
\end{align*}
$$

This implies $x(y)=x\left(y^{\prime}\right)$ and hence $x(y)$ is some constant $b \in X$ so that

$$
\begin{equation*}
A(b, y)=b=T(b, y)=S(b, y)=B(b, y) \quad \forall y \text { in } X . \tag{2.7}
\end{equation*}
$$

References

[1] Y. J. Cho, K. S. Ha, and S. S. Chang, Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1997), no. 1, 169-179.
[2] R. Chugh and Sumitra, Common fixed point theorems in 2 non-Archimedean Menger PMspace, Int. J. Math. Math. Sci. 26 (2001), no. 8, 475-483.

Renu Chugh: Department of Mathematics, Maharshi Dayanand University, Rohtak124001, INDIA

Sanjay Kumar: Department of Mathematics, Maharshi Dayanand University, ROHTAK-124001, IndiA

E-mail address: prajapatiji@sify.com

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

