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The performance of twenty GCMs that participated in the Coupled Model Intercomparison Phase 5 (CMIP5) is evaluated at
Sterling, Virginia, by comparing model outputs with radiosonde observational dataset and reanalysis dataset. We evaluated CMIP5
models in their ability to simulate wind climatology, seasonal cycle, interannual variability, and trends at the pressure levels from
850 hPa to 30 hPa. We also addressed the question of the number of years required to detect statistically significant wind trends
using radiosonde wind measurements. Our results show that CMIP5 models and reanalysis successfully reproduced the observed
climatological annual mean zonal wind and wind speed vertical distribution. They also capture the observed seasonal zonal,
meridional, and wind speed vertical distribution with stronger (weaker) wind during the winter (summer) season. However, there
is some disagreement in the magnitude of vertical profiles among CMIP5 models, reanalysis, and radiosonde observation. Overall,
the number of years to obtain statistically significant trend decreases with increasing pressure level except for upper troposphere.
Although the vertical profile of interannual variability of CMIP5 models and reanalysis agree with the radiosonde observation,
the wind trend is not statistically significant. This indicates that detection of trends on local scale is challenging because of small
signal-to-noise ratio problems.

1. Introduction

A number of studies have evaluated the ability of climate
model simulations that participated in Phase Five of Climate
Model Intercomparison Project (CMIP5) to reproduce the
observed features of North American continental and other
regional climate features (e.g., [1-4]). These studies focused
mainly on the surface and tropospheric climate change and
their projections [5]. Specifically, [1, 2] emphasized how
models represent (i) the mean state, variability, and long-
term trends of basic climate variables (e.g., temperature, pre-
cipitation, and sea surface temperature) and (ii) large scale
modes of climate variability (e.g., El Nino and the Southern

Oscillation, Pacific Decadal variability and Atlantic Multi-
decadal variability) and teleconnections with North Amer-
ican climate. Regional climate features analyzed in [, 2]
include, but are not limited to, North American Monsoon, the
US Warming Hole, and Great Plains low level jet or drought.
Opverall, spatial pattern of basic climate is captured by the
CMIP5 models while they have difficulty in reproducing the
observed variability and teleconnections with North America
climate [1, 2]. On the other hand, while some regional climate
features are reproduced by the models, other features are
not, which might be associated with the coarse horizontal
resolution of the models. For example, the midsummer
drought in Central America is reproduced by most models



while half of the models captured the observed intraseasonal
variability in eastern Pacific [2].

Although several studies attempted to quantify the char-
acteristics, variability, and mean state of the tropospheric
jet streams (e.g., [6-8]), there is still inconsistency between
observation and GCM models such as the lack of consensus
in the magnitude of the poleward shift of jet stream and their
future structure from GCMs (e.g., [9, 10]). The large inter-
model difference in poleward shift among GCMs deters us
from having confidence in the GCM:s use for projection [11].

This characterization is important in understanding the
influence of stratospheric dynamics on tropospheric patterns
[12]. The jet streams play an important role in the formation
and development of middle-latitude cyclones and thus are
crucial in the dynamical system of the troposphere [13]. Also,
the characteristic poleward shifts in jet stream [9, 14] are
being considered as potential indicators of climatic change.

Vautard et al. [15] analyzed upper air wind focusing on
the northern hemisphere continental areas. They found that
the upper level winds show different vertical profile of wind
trends in different continental areas (Western Europe, North
America, Central and East Asia, and China), although the
cause of region to region difference in the vertical wind
profile has not been addressed. Equivalently, [16] analyzed the
radiosonde wind observation made from Macquarie Island
(54°S,158°E) and compared these with newer version of Euro-
pean Centre for Medium-Range Weather Forecasts Reanaly-
sis, namely, ERA-Interim reanalysis dataset. They found high
(moderate) correlation between the near surface wind and
upper level wind (Southern hemisphere Annular Mode) from
Macquarie Island (located at 54.62°S, 158.85°E) radiosonde
dataset and ERA-Interim dataset. Southern Annular mode is
large scale climate variability at mid and high latitudes in the
southern hemisphere.

Recently, there has been growing interest in accurately
depicting upper air winds due to their role in estimating
the state and changes in general atmospheric circulation
[15]. However, assessment of upper air wind trends is being
hindered by insufficient studies on systematic trend analysis
of radiosonde winds. Also, the investigations of annual and
seasonal characteristics of wind over the whole atmospheric
column are limited in climate literature. This is crucial since
wind is an important parameter in the characterization of the
dynamics of vertical profile of atmosphere [17].

The objective of this study is therefore to characterize
and understand the vertical distribution of zonal, meridional,
and wind speeds (wind fields) over Sterling, Virginia, Eastern
United State of America. We will focus on the trend and
variability at the tropospheric jet core. We will also calculate
the number of years needed to detect future wind field trends
from radiosonde observation.

This paper is organized as follows; the dataset and study
approach are described in Section 2. Results from radiosonde
and model comparison at Sterling, VA, National Weather
Station, will be given in Section 3. The question of the
number of years required to detect statistically significant
wind trends from radiosonde observation is addressed in
Section 4 followed by summary.
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2. Data and Methods

2.1. Reanalysis and Radiosonde Observation. Three reanalysis
datasets used in this study are NCEP-NCAR [18], NCEP-DOE
[19], and ERA-Interim [20]. Both NCEP-NCAR and NCEP-
DOE (referred to henceforth as NCEP) have a horizontal
resolution of 2.5° x 2.5° with 28 vertical levels while ERA-
Interim reanalysis has a horizontal resolution of 1.5° x 1.5°
with 60 vertical levels. Data from ERA-Interim have been
regridded using a bilinear interpolation method to a horizon-
tal resolution of 2.5° x 2.5° to simplify the intercomparisons.
It is worth noting that the difference between the NCEP and
ERA-Interim reanalysis is not limited to the physical param-
eterizations and resolution of the numerical forecast models
they employ [18-20]. The reanalysis data differ also in the
assimilation techniques they use. While NCEP reanalysis uses
3D variation assimilation technique, ERA-Interim reanalysis
uses 4D variation assimilation technique. Improvements
in these reanalysis products have been achieved through
assimilations of many observation datasets (e.g., satellite
observation since 1979), better assimilation technique, and
better parameterization of many atmospheric processes in the
model. For example, stratospheric circulation is now better
represented by ERA-Interim reanalysis product relative to the
ERA-40 reanalysis dataset [20]. Inclusion of satellite obser-
vation in reanalysis from 1979 shows some improvement
in reanalysis especially over southern hemisphere where
observations were scarce. Therefore, we focused our analysis
from 1979 to 2005, the period for which satellite information
was assimilated in reanalysis.

Monthly mean zonal, meridional, and wind speed data
(wind fields) from Sterling, Virginia, (located at latitude
38°58'36"'N, longitude 77°29'09" east at an elevation of 88.4
meters above mean sea level) which is part of Integrated
Global Archive (IGRA) radiosonde observations [21] are
used to evaluate the reanalysis dataset and CMIP5 model
simulations. The IGRA radiosonde observations contain high
quality controlled upper air wind speed, wind direction,
pressure, dew point depression, and relative humidity dataset
spanning from 1950s to present. Most of the IGRA radiosonde
observations have been assimilated in to reanalysis. There-
fore, reanalysis and radiosonde observation are not inde-
pendent dataset. Comparison of models, reanalysis, and
radiosonde observation will provide assessment of model
error and assimilation procedures used in the reanalysis. An
important concern of radiosonde observation is that these
datasets still suffer from inhomogeneity issues temporally
(e.g., due to changes in instruments and time of observations)
and spatially (e.g., less dense radiosonde observations in
Southern hemisphere, tropics, and oceanic regions). For
example, different radiosondes have been flown at Sterling
station (e.g., VIZ A (1958-1988), VIZ B radiosonde (1988-
1995), Vaisala RS80 radiosonde (1995-2005), and Microsonde
MKIIA GPS equipped radiosonde (1995-present)). Thus,
the trend and variability estimated from IGRA should be
investigated and interpreted with caution [21].

2.2. Climate Model Data. Wind fields data from CMIP5
model simulations used in this study are summarized in
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TaBLE 1: List of CMIP5 models used in this study. Models in bold are those CMIP5 models that have at least five ensemble members for both

historical and future (RCP4.5) simulations.

Atmospheric resolutions
Institute (modeling group), country Models Ensemble P
members Horizontal (lon. x lat.) Vertical levels
Co.l.l.ege of Global Qhange and Earth System Science, BNU-ESM 1 28 %28 2%
Beijing Normal University, China
Canadian Centre for Climate Modelling and Analysis, CanCM4 10 2.8x2.8 35
Canada CanESM2 2.8x2.8 35
National Center for Atmospheric Research, USA CCSM4 1.25 x 0.94 27
Ce‘ntrol E.uro—Medlterraneo per I Cambiamenti CMCC-CMS 1 075 % 0.75 95
Climatici, Italy
Commonwealth Scientific and Industrial Research
Organisation in collaboration with the Queensland CSIRO-MK3.6 10 1.8 x 1.8 18
Climate Change Centre of Excellence, Australia
GFDL-ESM2G 1 2.5x%x2.0 24
. . . GFDL-ESM2M 1 2.5%2.0 24
Geophysical Fluid Dynamics Laboratory, USA GEDL-CM3 ] 25%2.0 48
GFDL-CM2pl 10 2.5x2.0 24
NASA Goddard Institute for Space Studies, USA GISS-E2-H 2:5x2.0 40
GISS-E2-R 2.5x2.0 40
Met Office Hadley Centre, UK HadCM3 10 3.75x 2.5 19
IPSL-CM5A-LR 1 3.75x1.875 39
Institut Pierre-Simon Laplace, France IPSL-CM5A-MR 1 2.5%x1.25 39
IPSL-CM5B-LR 1 3.75x1.875 39
Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research Institute MIROC-ESM 1 2.8%x2.38 80
(The University of Tokyo), and National Institute for MIROC-ESM-CHEM 1 2.8%x28 80
Environmental Studies, Japan
. MPI-ESM-LR 1 1.9 x19 47
Max Planck Institute for Meteorology, Germany MPI-ESM-MR 1 1.875 % 1.875 95

Table 1 and a full description of the CMIP5 models and their
design is given in [22]. Most of the historical CMIP5 model
simulations span from mid-1800s to 2005. Although several
studies have merged the historical CMIP5 model simulations
with future simulations based on Representation Concentra-
tion Pathways (RCP) scenarios to construct a longer monthly
mean dataset (e.g., [23, 24]), we restricted our analysis to
the core period 1979-2005 to avoid introducing mismatch
of the forcing [25]. The historical CMIP5 simulations are
forced by historical time varying atmospheric compositions,
greenhouse gases, volcanoes, aerosols, land cover, and the
solar constant but the ocean model is used instead of time
varying global sea surface temperature (SST) and sea ice
distributions from observations. For RCP4.5 CMIP5 model
simulations, the radiative forcing is assumed to increase and
then stabilizes at about 4.5 W m ™ after year 2100. Moreover,
both historical and RCP4.5 future scenarios climate model
simulations have multiple ensemble members, which differ
only in their initial conditions, while the other forcing used in
the models is held the same. In this study, monthly mean wind
data from subset of CMIP5 models are analyzed. Among
these models, 8 of them have at least five ensemble members
for both historical and RCP4.5 future simulations. For exam-
ple, Figure1 shows Taylor diagram [26] for the simulated

monthly zonal and meridional wind at 200 hPa from CSIRO-
MK3.6.0 as compared with the radiosonde observation.

This model has 10 ensemble members which differ only
on the initial conditions of the atmospheric component.
The radiosonde observation is taken as the reference and
compared with the ten ensemble runs from CSIRO-Mk3.6.0
model in terms of correlation, standard deviation, and root
mean square error, three comparison metrics in a single graph
(Figures 1(a) and 1(b)). First the model skill in simulating
the observed zonal and meridional monthly mean winds is
generally low as indicated by lower correlation pattern and
higher RMS error. In general, the correlation coefficients
between observed and model simulated monthly mean wind
are less than 0.7 for zonal wind while meridional wind has a
correlation coefficient of less than 0.4. This is not surprising
because models are not expected to capture the internal
(unforced) variability such as the correct timing of El Nino
events, the North Atlantic Oscillation, and pacific decadal
oscillation which are caused by the natural variability of the
complex nonlinear climate system [22].

Second, our result shows that change in the initial
condition has impact on zonal and meridional wind speed as
indicated by the spread in the seasonal and annual correlation
coeficient, RMS error, and standard deviation ratio between
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FIGURE I: Taylor diagram is displayed in polar coordinate for pattern comparison between reference and other runs in terms of correlation,
standard deviation (SD), and root mean square error (RMSE) for (a) zonal wind and (b) meridional wind. SD ratio is the standard deviation
of each model run to that of the radiosonde observation taken as a reference. SD ratio is the radial distance from the origin; the RMSE is
the distance to the reference point; the azimuthal position gives the correlation coefficient. The colored symbols represent monthly data used
for each run from 1979 to 2005 (annual, black plus; December, January, and February (DJF), blue diamond; March, April, and May (MAM),
green upward triangle; June, July, and August (JJA), red circle; September, October, and November (SON), magenta downward triangle).
Open (filled) symbols represent positive (negative) correlations between each ensemble member and radiosonde observation (black filled

circle).

observation and each run. The spread among individual
simulations also indicates the uncertainty in the initial con-
dition of CMIP5 models (initial condition problems). These
uncertainties and errors are further analyzed in Section 2.4.

2.3. Method of Analysis: Trend Detection. The method con-
sists of analysis of annual and seasonal zonal, meridional, and
wind speed time series data from historical CMIP5 model
simulations, reanalysis (ERA-Interim, NCEP/NCAR, and
NCEP/DOE) product, and radiosonde observations. Trends
are computed for each model, reanalysis product, and obser-
vations. Trend values are calculated using a linear least square
analysis method. The trend uncertainty computing was based
on standard error, taking into account the autocorrelation of
the time series [27].

Since the CMIP5 simulations used in this study vary
in resolution from 0.75° latitude x 0.75° longitude (Model
CMCC-CMS) to 3.75° latitude x 2.5° longitude (Model
HadCM3) as shown in Table 1, each model is linearly inter-
polated to a common resolution (e.g., 2.5° latitude x 2.5°
longitude horizontal resolution) to simplify the comparison
between models and reanalysis.

Figure 2(a) shows interpolated CMIP5 horizontal reso-
lution, radiosonde burst location at 50 hPa, and topography
map. As shown in Figure 2(b), the radiosondes launches
drift from Sterling station location and are within longitude
ranging from 80°W to 75°W and latitude ranging from 37.5°N
to 40°N. Based on the trajectory of the radiosonde launches,

wind data from two nearby grid boxes from CMIP5 and
reanalysis product are first selected as a climatic represen-
tative of Sterling radiosonde station. Wind data from these
preselected two nearby grid boxes are then averaged and
compared with the Sterling radiosonde observation.

Finally, statistical technique given in (1) [28] has been
utilized to address the question of number of years needed
to determine statistically significant trend at 95% confidence
level with the probability of 0.9. One has

o _[330y 1+ 0y

lw,| \1-®y

where n* is the number of years needed to detect an
expect trend (w,). oy and @y are standard deviation and
autocorrelation of wind speed time series noise, respectively.
For details of this statistical technique, please see [28]. The
method has been applied for a number of atmospheric
variables including temperature, ozone, and water vapor time
series. For example, [29] recently utilized the method to
address the number of years required to detect water vapor
trends in the upper troposphere (200 hPa) at the Southern
Great Plains site in northern Oklahoma. They concluded
that it required at least 12 years of monitoring climate
quality water vapor concentration from perfect observational
data (i.e., observation of water vapor with no measurement
uncertainty). They also recommended that it is essential to
increase the frequency of water vapor measurements than
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FIGURE 2: (a) Reanalysis and CMIP5 interpolated to 2.5° by 2.5” grid cells to compare with the radiosonde stations data (blue star represents the
Sterling, VA, National Weather Station location). (b) Radiosonde burst location at 50 hPa for the Sterling station. The circles in (b) represent
JJA, SON, DJE, and MAM for green, red, blue, and purple, respectively, while yellow square and triangle represent Sterling radiosonde stations

and Beltsville research site, respectively.

reducing the random error in measurements. In this study,
we applied the same method for wind time series (Y)) which
can be represented by the following equation:

t
Y=pu+w,—+S+N, (2)
12
4 . .
. 2mjt 2mjt
5= 3 (a5 22 1ty cos 2,
jzzl a; sin 12 ; COS 12 (3)

where y is the climatology mean, ¢ is the time in months, w,
is the trend magnitude (m s year™"), N is the monthly mean
noise of the time series which is assumed to be autoregressive
with lag of one month (ARI), and S is the seasonal term (3)
which are computed by fitting four harmonic function to the
detrended monthly anomalies wind time series.

2.4. Uncertainty and Errors in Models and Reanalysis. Even
with improvements in the performance of climate models in
reproducing the present and past climate due to a combi-
nation of sophisticated physical parameterization and higher
model resolution [30], there are still some discrepancies (e.g.,
[24, 31]). There has thus been increasing interest in under-
standing, interpreting, and analyzing the probabilistic output
from climate models [32]. This is much so since results from
climate models are increasingly being used in formulation of
climate change adaptation and mitigation policies.

Before we discuss the results from our study, we sum-
marize in this section different sources of uncertainty in
climate models, namely, forcing, initial condition, and model
imperfection (model inadequacy and model uncertainty).
According to [32], there are three main types of uncertainties:
(1) forcing uncertainty refers to future effects, despite being
outside, but can still affect the climate system, (2) initial con-
ditions uncertainty captures uncertainties relating to initial
state or ensemble state and forward integration in time, and

(3) uncertainties derived from the inadequate understanding
of and ability to simulate the Earth’s climate describe the
model imperfections [32].

For reanalysis and observation, [33] noted that even with
extensive enhancement due to inclusion of observational data
and more accurate models, there are still some limitations
and doubts. Other issues that can introduce errors and
uncertainties in reanalysis include hitches in merging het-
erogeneous observations on a regular grid as well as quality
of observational dataset being used [34]. An indication of
flaws in these reanalysis data becomes clear with inconsistent
results which is a pointer that at least one of the products is
faulty (e.g., [4, 35, 36]).

According to [30], uncertainties in reanalysis are smaller
than in model error with the exception of meridional com-
ponents of upper atmospheric quantities. With no suitable
observations available at upper atmosphere, analysis at these
levels relies on reanalysis and model data.

To demonstrate an element of possible initial conditions
(intramodel) and intermodel uncertainties in the models
used in this study, we evaluated 8 models with 5 ensemble
members that differ only in the initial condition of the atmo-
spheric models (i.e., sensitivity of climate model simulations
on initial condition). We first quantified the uncertainty
related to the internal variability by taking the standard devi-
ation of these five ensemble member for each model. Second,
we quantified the intermodel variability by taking the stan-
dard deviation of 8 models after averaging first the ensemble
members in each model. The results are shown in Figure 3.

Result indicates that there is larger intermodel variability
than intramodel variability for zonal, meridional, and wind
speed climatology. While intermodel variability signifies
model response uncertainty (structural uncertainty), the
intramodel variability is related to uncertainty in the initial
conditions. The intermodel variability increases from the sur-
face upwards, reaching maximum at the lower stratosphere
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FIGURE 3: Intramodel and intermodal variability for eight models with at least 5 ensemble members.

for zonal wind and wind speed climatology (Figures 3(a) and
3(c)). On the other hand, the variability for meridional wind
is much smaller with maximum at the upper troposphere
(Figure 3(b)).

Having demonstrated some inherent problems associated
with both the use of model, reanalysis, and observation data
in climate applications and analysis, we caution that users
should thus be aware of these uncertainties. The results based
on first ensemble member for each model will be presented
in next section.

3. Results and Discussion

3.1. Annual Mean Wind Climatology Comparison. Figure 4
shows a vertical profile of the annual mean wind fields
from the CMIP5 models, reanalysis, and radiosonde at
Sterling, Virginia National Weather station. In addition,
both CMIP5 models and reanalysis wind field bias with
respect to radiosonde observation are shown (Figures 4(d),
4(e), and 4(f)). The wind field profiles range from 850 hPa
to 30hPa pressure levels and are annually averaged over
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FIGURE 4: Annual mean climatology (a, b, and ¢) and climatology difference (bias) relative to radiosonde observation (d, e, and f). The period
of study is 1979-2005 from 850 hPa to 30 hPa pressure levels. The radiosonde plus and minus 2 standard deviations around the climatology

mean is displayed as the gray shading in the bias plot (d, e, and f).

the period 1979-2005. The vertical profiles of zonal and wind
speed are very similar (Figures 4(a) and 4(c)) because the
magnitudes of meridional wind are 60-70% smaller than
zonal wind (Figure 4(b)).

Opverall, there are reasonable agreements in the shape of
the vertical profiles of zonal wind and wind speed among
CMIP5, reanalysis, and radiosonde observation, with slight
difference in their magnitude. In the troposphere (850-
250 hPa), CMIP5 models agree reasonably well with each
other and are generally within 1-8 ms™' of the radiosonde

observation, while in stratosphere (150-30 hPa), the spread
among the models and the model bias compared to
radiosonde increased. For example, at 700 hPa, the range of
CMIP5 models differs by ~2.8ms™, and model-to-model
variability is ~0.9ms™" while at 100 hPa, the models differ
by ~llms™" and model-to-model variability is ~3.2ms™".
The increased model-to-model variability is in agreement
with the result of quantified uncertainty in the upper tropo-
sphere and stratosphere discussed in Section 2.4. The models
generally show divergent zonal and wind speed bias that



ranges from ~5ms ' to 5ms~' and majority of the models’
bias lies within the 2-sigma radiosonde uncertainty with the
exception of the five models (GISS-E2-R, GISS-E2-H, IPSL-
CMS5A-LR, IPSL-CM5A-MR, and HadCM3 models), which
overestimated the observed zonal wind by ~5-9ms™" at the
100 hPalevel (Figures 4(d) and 4(f)). Multimodel mean shows
better agreement with radiosonde observation.

For the meridional wind (Figure 4(b)), there are dis-
agreements in the magnitude of the vertical profiles among
individual CMIP5 models, as well as among CMIP5 mod-
els, reanalysis, and radiosonde observation. For example,
only small subsets of models (7 out of 20) show negative
meridional winds at the upper troposphere. On the other
hand, the annual mean climatology of meridional wind from
radiosonde is negative for the entire vertical profile, except
in the upper troposphere. From 850 hPa to midtroposphere,
the magnitude of meridional wind progresses from negative
to positive values for 6 out of 20 models as well as the three
reanalyses and multimodel mean. The meridional wind bias
ranges from —2ms~' to 4ms™" (Figure 4(e)). The majority
of the models’ bias is within the radiosonde uncertainty,
with only 4 out of 20 models overestimating the meridional
wind. Multimodel mean again shows better agreement with
radiosonde observation.

3.2. Seasonal Mean Wind Climatology Comparison. The per-
formances of CMIP5 models in their ability to simulate the
seasonal climatology are also analyzed. First, the seasonal
wind fields of vertical distribution from CMIP5 models,
reanalysis, and radiosonde observation are computed by
averaging three months (i.e., for December through February
(DJF), March through May (MAM), June through August
(JJA), and September through November (SON)). Overall,
there is agreement in shape of the seasonal horizontal wind
and wind speed vertical distribution among CMIP5 models,
reanalysis, and radiosonde observation (not shown). Similar
to the annual mean climatology, they show an increase in
wind fields with height from 850 to ~200hPa and then
wind fields start to decrease with height till 30 hPa. The
CMIP5 models and reanalysis capture the observed seasonal
mean wind vertical distribution with stronger (weaker) wind
during the DJF (JJA) season (not shown). Although CMIP5
models and reanalysis capture the phase of the seasonal cycle,
the amplitude of the seasonal cycle differs among models.
For reanalysis, the maximum difference in the amplitude of
the seasonal cycle is located at ~200 hPa. In general, CMIP5
and reanalysis bias with respect to radiosonde range from
-10ms~' to15ms™" throughout the vertical profile.

To describe the differences in the climatology of the
horizontal wind and wind speed, we will focus on this pres-
sure level (200 hPa). As stated above, CMIP5 and reanalysis
capture the phase of the seasonal cycle with stronger (weaker)
wind during winter (summer) months (Figures 5(a), 5(c),
and 5(e)). This may be associated with stronger (weaker)
temperature gradient during winter (summer) months
according to thermal wind balance equation. However,
difference in the amplitude of the seasonal cycle can be seen
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between radiosonde and both CMIP5 models and reanalysis,
especially for meridional wind.

In addition, while there is variation in the amplitude
of the seasonal cycle among individual CMIP5, there is
reasonable agreement in amplitude of the seasonal cycle wind
fields among the three reanalysis datasets. For zonal wind and
wind speed, CMIP5 model bias ranges from -5 to 10 ms™"
while reanalysis bias ranges from 0 to 5ms™" (Figures 5(b)
and 5(f)). The three reanalyses, however, overestimated the
meridional wind climatology by ~1 m s (Figure 5(d)). Most
CMIP5 models and reanalysis agree well with observations
and lie within one standard deviation of radiosonde observa-
tion (Figures 5(b), 5(d) and 5(f)).

3.3. Interannual Variability. Figure 6 shows the interannual
variability of wind fields from CMIP5 models, reanalysis
products, and radiosonde observations at sterling station
for 1979-2005. The variability is evaluated by computing
the standard deviation from the yearly annual mean winds.
For zonal wind (Figure 6(a)) near the surface (850hPa),
models (16 out of 20) overestimated the observed interannual
variability while at higher altitude especially in the upper
troposphere (200-300 hPa), models (15 out of 20) underes-
timated the observed interannual variability.

While the vertical interannual variability profile (distri-
bution) of meridional wind and wind speed shows similar
profile with zonal wind, the magnitude of maximum interan-
nual variability differs (Figures 6(a), 6(b), and 6(c)). The max-
imum interannual variability is located at ~200 hPa where
radiosonde observations show an interannual variability of
~2.1m-s"' and models show an interannual variability that
ranges from 1.6 m-s~' (GFDL-ESM2G) to 2.8 m-s ' (IPSL-
CM5B-LR) for zonal and wind speed fields (Figures 6(a) and
6(c)). On the other hand, the three reanalyses show an inter-
annual variability of ~1.9m-s™". In the case of meridional
wind (Figure 6(b)), while radiosonde observations show
maximum interannual variability at the jet core by about
1.4 m-s~, models have maximum interannual variability that
ranges from 1 m-s~' (HadCM3) to 2m-s™' (CMCC-CMS).

Also, radiosonde observations, reanalysis, and CMIP5
model show larger interannual variability in the upper tro-
posphere for the three wind fields compared to the lower
troposphere. The zonal wind bias (Figure 6(d)) shows that the
models generally overestimated the variability above 50 hPa,
while meridional wind and wind speed are underestimated
by the models (Figures 6(e) and 6(f)).

3.4. Annual Wind Trends. In Figure 7, the CMIP5 model
and reanalysis trends are compared to the radiosonde trends
from 850 hPa to 30 hPa for the three wind fields. As noted
above (Figure 2), first two nearby grid cells for individual
CMIP5 models and reanalysis dataset are chosen as a climatic
representative of Sterling radiosonde station as shown in
Figure 1(a). Then the CMIP5 model and reanalysis trends are
calculated from the averaged two nearby grid cells around
the radiosonde observations. The trends from radiosonde at
each vertical level are calculated using a least square linear
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FIGURE 5: Sterling station seasonal cycle at 200 hPa from individual CMIP5, reanalysis, and radiosonde observation for 1979-2005. The gray
shading in (b), (d), and (f) is the radiosonde plus and minus 1 standard deviation around the climatology mean.

regression after monthly means of zonal and meridional wind
at 00Z and 127 are averaged.

In general, there is similarity in the shape and magnitude
of the vertical zonal wind and wind speed trend profile. The
shape of meridional wind trend profile differs slightly from
both zonal wind and wind speed. Besides, the magnitude
meridional wind trend profile is small. Overall, radiosonde
observation shows positive trends from 850 hPa to 50 hPa for
zonal wind and wind speed. Further information about the
observed trends can also be found by examining the 2-sigma
(95%) confidence interval in the observations. The trend con-
fidence interval in zonal, meridional, and wind speed is about
twice as large in upper troposphere and lower stratosphere

(i.e., at pressure levels between 300 hPa and 100 hPa) com-
pared to the lower troposphere (i.e., at pressure level between
850 hPa and 300 hPa). For example, zonal wind annual mean
trend confidence interval at 200 hPa is 0.9 ms™' decade™
whereas at 500 hPa, it is about 0.46ms™' decade™. This
larger confidence interval in upper troposphere and lower
stratosphere (UTLS) indicates that the upper troposphere
and lower stratosphere are subjected to larger variability than
the troposphere (Figures 6(a), 6(b), and 6(c)). The larger
confidence interval in UTLS from the observation might
be associated with either larger radiosonde uncertainty or
variability of the jet stream or combination of observational
uncertainty and variability of the jet stream [24].
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FIGURE 6: Similar to Figure 4 but for comparison of radiosonde, reanalysis, and CMIP5 model wind fields interannual variability (a, b, and
¢) and bias with respect to radiosonde (d, e, and f). Data is from 1979 to 2005.

Out of the 20 CMIP5 models, seven (7) show positive
zonal wind and wind speed trends (Figures 7(a) and 7(c)).
For reanalysis, there are negative zonal wind and wind speed
trends in the lower troposphere (below 400 hPa). Further-
more, reanalysis shows positive zonal wind and wind speed
trends from 400-100 hPa. Overall, the trends from CMIP5,
reanalysis, and radiosonde observations are not statistically
significant at 95% confidence levels at each pressure level
which may be related to the high interannual variability of
the wind dataset and shorter period of analysis.

So far the analysis was based on output from historical
simulations for the period from 1979 to 2005. The result

generally indicates that any climate change trend in the 27
years of observed and simulated wind is not yet distin-
guishable from the natural interannual to decadal variability
using a single point observation. Next section deals with the
number of years required to detect statistically significant
trends from radiosonde observation.

4. Wind Trend Detection from Observation

In this section, we addressed the question of the number
of years required to detect statistically significant wind
trends with the probability of 0.9 from Sterling radiosonde
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FIGURE 7: The vertical distributions of annual mean horizontal wind and wind speed trends from radiosonde, reanalysis, and CMIP5 models
calculated for 1979-2005. Horizontal black line represents the 2-sigma variation in wind.

observation (see (1) and [28] for detailed discussion). The
three parameters required to evaluate the number of years
of wind speed data needed to detect statistically significant
wind trends are the magnitude of expected trend, standard
deviation, autocorrelation of the wind speed noise. These
three parameters vary according to location and altitude [37].

In this study, ensemble mean zonal, meridional, and wind
speed trends from CSIRO-MK3.6.0 model for the period
2016-2050 are used as example for estimation of future
trends. The ensemble mean trends are evaluated by averaging
the individual 10 run trends found from CSIRO-MK3.6.0
model. The ensemble mean trends and uncertainty in the
mean trends for the three wind fields are plotted in Figure 9.

First, the model generally shows similar vertical profile of
zonal wind and wind speed trends (Figures 9(a) and 9(e)),
with decreasing trend in the troposphere and increasing trend
in the stratosphere. For meridional wind, model shows an
increasing trend, with maximum increasing trend occurring
at ~200hPa (Figure 9(c)). Also, there is variation in the
trend estimated from the individual ensemble members as
indicated by the one standard deviation uncertainty error
bar. This indicates the uncertainty in model estimated trends
associated with uncertainty in initial condition.

The standard deviation and autocorrelation of the hori-
zontal wind as well as wind speed noise are estimated from
Sterling radiosonde observation wind field time series for
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FIGURE 8: Month-to-month variability and autocorrelation for zonal wind (a, b), meridional wind (c, d), and wind speed (e, f), respectively.
The observational data was from 1979 to 2012 for Sterling station Virginia Station.

the period 1979-2012 after rearranging (2) for wind field
noise. Figure 8 shows month-to-month variability and
autocorrelation of horizontal wind and wind speed data.
There is similarity in the shape of the vertical profile of
month-to-month variability derived from horizontal wind
and wind speed monthly data (Figures 8(a), 8(b), and 8(c)).
Their month-to-month variability generally increases with
height, with maximum variability occurring around 200 hPa
and thereafter the variability decreases with height. With
respect to month-to-month autocorrelation, zonal wind
shows an increase of month-to-month autocorrelation
with height, while meridional wind shows almost constant
month-to-month autocorrelation especially at pressure levels
between 500 hPa and 150 hPa (Figures 8(b) and 8(d)). Wind
speed data show divergent month-to-month autocorrelation
(Figure 8(f)).

Radiosonde wind observation data from 1979 to 2012 are
used to estimate month-to-month variability and autocorre-
lation in wind field dataset. Assuming these two parameters

would remain the same in the future and the ensemble
mean trends estimated from CSIRO-MK3.6.0 are accurate
(Figures 9(a), 9(c), and 9(e)), the number of years needed to
detect statistically significant trends is evaluated as shown in
Figure 9. Result indicates that we will need longer time series
of wind data to detect statistically significant trends. For zonal
wind and wind speed, we would need approximately 100 to
300 years of data depending on the altitude (Figures 9(b) and
9(f)). For meridional wind, we would need approximately
70 to 140 years of data (Figure 9(d)). Thus, meridional wind
trends would be detected sooner than zonal and wind speed
trends.

Overall, the zonal wind trend mirrors the wind speed
trend while the number of years to obtain statistically sig-
nificant trend decreases with increasing pressure level except
for upper troposphere. In the upper troposphere (~200 hPa)
for zonal (Figure 9(b)) and wind speed (Figure 9(f)), there
is relatively higher number of years needed to detect trend
relative to meridional wind (Figure 9(d)). At this level,
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the trend magnitude is almost the same (Figures 9(a), 9(c),
and 9(e)) but the magnitude of month-to-month variability
and autocorrelation varies (Figure 8). Thus, the longer time
needed to detect a statistically significant trend for both
zonal wind and wind speed relative to meridional wind can
be attributed to the higher month-to-month variability and
autocorrelation found in both zonal wind and wind speed
relative to the meridional wind.

5. Summary

In this study, monthly mean wind data from CMIP5 sim-
ulations was used to examine models and their ability to
represent annual and seasonal historical wind variability and
trends from the 850 hPa to 30 hPa pressure level. We then
characterized and compared the observed and simulated
wind fields (zonal, meridional, and wind speed) with respect

to climatology mean, variability, and trends for both annual
mean and seasonal mean. We also calculated the number of
years needed to detect trend.

We summarize our results as follows:

(1) Overall, zonal wind and wind speed vertical profiles
are very similar in terms of shape and magnitude. The
vertical profiles of individual CMIP5 models, as well
as among CMIP5 models, reanalysis, and radiosonde
observation, however, show some disagreement in the
sign of the meridional wind magnitude.

(2) Although the CMIP5 models reproduce the observed
vertical profile of the annual mean zonal wind clima-
tology reasonably well, there are bias and variability
among models, which is larger at the stratosphere
(above ~200hPa). When reanalyses are compared
to radiosonde, their spread among each other and
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bias with respect to radiosonde are smaller. This
is expected because the radiosonde observation has
already been assimilated into these reanalysis prod-
ucts.

(3) The CMIP5 models and reanalysis capture the
observed seasonal cycle throughout the vertical pro-
file, with stronger (weaker) wind during the winter
(summer) season. There is, however, variation in the
amplitude of the seasonal cycle among models, and
reanalysis with maximum difference in the amplitude
of the seasonal cycle located ~200 hPa.

(4) As expected, it is challenging to find statistically
significant trends at local scale due to small signal-
to-noise ratio. Longer wind time series would be
required for the trends to be statistically significant for
a single point measurement.

(5) Our analysis shows that intramodel spread is smaller
than intermodel variability suggesting that the role of
internal variability is negligible. It thus follows that
the model response uncertainty is responsible for the
disagreement in the vertical profiles of the wind fields.
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