
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 696927, 17 pages
doi:10.1155/2012/696927

Research Article
Two-Stage Method Based on Local Polynomial
Fitting for a Linear Heteroscedastic Regression
Model and Its Application in Economics

Liyun Su, Yanyong Zhao, and Tianshun Yan

School of Mathematics and Statistics, Chongqing University of Technology,
Chongqing 400054, China

Correspondence should be addressed to Liyun Su, cloudhopping@163.com

Received 31 October 2011; Accepted 2 January 2012

Academic Editor: M. De la Sen

Copyright q 2012 Liyun Su et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We introduce the extension of local polynomial fitting to the linear heteroscedastic regression
model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then
the coefficients of regression model are obtained by using generalized least squares method. One
noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving
the traditional two-stage method. Due to nonparametric technique of local polynomial estimation,
we do not need to know the heteroscedastic function. Therefore, we can improve the estimation
precision, when the heteroscedastic function is unknown. Furthermore, we focus on comparison of
parameters and reach an optimal fitting. Besides, we verify the asymptotic normality of parameters
based on numerical simulations. Finally, this approach is applied to a case of economics, and it
indicates that our method is surely effective in finite-sample situations.

1. Introduction

The heteroscedasticity in classical linear regression model is defined by the variances of ran-
dom items which are not the same for different explanatory variables and observations. Het-
eroscedasticity often occurs in data sets in which there is a wide disparity between the largest
and smallest observed values. The larger the disparity between the size of observations in a
sample, the larger the likelihood that the error term observations associated with them will
have different variances and therefore be heteroscedastic. That is, we would expect that the
error term distribution for very large observations might have a large variance, but the error
term distribution for small observations might have a small variance. Besides, researchers
have observed that heteroscedasticity is usually found in cross-sectional data rather than in



2 Discrete Dynamics in Nature and Society

time series data [1, 2]. In cross-sectional data we generally deal with members of a population
at a given point in time, such as individual consumers or their families; firms; industries; or
geographical subdivisions, such as small, medium, or large firms, or low, medium, or high
income. Besides, this study is also more common in economics, such as the relationship of
sale and research and development, and profit in a certain year.

When there is a heteroscedasticity in a linear regression model [3–6], we can apply
parametric methods, also the heteroscedastic approaches can be applied, such as Park test,
White test and so on. Another heteroscedastic method is shown in [7]. When parametric
approaches are applied, estimations of parameters we obtained by ordinary least squares
estimation (OLS) are still linear and unbiased. However, the efficiency is bad [8–10]. This
could lead to a uncorrect statistical diagnosis for the parameters’ significance test. Similarly,
it unecessarily enlarges the confidence interval when we estimate the parameter interval.
Besides, the accuracy of predictive value may lower when we estimate with the regression
model that we obtained. In order to solve the problem above, we can use generalized least
squares estimation (GLS) when the covariance matrix of the random items is known. If
it is unknown, we usually use two-stage least squares estimate, that is, we first estimate
variances of the residual error, and then the generalized least squares estimator is used
to obtain the coefficients of the model by using the estimate of variances of the random
items [11, 12]. However, the traditional estimation method is that we suppose the residual
error variances as a certain parametric model. In this paper, we try to applying local
polynomial fitting to random item variances as the first step, and then GLS is used to
estimate the coefficients of the model. A problem cannot be neglected is that the existence
of inverse of regressor matrix transpose multiplied by regressor matrix is necessary for
the existence of the unique estimator when applying the least squares method or their
generalized versions. In the generalized versions, because kernel function is a symmetric
probability density function with bounded support, the weighted matrix based on kernel
function is positive definite, generally being also symmetric as done in usual theoretical and
practical selections. In other words, the regressor matrix has to be full column rank and
weighted matrix has to be nonsingular. The issues have been discussed in many papers
used in theoretical issues and many applications, see [13–17]. On the one hand, because
of local polynomial fitting’s various nice statistical properties, the estimations obtained
with this technology also possess the same good statistical properties [12, 18, 19]. On
the other hand, we exploit a heteroscedastic regression model rather than the artificial
structure of heteroscedasticity. Then, we can directly get the heteroscedastic function based
on the nonparametric technique, which shows the relationship between variance function of
random items and explanatory variables from regression results. Thus, it is unnecessary to
test heteroscedasticity of the model. Particularly, the estimated value by local polynomial
fitting is more accurate than that by the traditional method. Besides, we study variance
function fitting when parameters change and reach the optimal parameters. Finally, a
case of economics is cited in order to show that our method is indeed effective in finite-
sample situations.

The rest of this paper is organized as follows. In Section 2 we construct local pol-
ynomial regression: in Section 2.1 we talk about local polynomial fitting, in Section 2.2 we
study estimation with Parameters selections. Section 3 contains two-stage method with local
polynomial fitting. In Section 4, we do the simulations on a given model and study the
fittings under different parameters. In Section 5, we collect some real data and use the local
polynomial estimating the coefficients. We draw the results in Section 6.
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2. Local Polynomial Regression

Local polynomial regression [20–23] is a widely used nonparametric technique. Local
polynomial fitting is an attractive method both from theoretical and practical point of view.
Local polynomial method has a small mean squared error compared with the Nadaraya-
Watson estimator which leads to an undesirable form of the bias and the Gasser-Muller
estimator which has to pay a price in variance when dealing with a random design
model. Local polynomial fitting also has other advantages. The method adapts to various
types of designs such as random and fixed designs, highly clustered and nearly uniform
designs. Furthermore, there is an absence of boundary effects: the bias at the boundary stays
automatically of the same order as the interior, without use of specific boundary kernels.
The local polynomial approximation approach is appealing on general scientific grounds: the
least squares principle to be applied opens the way to a wealth of statistical knowledge and
thus easy generalizations. In this section, we briefly outline the idea of the extension of local
polynomial fitting to linear regression.

2.1. Local Polynomial Fitting

Consider the bivariate data (X1, Y1), . . . , (Xn, Yn), which form an independent and identically
distributed sample from a population (X,Y ). Of interest is to estimate the regression function
m(x0) = E(Y | X = x0) and its derivativesm′(x0), m′′(x0), . . . , m(p)(x0). To help us understand
the estimation methodology, we can regard the data as being generated from the model

Y = m(X) + σ(X)ε, (2.1)

where E(ε) = 0, Var(ε) = 1, and X and ε are independent. However, this location-scale
model assumption is not necessary for our development, but is adopted to provide intuitive
understanding. We always denote the conditional variance of Y given X = x0 by σ2(x0) and
the marginal density of X, that is, the design density, by f(·).

Suppose that the (p+1)th derivative ofm(x) at the point x0 exists.We then approximate
the unknown regression functionm(x) locally by a polynomial of order p. A Taylor expansion
gives, for x in a neighborhood of x0,

m(x) ≈ m(x0) +m′(x0)(x − x0) +
m′′(x0)

2!
+ · · · + m(p)

p!
(x0)(x − x0)p. (2.2)

This polynomial is fitted locally by a weighted least squares regression problem: minimize

n∑

i=1

⎧
⎨

⎩Yi −
p∑

j=0

βj(Xi − x0)j

⎫
⎬

⎭

2

Kh(Xi − x0), (2.3)

where h is a bandwidth controlling the size of the local neighborhood, andKh(·) = K(·/h)/h
with K a kernel function assigning weights to each datum point. Throughout this paper we
assume that K is a symmetric probability density function with bounded support, although
this technical assumption can be relaxed significantly [24–26].



4 Discrete Dynamics in Nature and Society

Denote by β̂j , j = 0, . . . , p, the solution to the least squares problem (2.3). It is clear from
the Taylor expansion in (2.2) that m̂ν(x0) = ν!β̂ν is an estimator form(ν)(x0), ν = 0, 1, . . . , p. To
estimate the entire functionm(ν)(·)we solve the above weighted least squares problem for all
points x0 in the domain of interest.

It is more convenient to work with matrix notation. Denote by X the design matrix of
problem (2.3):

X =

⎡
⎢⎢⎢⎣

1 (X1 − x0) · · · (X1 − x0)p

...
...

...

1 (Xn − x0) · · · (Xn − x0)p

⎤
⎥⎥⎥⎦
, (2.4)

and let

y =

⎡
⎢⎢⎢⎢⎣

Y1

...

Yn

⎤
⎥⎥⎥⎥⎦
, β̂ =

⎡
⎢⎢⎢⎢⎣

β̂0

...

β̂p

⎤
⎥⎥⎥⎥⎦
. (2.5)

Further, let W be the n × n diagonal matrix of weights:

W = diag{Kh(Xi − x0)}. (2.6)

Then the weighted least squares problem (2.3) can be written as

min
β

(
y − Xβ

)TW
(
y − Xβ

)
, (2.7)

with β = (β0, . . . , βp)
T . The solution vector is provided by weighted least squares theory and

is given by

β̂ =
(
XTWX

)−1
XTWy, (2.8)

where the regressor matrix X has to be full column rank and the weighted matrix W has to
be nonsingular. If such an inverse in (2.8) does not exist, a method of ridge regression can be
adopted to solve this problem [27]. Furthermore, we can get the estimation m̂(x0),

m̂(x0) = E1

(
XTWX

)−1
XTWy, (2.9)

where E1 is a column vector (the same size of β)with the first element equal to 1, and the rest
equal to zero, that is, E1 = (1, 0, . . . , 0)1×(p+1).

Computing the β̂ will suffer from large computational cost. We can use the recursive
least squared method to reduce the computation complexity, and it is very powerful
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especially in the local polynomial fitting problems. There are several important issues about
the bandwidth, the order of local polynomial function and the kernel function which have to
be discussed. The three problems will be presented in Section 2.2.

2.2. Parameters Selections

To implement the local polynomial estimator, one need to choose the order p, the kernel K
and the bandwidth h. These parameters are of course related to each other.

First of all, the choice of the bandwidth parameter h is considered, which plays a rather
crucial role. A too large bandwidth under-parametrizes the regression function [28, 29],
causing a large modeling bias, while a too small bandwidth over-parametrizes the unknown
function and results in noisy estimates. The basic idea is to find a bandwidth h that minimizes
the estimated mean integrated square error (MISE):

hopt = argmin
h

∫{
(Bias(m̂(x) | X))2 + Var(m̂(x) | X)

}
dx, (2.10)

where X = (X1, . . . , Xp), the asymptotic bias and the asymptotic variance are denoted in
LemmaA.1 of the appendix. Thenwe can find an asymptotically optimal constant bandwidth
given by

hopt = cν,p(K)

[ ∫
σ2(x)/f(x)

∫{
m(p+1)(x)dx

}
]1/(2p+3)

n−1/(2p+3), (2.11)

where, cν,p(K) is a constant which relates to the kernel function and the order of the local
polynomial, f(x), is the density function of m(·). However, this ideal bandwidth is not
directly usable since it depends on unknown functions.

Another issue in local polynomial fitting is the choice of the order of the polynomial.
Since the modeling bias is primarily controlled by the bandwidth, the issue is less crucial
however. For a given bandwidth, h, a large value of pwould expectedly reduce the modeling
bias, but would cause a large variance and a considerable computational cost. It is shown in
[30] that there is a general pattern of increasing variability: for estimate m(ν)(x0), there is no
increase in variability when passing from an even (i.e., p − ν even) p = ν + 2q order fit to
an odd p = ν + 2q + 1 order fit, but when passing from an odd p = ν + 2q + 1 order fit to
the consecutive even p = ν + 2q + 2 order fit, there is a price to be paid in terms of increased
variability. Therefore, even order fits p = ν + 2q are not recommended. Since the bandwidth
is used to control the modeling complexity, we recommend the use of lowest odd order, that
is, p = ν + 1, or occasionally p = ν + 3.

Another question concerns the choice of the kernel function K. Since the estimation
is based on the local regression (2.3), no negative weight K should be used. As shown
in [30], the optimal weight function is K(z) = (3/4)(1 − z2)+ , the Epanechnikov kernel,
which minimizes the asymptotic mean square error (MSE) of the resulting local polynomial
estimators.
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3. Two-Stage Method with Local Polynomial Fitting

Let the dependent variable x and the explanatory variable y fulfill the following regression
model:

yi = β0 + β1xi + σ(x)εi, i = 1, 2, . . . , n, (3.1)

where yi are the observations and xi, i = 1, . . . , n are independent variables. Denote

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡

⎣
β0

β1

⎤

⎦ ,

Xx =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎥⎥⎥⎦
, ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.2)

Therefore, (3.1) can be abbreviated as

y = Xxβ + σ(x)ε. (3.3)

Suppose that

(1) E(σ(x)ε) = (E(σ(x)ε1), . . . , E(σ(x)εn))
T = (0, . . . 0, )T .

(2) Σ = E((σ(x)ε)(σ(x)ε)T ) = diag(σ1
2, . . . , σn

2), where σi
2 = var((σ(x)εi)), i =

1, 2, . . . , n.

(3) σ1
2, σ2

2, . . . , σn
2 are not all equal, that is, there is a heteroscedasticity in model (3.4).

Therefore, GLS for β is

β̂ =
(
XT
xΣ

−1Xx

)−1
XT
xΣ

−1y. (3.4)

If covariance matrix Σ is known, the coefficients β can be estimated. Equation (3.4) is
considered as the weighted least squares estimation (WLS) for β and it possesses nice
qualities. However, how to estimate the Σ is still a problem. Therefore, the so-called two-stage
method of estimation is used to solve the heteroscedasticity problem. The two-stage method
based on local polynomial fitting can be depicted as follows: firstly, apply local polynomial
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fitting to get the estimate
∑̂

for
∑
, that is, σ̂2

i for σ
2
i , and then we can obtain the estimate β̂ for

β by using (3.5). The estimator follows that

β̂ =
(
XT
xΣ̂

−1Xx

)−1
xTxΣ̂

−1y =

(
n∑

i=1

1
σ̂2
i

xix
T
i

)−1( n∑

i=1

1
σ̂2
i

xiyi

)
. (3.5)

Because of E(σ(xi)εi | xi)
2 = σi

2, we construct the following regression model in order to
estimate σ2

i ,

(σ(xi)εi)2 = σi
2 + ui, Eui = 0, i = 1, 2, . . . , n, (3.6)

where ui is the difference between (σ(x)εi)
2 and its expectation. Suppose that b =

(XT
xXx)

−1XT
xy is the OLS of model (3.4). Although the ordinary least squares estimate b is

ineffective, it is still consistent. Therefore, the corresponding residuals hold that

ei
2 =

(
xT
i β + (σ(x)εi) − xT

i b
)2

= (σ(x)εi)2 +
[
xT
i

(
β − b

)]2 + 2(σ(x)εi)xT
i

(
β − b

) ≈ (σ(x)εi)2.
(3.7)

Consequently, we can approximately get

ei
2 = σ2

i + vi, E(vi) = 0, i = 1, 2, . . . , n. (3.8)

It can be taken as a regression model, in which the variance function is regression
function and the squared residuals e2i are dependent variables. In order to estimate this
model, parameter estimationmethodwould usually be taken in some articles. In other words,
they suppose σ2

i = f(cT , xi), where the form of f is known and c = (c0, c1)
T are the parameters

to be estimated. Note that what we usually discuss about are σ2 = σ2(cT , xi), σi
2 = σ2

i ln(c
T , xi)

and so on [31]. However, the discussion for thesemodels requires the analysts to have a better
understanding of the background in practical problems. As an example, variance of asset
return is always in direct proportion with its past return. Since the variance function must
be nonnegative, a nonparametric method is proposed to fit σ2

i . This method can be depicted
as follows. Then, a p-order local polynomial estimation for the variances function σ2(x) is
obtained according to formula (2.2). Using the least squares method for the data around the
local window, we can estimate the local intercept via minimizing

n∑

i=1

[
e2i − α0 − α1(x − xi) − · · · − αp(x − xi)p

]2
K

(
x − xi

h

)
, (3.9)

with respect to {αi}pi=0. Therefore, the solution vector can be written as

α =
(
XT

xxWxXxx

)
XT

xx Wxe
2, (3.10)
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where the design matrix

Xxx =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 (x − x1) (x − x1)2 · · · (x − x1)p

1 (x − x2) (x − x2)2 · · · (x − x2)p

...
...

... · · · ...

1 (x − xn) (x − xn)2 · · · (x − xn)p

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.11)

the weighted matrix

Wx =
1
h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K

(
x − x1

h

)

K

(
x − x2

h

)

. . .

K

(
x − xn

h

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.12)

and e2 = (e21, e
2
2, . . . , e

2
n)

T . Consequently, the estimated variance function is σ̂2(x) = E1α.
Finally, we can get two-stage estimate β̂ for β by substituting estimate σ̂2

i for σ2
i into

(3.5), which has some wonderful statistics qualities, seeing Lemma A.2, Lemma A.3, and
Theorem A.4 in the appendix.

4. Simulation and Analysis

In order to discuss the qualities of β̂ under the limited sample, this section gives the following
model, in which we do the comparison and study the fittings under different parameters.
Considering the practical background which is applied to economics, we suppose the
variance function of the following form. Besides, we study the fitting effects of variance in
different parameters to obtain the best one.

Denote the linear model by

yi = 3.1 + 1.5xi + σ(xi)εi, i = 1, 2, . . . , n, (4.1)

where xi (i = 1, . . . , n) are independent variables, yi (i = 1, . . . , n) are observations. Also,
E(σ(xi)εi)(σ(xi)εi)

T = diag(σ2
1 , . . . , σ

2
n), and σ2

1 , . . . , σ
2
n are not all equal. Suppose that the

variance function of the error term is σ2(x) = e0.6x.

Step 1. Firstly, obtain the estimation of two coefficients in model (4.1)with the ordinary least
squares estimation. Secondly, calculate the squares of the residuals e2 = (e21, . . . , e

2
n)

T . Thirdly,
do the local polynomial regression based on the model (3.8). In this section, it is necessary
to discuss how to choose parameters. Suppose that the range of x is [−1, 5] and the kernel
function is the Epanechnikov kernelK(z) = (3/4)(1−z2)+. In addition, the criteria of selecting
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Table 1: Values of MISE under different orders and bandwidths.

MISE h = 0.2 h = 0.3 h = 0.4 h = 0.5 h = 0.6 h = 0.7 h = 0.8

p = 1 4.383078 3.852483 2.5617354 1.215800 3.853911 6.459762 9.307465
p = 2 1.325719 8.152896 2.265193 0.289220 0.945407 1.245113 1.413955
p = 3 5.303323 2.320999 2.805549 1.512751 2.322089 3.784113 3.854334

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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8
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10
M

IS
E

p = 1
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p = 3

h

Figure 1: The scatter plot under different orders.

a bandwidth h is minimizing the mean integrated square error (MISE), which can be given
by

MISE ≡
∫
E
{
σ2(x) − σ̂2(x)

}2
dx. (4.2)

We could get values of MISE under different orders and bandwidths by 10000 repli-
cates calculation with the above equation, where n = 300, see Table 1.

Furthermore, the scatter plot about h and MISE under different orders can be drawn,
see Figure 1.

From Figure 1, it can be seen that values of MISE are the minimum when h = 0.5
whether p = 1, p = 2, and p = 3. Therefore, h = 0.5 is the optimal bandwidth. Further, value of
MISE when p = 2 is the minimum among the above three, that is, p = 2 is the optimal order. It
can be drawn the conclusion that the optimal parameters are h = 0.5 and p = 2, respectively.
Figure 2 shows the fitting plot and residual plot for variance function after 10000 replicates,
where h = 0.5, p = 2 and n = 300.

Step 2. Nowwe substitute σ̂2
i which is obtained from Step 1 intomodel (3.5), and thenwewill

get the estimation β̂ of GLS, that is, β̂0 = 3.1004, β̂1 = 1.4987. Figure 3 depicts the histograms
and asymptotic distributions of β̂0 and β̂1, by which we do 10000 replicates with GLS and
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Figure 2: The fitting plot and its residual plot when h = 0.5 and p = 2: (a) fitting plot, (b) residual plot.
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Figure 3: The histograms and asymptotic distributions of β̂0 and β̂1: (a) β̂0, (b) β̂1.

choose n = 300. It is easy to see from Figure 3 that the estimated distributions of parameters
are subject to normal asymptotically. Besides, the OLS for β0 and β1 can easily be obtained,
say, b̂0 = 3.1813, b̂1 = 1.4394. The fitted and true values for GLS and ones of OLS are listed in
Table 1. Here, the relative error is defined by Re = (|ξ̂ − ξ|/ξ) × 100%, where ξ and ξ̂ present
true and fitted values, respectively. From the comparison in Table 2, we can conclude that the
estimators for parameters by GLS are much better than those by OLS. Furthermore, curves
of original and regression functions estimated by GLS and OLS are plotted together in order
to demonstrate accuracy by GLS, see Figure 4. It is not difficult to see that the GLS regression
curve is almost coincident with original curve, while there is a parent bias between OLS
regression and original curve. Consequently, estimators for parameters by GLS are what we
require.
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Table 2: Two-stage estimates for β0 and β1 of GLS and OLS.

Parameters β0 β1

True value 3.1 1.5

GLS Fitted value 3.1004 1.4987

Relative error 0.0129% 0.0867%

OLS Fitted value 3.1813 1.4394
Relative error 2.6226% 4.0400%

0 5 10 15
−15

−10

−5

0

5

10

15

20

25

30

Observations
Original function

OLS  function 
GLS  function

−5−10

Figure 4: Curves of original and regression functions estimated by GLS and OLS.

5. Application

As an example of pure cross-sectional data with potential for heteroscedasticity, consider the
data given in Table 3, which gives data on per capita consumption (Y ) and per capita gross
domestic product (GDP)(X) for 31 province or city in the People’s Republic of China in 2008.
Since the cross-sectional data presented in this table are quite heterogenous in a regression of
per capita consumption (Y ) on per capita GDP (X), heteroscedasticity is likely.

If we want to understand relationship between per capita consumption and per capita
GDP, then the regression function is as follows:

Y = B0 + B1X + u, (5.1)

where B0 and B1 are regression coefficients and μ is a vector of random errors. The ordinary
least squares (OLS) estimations for B0 and B1 can easily be obtained, that is, B̂0 = 679.72 and
B̂1 = 0.31117. As follow, according to the known sample data, the regression plot with OLS
can easily be drawn, seeing Figure 5. Not surprising, there is a positive relationship between
per capita consumption and per capita GDP, although it is not statistically significant at the
traditional levels.
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Table 3: Per capita consumption and per capita GDP for all provinces or cities in the People’s Republic of
China, 2008 (values are in yuan of RMB).

Area Y X Area Y X

Beijing 18911 58204 Hubei 6513 16206
Tianjin 11957 46122 Hunan 6240 14492
Hebei 5674 19877 Guangdong 12663 33151
Shānxi 5525 16945 Guangxi 4987 12555
Neimenggu 7062 25393 Hainan 5552 14555
Liaoning 7965 25792 Chongqing 6545 14660
Jilin 6675 19382 Sichuan 5259 12893
Heilongjiang 5986 18478 Guizhou 4057 6915
Shanghai 24260 66367 Yunnan 4553 10540
Jiangsu 9659 33928 Xizang 3215 12109
Zhejiang 12569 37411 Shānxi 5272 14607
Anhui 5278 12045 Gansu 4274 10346
Fujian 8772 25908 Qinghai 4978 14257
Jiangxi 4702 12633 Ningxia 5816 14649
Shandong 8075 27807 Xinjiang 4890 16999
Henan 5141 16012
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Figure 5: Regression plot of OLS.

To testify if the regression (5.1) suffers from heteroscedasticity, we obtain the residuals
of the model and plotted them against with per capita GDP, as shown in Figure 6, in which we
can see that the residuals are increasing around horizontal axis with the increase in per capita
GDP. Therefore, there is a heteroscedasticity in the regression (5.1). Heteroscedasticity can be
also obtained through other tests such as Park test and White test. So it can be said that the
regression (5.1) suffers from heteroscedasticity. Furthermore, the generalized least squares
(GLS) estimations B̂0 = 665.84 and B̂1 = 0.31265 can easily be got after 10000 replicates,
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Figure 6: Residual plot.
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Figure 7: Regression plot of GLS.

provided with the bandwidth h = 0.5, the order p = 2, and MISE = 0.275746. Then the
regression plot can be drawn in Figure 7. Compared with Figures 5 and 7, it can be said that
the distribution of points around regression line in Figure 7 is more uniform than that in
Figure 5. Finally, it can be exactly said that more accurate regression can be obtained by GLS
than that by OLS.

6. Conclusions

In this paper we presented a new method for estimation of linear heteroscedastic regression
model based on local polynomial estimation with nonparametric technique. The proposed
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scheme firstly adopted the local polynomial fitting to estimate heteroscedastic function,
then the coefficients of regression model are obtained based on generalized least squares
method. Our approach avoided the test of heteroscedasticity for the linear model. Due to
nonparametric technique of local polynomial estimation, if the heteroscedastic function is
unknown, the precision of estimationwas improved. Furthermore, the effect of parameters on
the fitting was researched and the optimal fitting was obtained. Besides, the asymptotic nor-
mality of parameters was verified by the results of numerical simulations. Finally, the simu-
lation results under different parameters and local polynomial estimation of real data in a
case of economics really indicated that our approach was effective in finite-sample situations,
which did not need to assume the form of heteroscedastic function. The presented algorithm
could be easily used to heteroscedastic regression model in some practical problems.

Appendix

Suppose X1, . . . , XT is a stationary sequence. Let Fk
i be the σ-algebra of events generated by

the random variables {Xj, i ≤ j ≤ k}, and L2(Fk
i ) consists of F

k
i -measurable random variables

with finite second moment. Before giving the Lemma A.1, we show the condition as follows.
Condition:

(i) The kernel K(·) is bounded with a bounded support.

(ii) σ2(·) and f(·) are continuous at the points x and f(x) > 0.

(iii) The sequence is ρ-mixing processes, that is,

ρ(n) = sup
X∈L2(F0

−∞), Y∈L2(F∞
T )

|Corr(X,Y )| −→ 0 (A.1)

as T → ∞. we also assume that Σlρ(l) < ∞, EY 2
0 < ∞.

(iv) For ρ-mixing processes, there exists a sequence of positive integers satisfying sT →
∞ and sT = o(

√
Th) such that

√
T/hρ(sT ) → 0 as T → ∞.

Then we have the following lemma.

Lemma A.1. Under Condition 1, if h = O(T1/(2p+3)) andm(p+1)(·) is continuous at the point x, then
as T → ∞,

√
Th

[
diag(1, . . . , hp)

{
β̂(x) − β0(x)

}
− hp+1m(p+1)(x)

(
p + 1

)
!

S−1cp

]
D
−→ N

(
0,

σ2(x)S−1S∗S−1

f(x)

)
,

(A.2)

where β0(x) = (m(x), m′(x) . . . , m(p)(x)/p!)T , S = (μi+j−2)(p+1)×(p+1), S
∗ = (νi+j−2)(p+1)×(p+1), and

cp = (μp+2−j)(p+1)×1, and where μi and νi are defined as μi =
∫∞
−∞ tiK2(t)dt and νi =

∫∞
−∞ tiK(t)dt,

respectively.
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The proof of Lemma A.1 is shown in [23]. An immediate consequence of Lemma A.1
is that the asymptotic bias and the asymptotic variance for the local polynomial estimator are
defined as

AB(x) = eT1S
−1cp

mp+1(x)
(
p + 1

)
!
hp+1,

AV (x) = eT1S
−1S∗S−1e1

σ2(x)
Thf(x)

.

(A.3)

Then, the mean square error (MSE) at point x is

MSE(x) = [AB(x)]2 +AV (x). (A.4)

Lemma A.2. For the model (3.4), ε is assumed to be a vector and follows normal distribution with
mean zero and covariance Σ, where Σ > 0, and P limn→∞ (X′Σ−1X/n) = Q, a finite positive definite
matrix. Then one has

(1) β̂ is a consistent estimator of β.

(2) β̂ is asymptotically normal with the mean β and covariance matrix (X′Σ−1X)−1.

The proof is shown in [32].

Lemma A.3. Suppose σ̂2(x) is a p-order local polynomial estimator (LPE) of the variance function
σ2(x). Under conditions hn → 0, and nhn → ∞:

(1) if p is an odd, and the variance function σ2(x) is continuous p + 1 derivative and bounded,
then

MSE
(
σ̂2(x)

)
= K1h

2p+2
n

[
dp+1(σ2(x)

)

dxp+1

]2

+
K2

nhn
+ o

(
h
2p+2
n +

1
nhn

)
, (A.5)

where K1 and K2 are constants. Therefore,

max
1≤i≤n

MSE
(
σ̂2
i

)
= O

(
h
2p+2
n +

1
nhn

)
, (A.6)

(2) if p is an even, and the variance function σ2(x) is continuous p + 1 and p + 2 derivative
and bounded, then

MSE
(
σ̂2(x)

)
= h

2p+4
n

[
K1d

p+1(σ2(x)
)

dxp+1
+
K2d

p+2(σ2(x)
)

dxp+1

+
K3d

p+1(σ2(x)
)

dxp+1
· d

p+2(σ2(x)
)

dxp+1

]
+

K4

nhn
+ o

(
h
2p+4
n +

1
nhn

)
,

(A.7)

where K1, K2, K3, and K4 are constants. Then we can getmax1≤i≤n MSE(σ̂2
i ) = O(h2p+4

n + 1/nhn).

The proof is shown in [18].
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Theorem A.4. For the model (3.4), ε is assumed to be a vector and follows normal distribution with
mean zero and covariance Σ, where Σ > 0, and p limn→∞ (XTX/n) = Q1, p limn→∞ XTε/

√
n =

Q2, whereQ1 andQ2 are positive definite matrixes. Besides, they satisfy the conditions of Lemma A.3,
then βLPEis asymptotically normal with mean β and covariance (XTΣ−1X)−1.

Proof. By Lemma A.2 and the bibliography [32], in order to prove the above results, we only
need to testify

p lim
n→∞

XT
∣∣∣Σ̂ − Σ

∣∣∣X = 0, (A.8)

where Σ̂ is an estimator of Σ, that is to testify

p lim
n→∞

∣∣∣Σ̂ − Σ
∣∣∣ = 0. (A.9)

By Lemma A.3, whether p is an odd or an even, we have

p lim
n→∞

max
∣∣∣σ̂2

i − σ2
i

∣∣∣ = 0. (A.10)

Therefore,

p lim
n→∞

XT
∣∣∣Σ̂ − Σ

∣∣∣X = 0. (A.11)

The conclusions follow.
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