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It is attempted to present an iterationmethod for finding polar decomposition.The approach is categorized in the scope of Newton-
typemethods. Error analysis and rate of convergence are studied. Some illustrations are also given to disclose the numerical behavior
of the proposed method.

1. Introduction

The polar decomposition of 𝐴 ∈ C𝑚×𝑛 factors 𝐴 as the
product

𝐴 = 𝑈𝐻, 𝑈
∗

𝑈 = 𝐼
𝑟
, rank (𝑈) = 𝑟 = rank (𝐴) ,

(1)

where 𝑈 is unitary and 𝐻 of order 𝑛 is Hermitian positive
semidefinite. The Hermitian factor 𝐻 is always unique and
can be expressed as

𝐻 = (𝐴
∗

𝐴)
1/2

, (2)

and the unitary factor𝑈 ∈ C𝑚×𝑛 is unique if𝐴 is nonsingular
[1]. The exponent 1/2 denotes the principal square root, that
is, the one whose eigenvalues lie in the right half-plane. Here,
we assume that𝑚 ≥ 𝑛.

This matrix decomposition has many applications in
various fields. To give an example, general 3 × 3 linear or
4 × 4 homogenous matrices can be formed by composing
primitive matrices for translation, rotation, scale, and so
on. Current 3D computer graphics systems manipulate and
interpolate parametric forms of these primitives to generate
scenes and motion [2]. Hence, decomposing a composite
matrix is necessary. This paper follows one of such ways,
known as the polar decomposition (1).

Practical interest in the polar decomposition stems
mainly from the fact that the unitary polar factor of 𝐴 is

the nearest unitary matrix to 𝐴 in any unitarily invariant
norm [3].

Apart from (1), the polar decomposition can be defined
by the following integral formula [4]:

𝑈 =
2

𝜋
∫

∞

0

(𝑡
2

𝐼 + 𝐴
∗

𝐴)
−1

𝑑𝑡. (3)

Formula (3) illustrates a guiding principle that any prop-
erty or iteration involving the matrix sign function can be
converted into one for the polar decomposition using the
replacement 𝐴2 by 𝐴∗𝐴 and vice versa.

Here, we concentrate on the iterative expressions for find-
ing (1), since integral representation (3) has some complicated
structure and requires complex analysis.

Newton’s method for square nonsingular cases intro-
duced in [5] is as follows:

𝑈
𝑘+1

=
1

2
(𝑈
𝑘
+ 𝑈
−∗

𝑘
) , (4)

while its following alternative for general rectangular cases
was considered in [6] as

𝑈
𝑘+1

=
1

2
(𝑈
𝑘
+ 𝑈
†∗

𝑘
) , (5)

wherein 𝑈
† stands for the Moore-Penrose generalized

inverse. Note that, throughout this work, 𝑈−∗
𝑘

stands for
(𝑈
−1

𝑘
)
∗. Similar notations are used throughout.
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Authors in [7] derived important results for (4). They
discussed that although Newton’s method for the polar
decomposition immediately destroys the underlying group
structure, when 𝐺 ∈ U, it forces equality between the adjoint
and the conjugate transpose of each iterate. This implies that
the Newton iterates approach the group at the same rate that
they approach unitarity.

The cubically convergent method of Halley has been
developed for polar decomposition in [8] as follows:

𝑈
𝑘+1

= [𝑈
𝑘
(3𝐼 + 𝑈

∗

𝑘
𝑈
𝑘
)] [𝐼 + 3𝑈

∗

𝑘
𝑈
𝑘
]
−1

. (6)

An initial matrix 𝑈
0
must be employed in matrix fixed-

point typemethods such as (4)–(6). An initial approximation
for the unitary factor of any matrices can be expressed as

𝑈
0
=

1

𝛼
𝐴, (7)

whereas 𝛼 > 0 is an estimate of ‖𝐴‖
2
.

The remaining sections of this paper are organized as
follows. In Section 2, we derive an iteration function for
polar decomposition.The scheme is convergent to the unitary
polar factor 𝑈, and the rate of convergence is three since
the proposed formulation transforms the singular values of
the matrices produced per cycle with a cubical rate to one.
Some illustrations are also provided to support the theoretical
aspects of the paper in Section 3. Finally, conclusions are
drawn in Section 4.

2. A Third-Order Method

The procedure of constructing a new iterative method for
the unitary factor of 𝐴 is based on applying a zero-finder
to a particular map. That is, solving the following nonlinear
(matrix) equation

𝐹 (𝑈) := 𝑈
∗

𝑈 − 𝐼 = 0, (8)

in which 𝐼 is the identity matrix, by an appropriate root-
finding method could yield new iteration functions (see, e.g.,
[9, 10]).

Therefore, we first introduce the following iterative
expression for finding the simple zeros of nonlinear equa-
tions:

𝑥
𝑘+1

= 𝑥
𝑘
−

20 − 9𝐿 (𝑥
𝑘
)

20 − 19𝐿 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)
, (9)

with 𝐿(𝑥
𝑘
) = 𝑓


(𝑥
𝑘
)𝑓(𝑥
𝑘
)/𝑓


(𝑥
𝑘
)
2.

Theorem 1. Let 𝛼 ∈ 𝐷 be a simple zero of a sufficiently differ-
entiable function 𝑓 : 𝐷 ⊆ C → C for an open interval
𝐷, which contains 𝑥

0
as an initial approximation of 𝛼. Then,

iterative expression (9) has third order of convergence.

Proof. The proof is similar to the proofs given in [11]. So, it is
skipped over.

Drawing the attraction basins of (9) for finding the
solution of the polynomial equation 𝑥

2

−1 = 0 in the complex
plane reveals that the application of (9) for finding matrix

sign function and consequently the polar decomposition has
global convergence (see Figure 1). However, it is necessary to
show this global behavior analytically.

In terms of the fractal theory, it is necessary to find the
global basins of attraction for a zero 𝑧

∗:

𝑆 (𝑧
∗

) := {𝑧 ∈ C : 𝐿
𝑘
(𝑧) → 𝑧

∗

, as 𝑘 → ∞} , (10)

where 𝐿
𝑘
(𝑥) = 𝐿(𝐿(⋅ ⋅ ⋅ (𝐿(𝑥)))) is the 𝑘-fold composition 𝐿 ∘

⋅ ⋅ ⋅ ∘ 𝐿 of the iteration function 𝐿. Here, using (9), we have (in
the reciprocal form)

𝑥
𝑘+1

= 𝐿 (𝑥
𝑘
) =

38𝑥
𝑘
+ 42𝑥

3

𝑘

9 + 60𝑥
2

𝑘
+ 11𝑥

4

𝑘

, 𝑘 = 0, 1, . . . . (11)

To check the global convergence for the quadratic polyno-
mial 𝑔(𝑧) = 𝑧

2

− 1 with the zeros ±1, (11) gives the following
formula:

𝐵 (𝑧) =
38𝑧 + 42𝑧

3

9 + 60𝑧2 + 11𝑧4
, (12)

and we find

𝐵 (𝑧) + 1

𝐵 (𝑧) − 1
= 𝜆(

𝑈 + 1

𝑈 − 1
)

3

, (13)

wherein 𝜆 = −(9 + 11𝑈)/(−9 + 11𝑈).
Let 𝜕𝑆 denote the boundary of the set 𝑆. One of the basic

notions in the fractal theory connected to iterative processes
and convergence of an iterative function 𝑓 is Julia set for the
proposed operator 𝐿. Thus, when 𝑘 → ∞, we obtain

(1) if |(𝑧+1)/(𝑧−1)| < 1, then |(𝐵
𝑘
(𝑧)+1)/(𝐵

𝑘
(𝑧)−1)| →

0, and 𝐵
𝑘
(𝑧) → −1;

(2) if |(𝑧+1)/(𝑧−1)| > 1, then |(𝐵
𝑘
(𝑧)+1)/(𝐵

𝑘
(𝑧)−1)| →

0, and 𝐵
𝑘
(𝑧) → +1.

Furthermore, we can conclude that the basins of attrac-
tion 𝑆(−1) and 𝑆(1) in the case of operator 𝐵 are the half-
planes on either side in relation to the line 𝑧 = 0 (the
imaginary axis). Since ±1 are attractive fixed points of 𝐵, so
the Julia set 𝐽(𝐵) is the boundary of the basins of attraction
𝑆(−1) and 𝑆(1); that is,

𝐽 (𝐵) = 𝜕𝑆 (−1) = 𝜕𝑆 (1) = {𝛾𝑖 : 𝛾 ∈ R} . (14)

Actually, the Julia set 𝐽(𝐵) is just the line 𝑧 = 0 for (12), and
thus the new third-order method (11) is globally convergent.

By taking into account this global behavior, we extend (11)
as follows:

𝑈
𝑘+1

= 𝑈
𝑘
[38𝐼 + 42𝑌

𝑘
] [9𝐼 + 60𝑌

𝑘
+ 11𝑍

𝑘
]
−1

, (15)

where 𝑌
𝑘
= 𝑈
∗

𝑘
𝑈
𝑘
, 𝑍
𝑘
= 𝑌
𝑘
𝑌
𝑘
, and 𝑈

0
is given by (7).

Theorem 2. Assume that 𝐴 ∈ C𝑚×𝑛 is an arbitrary matrix.
Then, the matrix iterates {𝑈

𝑘
}
𝑘=∞

𝑘=0
of (15) converge to 𝑈.

Proof. Let 𝐴 have the following SVD form:

𝐴 = 𝑃Σ𝑄
∗

, (16)
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(a) (b)

Figure 1: Attraction basins for (5) (a) and (11) (b), for the polynomial 𝑔(𝑥) = 𝑥
2

− 1.

where

Σ = (
Σ
𝑟

0

0 0
) , (17)

and 𝑟 = rank(𝐴). Zeros in Σ may not exist. We define the
following sequence of matrices:

𝐷
𝑘
= 𝑃
∗

𝑈
𝑘
𝑄. (18)

On the other hand, using (15), one may obtain

𝐷
0
= Σ,

𝐷
𝑘+1

= [38𝐷
𝑘
+ 42𝐷

3

𝑘
] [9𝐼 + 60𝐷

2

𝑘
+ 11𝐷

4

𝑘
]
−1

.

(19)

Since𝐷
0
is diagonal with positive diagonal and zero elements,

it follows by induction that the sequence {𝐷
𝑘
}
∞

𝑘=0
is defined by

𝐷
𝑘
= (

diag (𝑑(𝑘)
𝑖
) 0

0 0
) , 𝑑

(𝑘)

𝑖
> 0. (20)

Accordingly, (19) represents 𝑟 uncoupled scalar iterations as
follows:

𝑑
(0)

𝑖
= 𝜎
𝑖
, 1 ≤ 𝑖 ≤ 𝑟,

𝑑
(𝑘+1)

𝑖
= [38𝑑

(𝑘)

𝑖
+ 42𝑑

(𝑘)

𝑖

3

] [9 + 60𝑑
(𝑘)

𝑖

2

+ 11𝑑
(𝑘)

𝑖

4

]

−1

.

(21)

Simple manipulations yield the relation

𝑑
(𝑘+1)

𝑖
− 1

𝑑
(𝑘+1)

𝑖
+ 1

= −
9 − 38𝑑

(𝑘)

𝑖
+ 60𝑑

(𝑘)

𝑖

2

− 42𝑑
(𝑘)

𝑖

3

+ 11𝑑
(𝑘)

𝑖

4

9 + 38𝑑
(𝑘)

𝑖
+ 60𝑑

(𝑘)

𝑖

2

+ 42𝑑
(𝑘)

𝑖

3

+ 11𝑑
(𝑘)

𝑖

4
.

(22)

Since 𝜎
𝑖
is positive, (22) holds for each 𝑖. It follows that

lim
𝑘→∞



𝑑
(𝑘+1)

𝑖
− 1

𝑑
(𝑘+1)

𝑖
+ 1



→ 0. (23)

That is to say,

𝐷
𝑘
→ (

𝐼
𝑟

0

0 0
) . (24)

Therefore, 𝑈
𝑘
→ 𝑈 and subsequently 𝐻 = 𝑈

∗

𝐴. The proof
is complete.

Theorem 3. Let 𝐴 ∈ C𝑚×𝑛 be an arbitrary matrix. Then, new
method (15) has third order to find the unitary polar factor of
𝐴.

Proof. Proposed scheme (15) transforms the singular values
of 𝑈
𝑘
according to

𝜎
(𝑘+1)

𝑖
= [38𝜎

(𝑘)

𝑖
+ 42𝜎

(𝑘)

𝑖

3

] [9 + 60𝜎
(𝑘)

𝑖

2

+ 11𝜎
(𝑘)

𝑖

4

]

−1

(25)

and leaves the singular vectors invariant. From (25), it is
enough to show that convergence of the singular values to
unity has third order for 𝑘 ≥ 1 as follows:

𝜎
(𝑘+1)

𝑖
− 1

𝜎
(𝑘+1)

𝑖
+ 1

= −

(−1 + 𝜎
(𝑘)

𝑖
)
3

(−9 + 11𝜎
(𝑘)

𝑖
)

(1 + 𝜎
(𝑘)

𝑖
)
3

(9 + 11𝜎
(𝑘)

𝑖
)

. (26)

Now, we attain


𝜎
(𝑘+1)

𝑖
− 1

𝜎
(𝑘+1)

𝑖
+ 1



≤ (



−9 + 11𝜎
(𝑘)

𝑖

9 + 11𝜎
(𝑘)

𝑖



)



𝜎
(𝑘)

𝑖
− 1

𝜎
(𝑘)

𝑖
+ 1



3

. (27)

This reveals the third order of convergence for new method
(15). The proof is ended.

The proposed method is not a member of Padé family
of iterations given in [12], with global convergence. So, it is
interesting from both theoretical and computational points
of view.

The speed of convergence can be slow at the beginning
of the process; so, it is necessary to scale the matrix𝑈

𝑘
before
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each cycle. An important scaling approachwas derived in [13]
in Frobenius norm as comes next:

𝜃
𝑘
= (


𝑈
†

𝑘

𝐹
𝑈𝑘

𝐹

)

1/2

. (28)

So, the new scheme can be expressed in the following
accelerated form:

Compute 𝜃
𝑘
by (28) , 𝑘 ≥ 0,

𝑀
𝑘
= 9𝐼 + 60𝜃

2

𝑘
𝑌
𝑘
+ 11𝜃

4

𝑘
𝑍
𝑘
,

𝑈
𝑘+1

= 𝜃
𝑘
𝑈
𝑘
[38𝐼 + 42𝜃

2

𝑘
𝑌
𝑘
]𝑀
−1

𝑘
.

(29)

3. Numerical Examples

We have tested contributed method (15) denoted by PMP,
using the programming package Mathematica 8 in double
precision [14]. Apart from this scheme, several iterative
methods, such as (5) denoted by NMP and (6) denoted by
HMP, and accelerated Newton’s method given by

Compute 𝜃
𝑘
by (28) , 𝑘 ≥ 0,

𝑈
𝑘+1

=
1

2
[𝜃
𝑘
𝑈
𝑘
+ 𝜃
−1

𝑘
𝑈
†∗

𝑘
] ,

(30)

have been tested and compared. The stopping termination in
this work is

𝑅
𝑘+1

=

𝑈𝑘+1 − 𝑈
𝑘

∞
𝑈𝑘

∞

≤ 𝜖, (31)

wherein 𝜖 is the tolerance.

Example 1. In this experiment, we compare the behavior
of different methods. We used the following six complex
randomly generated rectangular 310 × 300matrices:

m = 310; n = 300; number = 6; SeedRandom

[345];

Table[A[l] = RandomComplex[{-10-10 I,

10+10 I}, {m, n}];, {l, number}];

The results of comparison are carried out in Tables 1 and 2
applying the tolerance 𝜖 = 10

−10 with 𝑈
0
= 𝐴. It could easily

be observed that there is a clear reduction in the number of
iterations using PMP.

These theoretical results of Section 2 have been confirmed
by numerical examples here. So, we demonstrate the con-
vergence behavior of proposed iteration (15). Note that the
superiority of PMP in contrast to HMP is understandable
from the fact that PMP has larger attraction basins, and
subsequently it could cluster the singular values to unity
much faster than HMP.

Table 1: Results of comparisons for Example 1 in terms of number
of iterations.

Methods NMP HMP ANMP PMP
#1 11 8 9 6
#2 11 8 9 6
#3 11 8 9 6
#4 11 8 9 6
#5 11 8 9 6
#6 12 8 9 7

Table 2: Results of comparisons for Example 1 in terms of elapsed
time (s).

Methods NMP HMP ANMP PMP
#1 6.0312500 3.0156250 4.7656250 2.7812500
#2 5.2812500 3.0781250 4.7500000 2.8437500
#3 5.2500000 2.9375000 4.7656250 2.7343750
#4 5.2656250 3.0312500 4.7500000 2.8125000
#5 5.2656250 2.9375000 4.7031250 2.7500000
#6 5.7343750 3.0312500 4.7656250 3.3125000

4. Discussion

Matrix decomposition is well established as an important
part of computer graphics. Just as every nonzero complex
number 𝑧 = 𝑟𝑒

𝑖𝜃 admits a unique polar representation with
𝑟 ∈ R

+
, 𝜑(−𝜋, +𝜋], every matrix 𝐴 can be decomposed

into a product of the unitary polar factor 𝑈 and a positive
semidefinite matrix𝐻.The polar decomposition is of interest
in many applications, for example, whenever it is required to
orthogonalize a matrix.

In this paper, we have developed a new method for
finding the unitary polar factor 𝑈. It has been shown that
the convergence is global and its rate is three. Scaling form of
our proposed method has also been given. From numerical
results, we observe that accuracy in successive approxima-
tions increases, showing stable nature of the method. Also,
like the existing methods, the presented method shows
consistent convergence behavior. Further improvement of
convergence rate can be considered for future studies.
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