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This paper introduces two novel numerical algorithms for the efficient solution of coupled systems of nonlinear boundary value
problems. The methods are benchmarked against existing methods by finding dual solutions of the highly nonlinear system of
equations that model the flow of a viscoelastic liquid of Oldroyd-B type in a channel of infinite extent. The methods discussed here
are the spectral relaxation method and spectral quasi-linearisation method. To verify the accuracy and efficiency of the proposed
methods a comparative evaluation of the performance of the methods against established numerical techniques is given.

1. Introduction

Exact solutions to a wide class of problems in engineering
and science are generally available only for a limited range of
problems. For this reason the quest for new techniques and
the improvement of existing techniques for finding solutions
of nonlinear equations are an ongoing challenge in engi-
neering and science. In addition to the classical numerical
methods, such as those based on finite differences, finite
elements, and finite volume techniques, there is currently a
wide variety of methods for nonlinear equations, such as,
among others, linearisation methods [1–4] and the trans-
form methods of Fokas [5–7]. Advances in decomposition
and variational methods in recent years have added to the
repertoire of available techniques for finding solutions of
nonlinear BVPs. In recent years these methods have been
further augmented by He’s [8, 9] and Liao’s [10, 11] homotopy
basedmethods and their various variants such as the spectral-
homotopy analysis of Motsa et al. [12, 13] and Liao’s [14]
generalized boundary element method.

This paper introduces two novel techniques based on a
combination of linearisation techniques and spectral meth-
ods and that allow for simple and straightforward integration

of systems of ordinary differential equations on finite and
infinite domains.We present an overview of these techniques
and provide a comparative evaluation of the two methods
against results in the literature.

A recent study by Bachok et al. [15] investigated the two-
component convection in a viscoelastic liquid of Oldroyd-B
type occupying a horizontal channel of infinite extent and
depth 𝑑. The flow is governed by the coupled system of
equations
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where 𝑓(𝜂), 𝜃(𝜂), and 𝜙(𝜂) represent, respectively, the nondi-
mensional stream function, temperature, and nanoparticle
volume fraction, Pr is the Prandtl number, Le is the Lewis
number, Nb is the Brownian motion number, and 𝐴 and Nt
are constant dimensionless parameters.
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Equations (1)–(3) are solved subject to the boundary
conditions

𝑓 (0) = 𝑠, 𝑓
󸀠

(0) = 𝜆, 𝜃 (0) = 1, 𝜙 (0) = 1,

(4)

𝑓
󸀠
(𝜂) 󳨀→ 0, 𝜃 (𝜂) 󳨀→ 0, 𝜙 (𝜂) 󳨀→ 0, as 𝜂 󳨀→ ∞,

(5)

where𝜆 is the stretching/shrinking velocity and 𝑠 is a constant
mass flux. In Bachok et al. [15] it was shown that dual
solutions of (1)–(3) exist for 𝜆 > 𝜆

𝑐
, where 𝜆

𝑐
(< 0) is some

critical value of 𝜆. No solutions exist for 𝜆 < 𝜆
𝑐
.

In the present study we revisit the solution of the system
of nonlinear equations (1)–(5) using the spectral relaxation
method (Motsa [16]) and the spectral quasi-linearization
method (SQLM).The objective of this study is to give a com-
parative analysis of the performance of the two techniques
in finding solutions of coupled highly nonlinear problems
in fluid mechanics. We determine, inter alia, the accuracy
of each method and demonstrate how dual solutions can
be obtained using the SQLM. In addition, we present a
systematic approach of obtaining critical parameter values
and multiple solutions of the governing equations.

2. The Spectral Relaxation Method

In this section we describe the development of the spectral
relaxation method (SRM) for the solution of the nonlinear
system (1)–(3). The system of equations is decoupled and
the resulting subsystems are solved in a sequential manner.
The method appears to be particularly effective for nonlinear
systems of differential equations in which some of the
unknown functions have exponentially decaying profiles.The
algorithm for the method when applied to the system (1)–(3)
may be summarized as follows.

(1) Reduce the order of the momentum equation from
three to one by using the transformation

𝑓
󸀠
(𝜂) = 𝑔 (𝜂) . (6)

(2) Assume that 𝑓 is known from some initial guess and
arrange the transformed equations in a particular
order, placing the equations with the least unknowns
at the top of the equations list. This gives

𝑔
󸀠󸀠
+ 𝐴 (𝑓𝑔
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− 𝑔
2
) + 𝑔 +
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= 0, 𝑔 (0) = 𝜆, 𝑔 (∞) = 0,

(7)

𝑓
󸀠
= 𝑔, 𝑓 (0) = 𝑠, (8)

with (2) and (3) placed below (8) in their original
form.

(3) Assign the labels 𝑔, 𝑓, 𝜃, and 𝜙 to the order list of (7),
(8), (2), and (3), respectively.

(4) In the equation for 𝑔 (1st equation), the iteration
scheme is developed by assuming that only linear

terms in 𝑔 are to be evaluated at the current iteration
level (denoted by 𝑟 + 1) and all other terms (linear
and nonlinear) in𝑓, 𝜃, and𝜙 are assumed to be known
from the previous iteration (denoted by 𝑟). In addition
nonlinear terms in 𝑔 are also evaluated at the previous
iteration.

(5) In developing the iteration scheme for the next
equation 𝑓, only linear terms in 𝑓 are evaluated at
the current iteration level (𝑟 + 1) with all other terms
evaluated at the previous level, except 𝑔 which is now
known from the solution of the first equation.

(6) This process is repeated in the equations for 𝜃 using
the updated solutions for 𝑔, 𝑓. The same procedure is
effected on the equation for 𝜙, now using the updated
solutions for 𝑔, 𝑓, and 𝜃.

The strategy used for decoupling the system of equations
is analogous to the Gauss-Seidel relaxation method which is
normally used in solving linear algebraic system of equations.
In the context of the algorithmdescribed above, we obtain the
following iteration scheme:
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(9)

subject to the boundary conditions

𝜃
𝑟+1

(0) = 1, 𝜙
𝑟+1

(0) = 1,

𝜃
𝑟+1

(∞) = 0, 𝜙
𝑟+1

(∞) = 0.

(10)

Given a set of initial approximations 𝑓
0
, 𝑔
0
, 𝜃
0
, 𝜙
0
, (9) can

be solved in a sequential manner, one after the other, using
an appropriate numerical method. It must be noted that
(9) now forms a sequence of linear differential equations
with variable coefficients which can easily be solved using
spectral collocation methods. The spectral methods are pre-
ferred here because of their remarkably high accuracy and
relative simplicity in discretizing and subsequent solution of
variable-coefficient linear differential equations with smooth
solutions over simple domains. Spectral methods, such as the
Chebyshev spectral collocation methods, have been found to
be very efficient in discretizing and solving other iteration
schemes for solving nonlinear equations of boundary layer
type. Examples of recently developed spectral based method
for solving boundary layer type equations include the spec-
tral homotopy analysis method [12, 13] and the successive
linearisation method [17, 18]. The SLM has been successfully
applied to different nonlinear boundary value problems in
fluid mechanics; see Awad et al. [19], Motsa and Sibanda
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[20], and Sibanda et al. [17, 18]. A large volume of literature
exists on the practical implementation of spectral collocation
methods including the books [21, 22] which the interested
reader may find useful.

In applying the spectral collocation method, we find the
unknown function at 𝑁 + 1 collocation points by requiring
that (9) be satisfied exactly at these points. A convenient set
of collocation points is the Gauss-Lobatto points defined on
[−1, 1] by

𝜏
𝑗
= cos(

𝜋𝑗

𝑁
) , 𝑗 = 0, 1, . . . 𝑁. (11)

We approximate the derivatives of the unknown functions,
say 𝑓󸀠(𝜂), using the so-called differentiation matrix𝐷 of size
(𝑁 + 1) × (𝑁 + 1) which is computed as at the collocation
points as the matrix vector product

𝑑𝑓

𝑑𝜂
=

𝑁

∑

𝑘=0

D
𝑗𝑘
𝑓 (𝜏
𝑘
) = Df , 𝑗 = 0, 1, . . . , 𝑁, (12)

where 𝐿 is a finite value used to numerically approxi-
mate the conditions at infinity, D = 2𝐷/𝐿, and f =

[𝑓(𝜏
0
), 𝑓(𝜏
1
), . . . , 𝑓(𝜏

𝑁
)]
𝑇 is the vector function at the col-

location points. The variable 𝜏 is defined from the linear
transformation 𝜂 = 𝐿(𝜏 + 1)/2 used to convert the truncated
interval [0, 𝐿] into the interval [−1, 1] on which the spectral
method can be implemented. The second order derivatives
are obtained as powers ofD; that is

𝑓
󸀠󸀠
(𝜂) = D2f . (13)

Applying the Chebyshev spectral collocation method on (9)
we obtain the following sequence of matrix equations:
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where I is an (𝑁 + 1) × (𝑁 + 1) diagonal matrix, diag [ ]

denotes a diagonal matrix, and f , g, Θ, and Φ correspond
to the approximation of the functions 𝑓, 𝑔, 𝜃, and 𝜙 when
evaluated at the collocation points.The SRM iteration scheme

(14)-(15) is solved for 𝑟 = 0, 1, 2, . . ., starting from suitable
initial guesses 𝑓

0
, 𝑔
0
, 𝜃
0
, and 𝜙

0
. We choose the following

initial approximations which satisfy the boundary conditions
of the governing equations:

𝑔
0
= 𝜆𝑒
−𝜂
, 𝑓

0
= 𝜆 + 𝑠 − 𝜆𝑒

𝜂
,

𝜃
0
= 𝑒
−𝜂
, 𝜙

0
= 𝑒
−𝜂
.

(19)

3. The Spectral Quasi-Linearisation Method

In this section, we present an alternative method for solving
the governing system of (1)–(3). We employ the quasi-
linearization method (QLM) which is a generalization of
Newton-Raphson method. This method was initially pro-
posed by Bellman and Kalaba [1] for solving nonlinear
boundary value problems. Here we extend the application of
the QLM to the governing equations (1)–(3) and discretize
the QLM equations using the spectral collocation method as
described in the previous section. In this work, the spectral
method based quasi-linearizationmethod is referred to as the
spectral quasi-linearisation method (SQLM).

To develop the SQLM scheme it is convenient to write
the governing system as a sum of its linearL and nonlinear
components𝑁 as

L
𝑖
[𝑓, 𝑓
󸀠
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(20)

for 𝑖 = 1, 2, 3, where (1), (2), and (3) are labeled using 𝑖 = 1, 2,
and 3, respectively. Thus, we have
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The QLM is equivalent to multivariable Taylor series
expansion of the nonlinear functions 𝑁

𝑖
assuming that the

difference in the values of each unknown function at the
current iteration denoted by, say, 𝑓

𝑟+1
and the previous

iteration 𝑓
𝑟
is small. Thus, the QLM scheme corresponding

to (1)–(3) is given by
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Figure 1: Effect of varying the parameters 𝐴 and 𝑠 on the error 𝐸
𝑟
from the SRM.

0 10 20 30 40 50
10 −12

10 −10

10−8

10−6

10−4

10−2

100

102

Iterations

E
r

𝜆 = 1

𝜆 = 2

𝜆 = 3

𝜆 = 4

Figure 2: Effect of varying the parameter 𝜆 on the error 𝐸
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To derive the above QLM scheme, it was noted that the
solution for 𝑓 can be resolved independently of (2) and (3).
Thus, in deriving the iteration schemes for 𝜃 and 𝜙, the
solution for 𝑓 at the current iteration (𝑟 + 1) was assumed
to be known.

Applying the Chebyshev pseudo-spectral method on (22)
we obtain the following SQLM scheme in matrix form:
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Figure 3: Effect of varying parameters on the SQLM error 𝐸
𝑟
.
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,

𝐵
3,𝑟
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(26)

where O denotes an (𝑁 + 1) × 1 matrix of zeros and [ ]
𝑑

denotes diag( ); that is, the vector elements are placed on
the main diagonal of a matrix whose entries everywhere else
are zero. Starting from the initial approximations (19), the
approximate SQLM solutions for 𝑓(𝜂), 𝜃(𝜂), and 𝜙(𝜂) are
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1.

obtained by solving (24) subject to the boundary conditions
(25).

4. Determining System Critical Values

The system (1)–(3) was reported in Bachok et al. [15]
to have multiple solutions and bifurcation curves on the
planes (Re1/2

𝑥
𝐶
𝑓
, 𝜆), (Re−1/2

𝑥
Nu
𝑥
, 𝜆), and (Re−1/2

𝑥
Sh
𝑥
, 𝜆). The

parameters 𝐶
𝑓
, Nu
𝑥
, and Sh

𝑥
are, respectively, skin friction

coefficient, local Nusselt number, and the local Sherwood
number and are defined in terms of the governing parameters
as

Re1/2
𝑥

𝐶
𝑓
= 𝐴
−1/2

𝑓
󸀠󸀠

(0) , Re−1/2
𝑥

Nu
𝑥
= −𝐴
1/2

𝜃 (0) ,

Re−1/2
𝑥

Sh
𝑥
= −𝐴
−1/2

𝜙 (0) .

(27)

In this section, we demonstrate how the spectral quasi-
linearisation method (SQLM) may be used to determine the
critical values of 𝜆 beyond which solutions do not exist.

To determine the critical values 𝜆
𝑐
, we regard 𝜆 and𝑓󸀠󸀠(0)

to be additional unknown variables.We define𝑓󸀠󸀠(0) = 𝛼 and
differentiate (1) with respect to 𝛼 to obtain

ℎ
󸀠󸀠󸀠

+ 𝐴 (𝑓ℎ
󸀠󸀠
+ 𝑓
󸀠󸀠
ℎ − 2𝑓

󸀠
ℎ
󸀠
) + ℎ
󸀠
+
𝜂

2
ℎ
󸀠󸀠
= 0, (28)

subject to

ℎ (0) = 0, ℎ
󸀠

(0) =
𝜕𝜆

𝜕𝛼
, ℎ

󸀠

(∞) = 0, ℎ
󸀠󸀠

(0) = 1,

(29)

where ℎ = 𝜕𝑓/𝜕𝛼. Criticality of the curve 𝜆 = 𝜆(𝛼)

corresponds to 𝜕𝜆/𝜕𝛼 = 0; thus, ℎ󸀠(0) = 0. Applying quasi-
linearisation on (1) and (28)-(29) gives

𝑓
󸀠󸀠󸀠

𝑟+1
+ (𝐴𝑓

𝑟
+
𝜂

2
)𝑓
󸀠󸀠

𝑟+1
+ (1 − 2𝐴𝑓

󸀠

𝑟
) 𝑓
󸀠

𝑟+1
+ 𝐴𝑓
󸀠󸀠

𝑟
𝑓
𝑟+1

= 𝐴 (𝑓
𝑟
𝑓
󸀠󸀠

𝑟
− 𝑓
󸀠2

𝑟
) ,

ℎ
󸀠󸀠󸀠

𝑟+1
+ (𝐴𝑓

𝑟
+
𝜂

2
) ℎ
󸀠󸀠

𝑟+1
+ (1 − 2𝐴𝑓

󸀠

𝑟
) ℎ
󸀠

𝑟+1

+ 𝐴𝑓
󸀠󸀠

𝑟
ℎ
𝑟+1

+ 𝐴ℎ
𝑟
𝑓
󸀠󸀠

𝑟+1
− 2𝐴ℎ

󸀠

𝑟
𝑓
󸀠

𝑟+1
+ 𝐴ℎ
󸀠󸀠

𝑟
𝑓
𝑟+1

= 𝐴 (𝑓
𝑟
ℎ
𝑟
+ 𝑓
󸀠󸀠

𝑟
ℎ
𝑟
− 2𝑓
󸀠

𝑟
ℎ
󸀠

𝑟
) ,

(30)

subject to

𝑓
𝑟+1

(0) = 𝑠, 𝑓
󸀠

𝑟+1
(0) = 𝜆

𝑟+1
,

𝑓
󸀠󸀠

𝑟+1
(0) = 𝛼

𝑟+1
, 𝑓

󸀠

𝑟+1
(∞) = 0,

ℎ
𝑟+1

(0) = 0, ℎ
󸀠

𝑟+1
(0) = 0,

ℎ
󸀠󸀠

𝑟+1
(0) = 1, ℎ

𝑟+1
(∞) = 0.

(31)

Equations (30) and (31) forma systemof four equationswhich
are solved iteratively for the unknowns𝑓, ℎ, 𝜆, 𝛼 starting from
suitable initial approximations 𝑓

0
, ℎ
0
, 𝜆
0
, 𝛼
0
. Applying the

spectral collocation method on (30) and (31) gives

Ω
11
f
𝑟+1

= 𝛽
1
,

Ω
21
f
𝑟+1

+ Ω
22
h
𝑟+1

= 𝛽
1
,

(32)

subject to the boundary conditions

𝑓
𝑟+1

(𝜏
𝑁
) = 𝑠,

𝑁

∑

𝑘=0

D
𝑁𝑘

𝑓
𝑟+1

(𝜏
𝑘
) = 𝜆
𝑟+1

,

𝑁

∑

𝑘=0

D
0𝑘
𝑓
𝑟+1

(𝜏
𝑘
) = 0,

𝑁

∑

𝑘=0

(D2)
𝑁𝑘

𝑓
𝑟+1

(𝜏
𝑘
) = 𝜆
𝑟+1

,

𝑔
𝑟+1

(𝜏
𝑁
) = 0,

𝑁

∑

𝑘=0

D
𝑁𝑘

ℎ
𝑟+1

(𝜏
𝑘
) = 0,

𝑁

∑

𝑘=0

D
0𝑘
𝑓
𝑟+1

(𝜏
𝑘
) = 0,

𝑁

∑

𝑘=0

(D2)
𝑁𝑘

ℎ
𝑟+1

(𝜏
𝑘
) = 1,

(33)
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𝑠 = 1.

where

Ω
11

= 𝐴
1,𝑟
,

Ω
21

= 𝐴[h
𝑟
]
𝑑
D2, −2𝐴[h󸀠

𝑟
]
𝑑
D + 𝐴[h󸀠󸀠

𝑟
]
𝑑
,

Ω
22

= Ω
11
,

𝛽
1
= 𝐵
1,𝑟
,

(34)
𝛽
2
= 𝐴f
𝑟
h󸀠󸀠
𝑟
+ 𝐴h
𝑟
f󸀠󸀠
𝑟
− 2𝐴f󸀠

𝑟
h󸀠
𝑟
. (35)
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In matrix form, (32) and (33) can be expressed as

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

D
00

⋅ ⋅ ⋅ D
0𝑁

0 ⋅ ⋅ ⋅ 0 0 0

Ω
11

0 Ω
12

0 0 0

D
𝑁0

⋅ ⋅ ⋅ D
𝑁𝑁

0 ⋅ ⋅ ⋅ 0 −1 0

0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 D
00

⋅ ⋅ ⋅ D
0𝑁

0 0

Ω
21

Ω
22

0 0

0 ⋅ ⋅ ⋅ 0 D
00

⋅ ⋅ ⋅ D
0𝑁

0 0

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1 0 0

D2
00

⋅ ⋅ ⋅ D2
0𝑁

0 ⋅ ⋅ ⋅ 0 0 −1

0 ⋅ ⋅ ⋅ 0 D2
00

⋅ ⋅ ⋅ D2
0𝑁

0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓
𝑟+1

(𝜏
0
)

...

𝑓
𝑟+1

(𝜏
𝑁−1

)

𝑓
𝑟+1

(𝜏
𝑁
)

ℎ
𝑟+1

(𝜏
0
)

...

ℎ
𝑟+1

(𝜏
𝑁−1

)

ℎ
𝑟+1

(𝜏
𝑁
)

𝜆
𝑟+1

𝛼
𝑟+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

𝛽
1

0

𝑠

0

𝛽
2

0

0

0

1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(36)

5. Results and Discussion

The governing systems of (1) and (3) were solved using
the spectral relaxation method (SRM) and spectral quasi-
linearisation method (SQLM). In this section, we present
the results of the numerical computations for the velocity,
temperature, and concentration profiles for the various input
parameters. The convergence and stability of the iteration
schemes can be assessed by considering the norm of the
difference in the values of functions between two successive
iterations. For a converging iteration scheme, the difference in
the norm of the value of the functions computed at successive
iterations is expected to decrease with an increase in the
number of iterations. The accuracy of the present results was
verified by comparing with the results of Bachok et. al. [15].
In the calculations presented here, the values of the governing
physical parameters were chosen deliberately to match the
results of [15] in order to enable effective comparison. The
effect of the number of collocation points𝑁was examined in
order to select the smallest value of𝑁which gives a consistent
solution.This is achieved by repeatedly solving the governing
equations using the proposed iteration schemeswith different
values of𝑁 until the consistent solution within a small error
tolerance level 𝜀was reached. In this work, the error tolerance
was set to be 𝜀 = 10

−9. Unless otherwise specified, the number
of collocation points used in this study is 𝑁 = 100. The

Table 1: Comparison between the SQLM values and the results of
Bachok et al. [15].

𝐴 𝑠 𝜆
𝑐
(SQLM) 𝜆

𝑐
[15]

1 1 −0.21389757 −0.2138
2 1 −0.46299891 −0.4629
3 1 −0.71756481 −0.7175
1 −1 −0.06319955 −0.0631
1 2 −0.92599783 −0.9259

𝐿, that is, 𝜂 at infinity, was also chosen in such a way that
further changes in its magnitude do not produce changes in
the values of 𝑓 and its derivatives within the tolerance level
𝜀. A value of 𝐿 = 20 was found to be appropriate in all cases
discussed in this investigation.

Figures 1 and 2 show the variation of the error 𝐸
𝑟
, the

difference of the norm of 𝑓(𝜂) computed using the spectral
relaxation method at different iterations for different system
parameter values. In all three cases it can be seen that 𝐸

𝑟

decreases as the number of iterations increases. This shows
that the SRM converges for the selected choice of parameters.
The convergence of the SRM improves with an increase in the
unsteadiness parameter 𝐴 and mass suction parameter 𝑠 but
decreases with an increase in the stretching parameter 𝜆.

Figure 3 gives the variation of the SQLM generated error
𝐸
𝑟
with the number of iterations. The convergence of the

SQLM is seen to be rapid for the first few iterations then
plateaus after about five iterations. This result presents the
main difference between the SRM and SQLM. The SRM
results in Figures 1 and 2 indicate strict convergence of
the method with the error progressively reduced with an
increase in the number of iterations. For the same number of
collocations points, the SQLM will converge faster than the
SRM but is less accurate. This observation suggests that the
convergence rate of the SQLMapproach is superior. However,
it turns out that the SRM yields a better accuracy for the three
ODEs system.

To obtain themultiple solutionswe choose an initial guess
of the form

𝑓
0
(𝜂) = 𝑠 − 𝜎 + [𝜎 + (𝜆 + 𝜎) 𝜂] 𝑒

−𝜂
, (37)

where 𝜎 is an unknown constant which must be carefully
selected. It is observed that when varying 𝜎 between negative
and positive values, the concavity of the velocity profile 𝑓󸀠(𝜂)
changes in the region near 𝜂 = 0. By fixing the values of the
governing physical parameters and varying the values of 𝜎
in the SQLM implementation, the values of 𝜎 that give the
multiple solutions can be identified from the maximum of
the residual of the momentum equation (1). Figure 4 shows
the variation of the maximum residual of the momentum
equation (1) against 𝜎 at different SQLM iterations when 𝜆 =

𝑠 = 𝐴 = 1. It can be seen that the graph develops two local
minima.Themultiple solutions were obtained by setting 𝜎 to
be equal to the value of 𝜎 at which the local minima occurs.
For example, when 𝜆 = 𝑠 = 𝐴 = 1, two solutions were
obtained when 𝜎 = −0.5 and 𝜎 = 1. It is worth mentioning
here that the SRMapproach did not yield the second solution.
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Figure 7: Variation of the local skin friction and local Nusselt and Sherwood numbers with 𝜆 for different values of 𝐴 and 𝑠 (dashes denote
second solution; solid line denotes 1st solution).

Figure 5 shows the two solution profiles 𝑓(𝜂) and 𝑓
󸀠
(𝜂),

respectively, for different values of𝐴 and fixed values of 𝜆 and
𝑠. The corresponding temperature and concentration profiles
are depicted in Figure 6.

In Table 1 we give a comparison between the present
SQLM results and the results of [15] for the critical values of 𝜆
for different values of𝐴 and 𝑠.We note that the present results
are in good agreement with the results reported in Bachok et
al. [15].This shows the accuracy of the SQLMwhen compared
to the shooting method as used in [15].

Figure 7 shows the variation of the local skin friction and
local Nusselt and Sherwood numbers with 𝜆 for different
values of 𝐴 and 𝑠 and corresponding to the other parameters
values reported inBachok et al. [15].TheSQLMeasily resolves
the dual solutions when 𝜆 > 𝜆

𝑐
. These results obtained using

the SQLM are qualitatively and quantitatively the same as
those of Bachok et al. [15]. The results show the two solutions

branches for each value of the unsteadiness parameter 𝐴 and
the mass flux parameter 𝑠.

6. Conclusion

In this study we have used two methods, the spectral relax-
ation method and the spectral quasi-linearisation method
to solve the highly nonlinear equations that describe the
unsteady heat transfer in a nanofluid over a permeable
stretching or shrinking surface. The results obtained by
Bachok et al. [15] have been confirmed. In terms of the
accuracy, convergence rates, and robustness of the techniques
used, we have demonstrated that

(i) The SQLM converges faster than SRM;

(ii) The SRM is more accurate than the SQLM;
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(iii) The SQLM can resolve multiple solutions and SRM
only yields one solution.
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