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Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become
a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring
and control system (ZBEMCS), which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform
for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for
electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy.
Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The
former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household
metering according to the campus’s main function zone and each college or department. Therefore, this system can be used for
energy consumptionmonitoring, long-term energy conservation planning, and the development of automated energy conservation
for building applications.

1. Introduction

With the emergence of new and innovative technologies,
living standards and quality of life have reached an all-time
high. A significant part of the modern lifestyle is intertwined
with the usage of electronic and electrical devices. However,
increases in the utilization of electronics and electrical appli-
ances have adversely resulted in an unprecedented increase in
energy consumption. Subsequently, due to the demand-sup-
ply gap, the price paid by the end user continues to increase
annually. As a result, there is a serious need to optimize
energy consumption and developmore energy-efficient tech-
nologies and electronic systems.This need has resulted in the
development of new fundamental and applied research fields
in the area of energy conservation. Among these research
areas, with the potential to result in significant developments
in energy consumption, is the design of integrated advanced
monitoring and control mechanisms with the capability to

better monitor and control power consumption, so that users
can easily measure the power consumption of electronic
devices and optimize their usage to enhance their energy
consumption performance [1].

With advancements in wireless technologies and through
the implementation of distributed sensor networks, resi-
dential energy consumption systems are beginning to take
advantage of these systems for reducing energy consumption
and thus increasing energy efficiency. By eliminating the
need to run wires in an existing facility, wireless technologies
can help reduce the cost of construction in an “intelligent”
building. Due to their small footprints, wireless nodes can
be easily mounted without interruption of usage and without
inconveniencing building occupants with renovations and
changes. Another benefit of wireless technologies that makes
them appropriate for residential use is their low energy
consumption, as they can be powered by batteries with long
service lives [2].
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Table 1 outlines the key characteristics of some common
wireless mechanisms [3]. From an application perspective,
Bluetooth is intended for cordless mice, keyboards, and
hands-free headsets. As an improved Bluetooth version, BLE
(Bluetooth low energy) is intended to provide considerably
reduced power consumption and cost while maintaining a
similar communication range. The ultrawideband (UWB) is
oriented to high-bandwidth multimedia links. The wireless
universal serial bus (wireless USB) is the personal inter-
connect technology used to meet the needs of multimedia
consumer electronics, PC peripherals, and mobile devices.
Wi-Fi is directed at computer-to-computer connections as an
extension or substitution for cabled networks [4, 5]. Infrared
(IR) wireless approaches are used for short- and medium-
range communications and control. Unlike radio-frequency
(RF) wireless links, IR wireless links cannot penetrate walls
or other obstructions [6].

In contrast to other listed wireless protocols in Table 1,
ZigBee is designed for reliable wirelessly networked mon-
itoring and control networks. An example of comparison
between ZigBee and BLE, two most popular techniques for
wireless measurement applications, demonstrates the reason
why the former is favorable for our application. BLE is
more oriented towards user mobility whereas ZigBee aims
for automation and remote control. Bluetooth supports 8
nodes per network whereas ZigBee supports up to 255 nodes
per network. In addition, the advantage of ZigBee in mesh
networking capabilities allows itself to be very easy to install
without the need for any special installation services. There-
fore, ZigBee is more suitable for remote energy monitor-
ing and control.

Due to the above reason, in this paper a ZigBee-based
building energy monitoring and control system (ZBEMCS)
is presented, which offers a promising solution for the afore-
mentioned objective. For monitoring, the hardware is based
on current and voltage measuring circuits, a microcontroller
unit (MCU), a control module, and a ZigBee module. The
current/voltage measuring circuit measures the current and
voltage and sends the information to the MCU. The MCU
checks for power abnormalities and sends information to
the building server, where a database is maintained through
ZigBee. For control, a relay is added to the power monitoring
hardware. In the case of an emergency found by theMCU, the
relay cuts the power supply to the electric building appliances
after receiving the control command. A graphic user interface
(GUI) software program is used as an interface between the
user and the end devices. Subsequently, the user can control
all electric appliances through a cell phone or a desktop or
laptop computer.

2. Related Work

Energy monitoring is essential for understanding the sources
of consumption inside a building and to take appropriate
measures to save energy. Generally, building energymonitor-
ing and control efforts can be divided in two broad categories:
hardware- and software-based.

Hardware-based approaches focus on involving physical
equipment such as smart plugs and smart plug strips for

controlling information and communication technologies
(ICTs) devices. The studies performed in [7–9] indicate the
perspective of considerable savings. In addition, replacing
equipment with more energy-efficient one can be effective, as
observed in [10, 11], with savings around 40–60%. Kamilaris
et al. [12] believed that the contribution of hardware-based
methods for savings needs to be quantified. In this way, com-
panies and organizations would be aware about the return of
investment when considering any of these approaches.

Software-based techniques consider mainly power man-
agement (PM) and virtualization. Somniloquy [13] and Sleep-
Server [14] are pioneering efforts regarding PM, claiming sig-
nificant savings exceeding 60%. LiteGreen [15] and VMware
[16] are dominating in the field of virtualization. Current
commercial products for PM and virtualization are efficient
and reliable, offering advanced features and large potential for
savings.

A comparison among hardware and software-based tech-
niques [11] shows that hardware-based approaches are more
effective, for example, by replacing desktop computers with
laptops. Other approaches stress the role of commercial
buildings in smart grid scenarios [17, 18] and the importance
of combining sensing with actuation [19].

Meanwhile, relevant efforts recognize the large impact of
occupants, affecting 20–50%of total building’s energy use [10,
20], and focus on motivating the occupants towards energy
savings through suggestions and advice, timely and compar-
ative eco-feedback techniques [21–23].

While hardware and software-based techniques can affect
electricity consumption in a large degree, provisioning is
crucial for conservation. Decisions made during the early
design stage can influence about 60% of total energy usage
life cycle, leaving the impact of user behavior and real-time
control to the rest 40%. Still, even small savings can have
significant effects on the overall costs of companies and on
the environment [12].

Apparently, in order to achieve standardized, effective,
and objective green standards for commercial buildings and
miscellaneous electric loads, international energy policies
and regulations need to be defined by stakeholders and
key players, involving legislative measures, economic instru-
ments, voluntary agreements, and technology and innovation
specifications.

Lastly, embedded ICTs, although increasing their col-
lective energy consumption globally, are expected to play a
crucial role in energy efficiency across the economy, helping
office equipment to operate in a more intelligent, automated,
and efficient way.

Compared with the abovementioned related work, the
contributions of our proposed system combine hardware
and software-based techniques. Firstly, our system accommo-
dates both traditional building energy meters and environ-
mental sensors, for wireless data transmission and manage-
ment in an integrated framework, which empowers the col-
lection andmonitoring of various types ofmeasurements that
reflect the energy consumption and environmental status of
buildings. Secondly, the system is further extended with web-
based management software, which offers rich analysis and
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Figure 1: Architecture of the ZBEMCS.

advanced report functions for monitoring both energy con-
sumption and environment.

3. System Architecture

The ZBEMCS consists of a gateway, a base station, and
sensors, as shown in Figure 1. The gateway is also named
the client, and its purpose is to connect sensor nodes to
an existing Ethernet network. The base station provides a
connection between the sensor nodes and the gateway. The
sensorsmonitor and control the energy usage of the electrical
equipment and transmit data to the base station.

3.1. Gateway. For this implementation, the gateway is
assigned the name SQ120 (“Client” in Figure 1) and is based
on an Intel IXP420 XScale processor running at 266MHz,
which features one wired Ethernet port and two USB 2.0
ports. The device is further equipped with 8MB of the pro-
gram FLASH, 32MB of RAM, and a 2 GB USB 2.0 sys-
tem disk. SQ120 runs the Debian Linux operating system,
which is a full-fledged standard Linux distribution for the
ARM architecture that comes preloaded with Crossbow’s
sensor network management and data visualization software
packages, XServe and MoteExplorer. These programs are
started automatically at the boot time of the SQ120. To set
up a sensor network gateway configuration, a base station
should be plugged into the secondary USB port of the
SQ120. SQ120 contains a built-in web server (MoteExplorer)
and a sensor network management tool (XServe). The latter
can automatically identify what types of sensor boards are
plugged into the nodes of the wireless sensor network and
instructs MoteExplorer to display the data accordingly [24].

3.2. Base Station. Thebase station is themonitoring and con-
trolling center of all branch circuits and the gateway for exter-
nal communication and the user interface; its main functions
are as follows [25]:

(1) executing control instructions through the Internet;
(2) monitoring the energy consumption of the sensor

nodes;
(3) calculating the remaining power capacity of each

branch circuit;
(4) indicating all energy consumption information.

As shown in Figure 2, the base station, which is a full
function device (FFD), consists of the mote processor/radio
platforms (XM2110) and a gateway (MIB520CB) via a 51-pin
expansion connector.Thus, the base station is configured as a
ZigBee coordinator (ZC) of WSNs. The base station receives
the data sent by all nodes in the network and sends a message
across the USB connection to the computer. The base station
runs the Debian Linux operating system preloaded with
Crossbow’s sensor network management and data visualiza-
tion software packages, including EcoView and Xserve [26].

Figure 3 shows a software flow chart of the base station.

3.3. Sensor Nodes. Thesensor node, which is themeasure and
control node, is shown in Figure 4. The sensor node is com-
prised of a direct current (DC) power module, a MCU,
an alternating current (AC) power control module, and a
ZigBee module. The MCU module communicates with the
power measurement module by an analog front end (AFE)
and with the ZigBee module through universal asynchro-
nous receiver/transmitter (UART) interfaces. Communica-
tion between the ZigBee module and the control module is
achieved by the pulse width modulation (PWM) technique.
The main functions of the sensor node are as follows [25]:

(1) measurement of power parameters, such as the volt-
age, current, and power of the outlet;

(2) control of the power output of the outlet;
(3) security protection from overload;
(4) transmission of the information of each node to the

base station through ZigBee.

3.3.1. DC PowerModule. Themain function of the DC power
module is to convert 220V of AC power into 5V and 3.3 V
of DC power to provide the operating power for all modules
in the sensor node.Themodule’s circuit structure is shown in
Figure 5. The AC 220V is converted by switching the power
module to DC 5V and 3.3 V by a linear regulator.

3.3.2. Power Measurement Module. The power-measurement
module is composed of the power-measuring integrated cir-
cuit (IC) 71M6541D, which is a Teridian 4th generation sin-
gle-phase metering system on a chip (SoC), with an error
margin of 0.1% that meets all ANSI and IEC electricitymeter-
ing standards. This IC is an integrated power-measurement
device that combines a 22-bit second-order delta-sigma
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analog-to-digital converter (ADC), four analog inputs, digital
temperature compensation, a precision voltage reference, an
independent 32-bit computation engine (CE), and a serial
interface (SPI) on a single chip. Additional features include
AC and DC calibration and phase compensation. Designed
for residential single-phase or industrial three-phase power-
meter applications, the IC accurately measures the instanta-
neous current and voltage while calculating the root-mean-
square voltage 𝑈rms, root-mean-square current 𝐼rms, reactive

MCU
module

Power 
measurement 

module

ZigBee 
module

DC power 
module

Control 
model

UARTAFE

PWM

3.
3V

3.3 V

Figure 4: Block diagram of the sensor node.

power 𝑄, active power 𝑃, apparent power 𝑆, power factor
PF, total voltage harmonic distortion 𝑈THD, total current
harmonic distortion 𝐼THD, and so on [27]. The circuit of this
module is shown in Figure 6.

The flow chart for calculating the RMS voltage and
current can be divided into two parts: AD conversion and
digital signal processing [25].

Part 1 (Analog-to-Digital Conversion). AnADC is used to con-
vert an analog signal into a digital signal. The measuring IC
has a 22-bit second-order sigma-delta ADC, which is used to
convert the voltage signal and current signal.TheADCoutput
is decimated by the finite impulse response (FIR) filter and is
stored in CE random access memory (RAM), where it can be
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accessed and processed by theCE.Themaximum signal input
into the measuring IC is ±0.25V.Therefore, a high-resistance
voltage divider with a properly designed resistance, which
can convert AC 250V into ±0.25V, is used. In addition, the
current sampling can use a current transformer to measure
the current signal with proper resistance and can convert AC
30A into±0.25V.The converted voltage and current are input
into the measuring IC to proceed to the next calculation, as
shown in Figure 6.

Part 2 (Digital Signal Processing). Various power parameters
can be computed in real time, including the root-mean-
square voltage 𝑈rms, root-mean-square current 𝐼rms, reactive
power 𝑄, active power 𝑃, apparent power 𝑆, power factor
PF, total voltage harmonic distortion𝑈THD, and total current
harmonic distortion 𝐼THD. The formulations adopted for
computing the power parameters are described below [28].

Although the fast Fourier transform (FFT) is efficient,
it has a strict requirement for the collected data; namely,
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the number of collected data points must be exactly a power
of 2 (2𝑛) [29]. If we use the FFT to process data, the reducing
spectrum leakage problem or the hurdle effect is likely to
arise, which does not suit our goals. Thus, in this system, we
use the discrete Fourier transform (DFT) algorithm, which
requires only 100 data samples/points during a period and has
an acceptable time range, instead of using the FFT to process
the collected data [30].

Assume that a voltage or current signal 𝑥(𝑡) having a
sampled sequence 𝑥(𝑛) is sampled at a regular time interval
𝑇, that is, {𝑥(0), 𝑥(𝑇), . . . , 𝑥((𝑁 − 1)𝑇)}. The DFT of 𝑥(𝑛)
is 𝑋(𝑘), defined as the sequence of complex values {𝑋(0),
𝑋(𝑤
0
), . . . , 𝑋((𝑁 − 1)𝑤

0
)} in the frequency domain, where

𝑤
0
is the fundamental frequency given by 𝑤

0
= 2𝜋/𝑁𝑇.

According to the decimation-in-time FFT algorithm [31], the
DFT values𝑋(𝑘) at frequency 𝑘𝑤

0
are computed as follows:

𝑋(𝑘) =

𝑁−1

∑

𝑛=0

𝑥 (𝑛)𝑊
𝑛𝑘

𝑁
, 𝑘 = 0, 1, . . . , 𝑁 − 1, (1)

where𝑊𝑛𝑘
𝑁
= 𝑒
−𝑗(2𝜋/𝑁)𝑘𝑛 is the twiddle factor.

Given the DFT values 𝑈(𝑘) and 𝐼(𝑘), the root-mean-
square values 𝑈rms and 𝐼rms of the sampled voltage and the
current values 𝑢(𝑛) and 𝑖(𝑛) can be computed as follows:

𝑈
2

rms =
2

𝑁2
{

𝑁/2−1

∑

𝑘=0

((Re [𝑈 (𝑘)])2 + (Im [𝑈 (𝑘)])2)} ,

𝐼
2

rms =
2

𝑁2
{

𝑁/2−1

∑

𝑘=0

((Re [𝐼 (𝑘)])2 + (Im [𝐼 (𝑘)])2)} ,

(2)

where Re[⋅] and Im[⋅] represent the real and imaginary parts,
respectively.

The reactive power𝑄 and the active power 𝑃 can be com-
puted as follows:

𝑃 =
2

𝑁2
{

𝑁/2−1

∑

𝑘=0

((Re [𝑈 (𝑘)]Re [𝐼 (𝑘)])

+ (Im [𝑈 (𝑘)] Im [𝐼 (𝑘)])) } ,

𝑄 =
2

𝑁2
{

𝑁/2−1

∑

𝑘=0

((Re [𝐼 (𝑘)] Im [𝑈 (𝑘)])

− (Re [𝑈 (𝑘)] Im [𝐼 (𝑘)])) } .

(3)

The apparent power 𝑆 and the power factor PF are calcu-
lated as follows:

𝑆 = 𝑈rms𝐼rms,

PF =
𝑝

𝑠
.

(4)

Finally, the total voltage harmonic distortion 𝑈THD and
the total current harmonic distortion 𝐼THD are computed as
follows:

𝑈THD =
√∑
𝑁/2

𝑘=2
𝑈2 (𝑘)

𝑈 (1)
× 100%,

𝐼THD =
√∑
𝑁/2

𝑘=2
𝐼2 (𝑘)

𝐼 (1)
× 100%.

(5)

3.3.3. Control Module. The control module includes a relay
and its driving circuit, as shown in Figure 6. This module
mainly receives control instructions from the ZigBee module
to acquire the status of the relay and to then control the output
power of the outlet. The controller signal from the ZigBee
module is amplified by the transistor and is then transmitted
to the drive relay.The freewheeling diodes set on both sides of
the relay are used to provide a release method for the diode to
generate a reversed voltage, instantly changing the relay from
ON to OFF and preventing damage to the transistor [25].

Figure 7 shows a software flow chart of the sensor node.
Figure 8 displays the function of the control module.

3.3.4. ZigBee Module. The ZigBee module is composed of
mote processor/radio platforms (XM2110), which use the
Atmel RF230, IEEE 802.15.4 compliant, ZigBee-ready radio
frequency transceiver integrated with an Atmega1281 MCU.
These enhancements provide up to three times the radio
range and twice the programmemory of previous-generation
MICA motes [32]. A block diagram of XM2110 is shown
in Figure 2. In the sensor node, XM2110 connects with the
sensor board via a 51-pin expansion connector, whose struc-
ture is shown in Figure 6.

ZigBee is a wireless network protocol and an adapted
IEEE 802.15.4 standard owned by ZigBee Alliance, which
defines the media layer and the objective layer. ZigBee exhib-
its low transmission speed at low cost and low energy con-
sumption, with high security, and supports a large number of
web node operations. Therefore, ZigBee is very suitable for
use in building monitoring and controlling systems.

In the ZigBee module, the effective transmission distance
between nodes is determined by the transmission energy
designed for the module. At present, the transmission dis-
tance of the commercial module can reach approximately
100m under the barrier-free condition. Although the par-
tition blocks of buildings may reduce the communication
distance, the use of ZigBee can support the network structure
with a tree or mesh, and setting certain nodes in the net-
work to the router function can effectively overcome the
issues of transmission in the same horizontal floor and at
different vertical floors over a long distance. Conceptually,
ZigBee communication can be applied to buildings without
restrictions on the transmission distance [25, 33].

To help resolve the noise interference issue, ZigBee uses
the direct sequence spread spectrum (DSSS) to reduce the
environmental interference and uses a carrier sense multiple
access with collision avoidance (CSMA/CA) channel access
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mechanism, dynamic frequency selection, and transmission
power control to avoid channel collisions [4, 34, 35].

4. Experimental Results

4.1. Accuracy Verification. To verify the accuracy and imple-
mentation of the ZBEMCS, a practical demonstration system
was produced; the methods, design procedures, and practical
work are shown in Figure 9. This demonstration system is
equipped with one base station that manages two branch
circuits, each of which includes one sensor node. Each smart

node is composed of a ZigBee module, a MCU, a power-
measuring IC, voltage and current measure circuits, and
relays. The physical system is shown in Figure 10. In this
system, VB.NET is used to program the user interface of
the remote monitoring and control center, which would
communicate with the base station through Internet. The
operating screen is shown in Figure 11.

First, we use the ZBEMCS and a standard clampmeter to
measure the current and voltage usage of a lamp, a hair dryer,
and an electric heater simultaneously, as shown in Figures 12
and 13. Table 2 indicates the experimental results. From
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Table 2: Current and voltage data comparison between the ZBEMCS and a standard clamp meter.

A: ZBEMCS B: standard clamp meter A−B
Current (A) Voltage (V) Current (A) Voltage (V) Current (A) Voltage (V)

Lamp

0.27 235.2 0.25 238 0.02 −2.8
0.26 235.5 0.24 238.2 0.02 −2.7
0.25 235.5 0.22 237.2 0.03 −1.7
0.24 235.3 0.19 236.4 0.05 −1.1
0.23 235 0.18 236.5 0.05 −1.5
0.22 235 0.16 236.5 0.06 −1.5
0.21 233.9 0.15 236.6 0.06 −2.7
0.2 234 0.14 236.7 0.06 −2.7

Hair dryer
0.77 235.4 0.72 237.4 0.05 −2.0
3.53 233.8 3.46 236.1 0.07 −2.3
4.49 233.8 4.42 235.5 0.07 −1.7

Electric heater
2.82 234.5 2.75 236.3 0.07 −1.8
4.71 233.2 4.65 235 0.06 −1.8
7.5 231.7 7.45 233.4 0.05 −1.7

Average deviation 0.051 −2.0
Standard deviation 0.017 0.545

Figure 9: Prototype system.

Figure 10: Circuits of the sensor node.

Table 2, we can see that the average deviation of themeasured
current between the ZBEMCS and the standard clamp meter
is 0.051 A, and the average deviation of the voltage is 2.0 V; the
corresponding standard deviation of the current is 0.017 A,
and that of the voltage is 0.545V.

Next, we use the ZBEMCS and a standard wattmeter to
measure the energy consumption of two electric heaters. The
experimental results are shown in Table 3. From this table, we
find that although the measurement values of the ZBEMCS

Figure 11: GUI showing the local and remote monitoring and
control screen.

Figure 12: ZBEMCS, standard wattmeter, and clamp meter.

and the standard wattmeter are both larger than those of the
nominal power, the average deviation and standard deviation
between them are negligible.The average deviation of branch
1 is 0.058 kW⋅h, that of branch 2 is 0.060 kW⋅h, and that of
the trunk is 0.118 kW⋅h; the standard deviation of branch 1 is
0.035 kW⋅h, that of branch 2 is 0.035 kW⋅h, and that of the
trunk is 0.071 kW⋅h.
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Table 3: Power consumption data for two electric heaters (kWh).

Time (h) 1.00 8.17 9.35

C: ZBEMCS
Branch 1 0.609 8.838 15.779
Branch 2 1.508 18.633 7.278
Trunk 2.117 27.471 23.057

D: standard wattmeter
Branch 1 0.7 8.9 15.8
Branch 2 1.6 18.7 7.3
Trunk 2.3 27.6 23.1

Power on nameplate (kW)
Branch 1 0.6 1.0 1.6
Branch 2 1.5 2.2 0.7
Trunk 2.1 3.2 2.3

E: nominal power
Branch 1 0.6 8.170 14.960
Branch 2 1.5 17.974 6.545
Trunk 2.1 26.144 21.505 Average deviation Standard deviation

C−D
Branch 1 −0.091 −0.062 −0.021 −0.058 0.035
Branch 2 −0.092 −0.067 −0.022 −0.060 0.035
Trunk −0.183 −0.129 −0.043 −0.118 0.071

C−E
Branch 1 0.009 0.668 0.819 0.499 0.431
Branch 2 0.008 0.659 0.733 0.467 0.399
Trunk 0.017 1.327 1.552 0.965 0.829

D−E
Branch 1 0.100 0.730 0.840 0.557 0.399
Branch 2 0.100 0.726 0.755 0.527 0.370
Trunk 0.200 1.456 1.595 1.084 0.768

Figure 13: The tested appliances included a lamp, a hair dryer, and
two electric heaters.

Therefore, the measurement accuracy of the ZBEMCS is
dependable, and we can use the ZBEMCS to monitor the
parameters of building electric devices.

4.2. Case Study. The Run Run Shaw Architectural building
(RRSAB) is an office building located at Southeast University,
Nanjing, China. We use the ZBEMCS to monitor the power
consumed by the electric devices in the rooms 701, 705, 707,
708, and 709 of the 7th floor of the RRSAB. Figure 14 shows
the floor plan of the seventh floor of the RRSAB. Table 4 lists
the facilities in the testing rooms. Figure 15 shows electric
power consumptions of the testing rooms.

From Figure 15, the power consumptions for every hour
of the facilities in the testing rooms are easily available.

Figure 14: Floor plan of the seventh floor of the RRSAB.

Table 4: The facilities in the testing rooms.

Rooms Facilities

701
Office

2 computers, 1 air condition, 1 electric kettle, 1
refrigerator, 1 fountain, 1 water dispenser, and 1
microwave oven

705
Teaching room

11 computers, 4 fans, 1 refrigerator, 1 air
condition, and 1 electric kettle

707
Reading room

1 computer, 1 air condition, 4 fans, and 1 water
dispenser

708
Library 2 computers, 1 air condition, and 1 fan

709
Lab

4 computers, 1 air condition, 1 electric kettle, 1
water dispenser, and 3 robots

5. Application of ZBEMCS

ZBEMCS provides both local/remote power parameter mea-
surement and power on/off switching for electric appliances.
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Figure 15: Electric power consumption of the testing rooms.

Therefore, this system can be used for energy consump-
tion monitoring, long-term energy conservation planning,
and the development of automated energy conservation for
building applications. One typical application of ZBEMCS
is subentry metering of building energy. For example, for
most campus buildings whose energy consumed is mainly
power in hot and humid climate, ZBEMCS collects the data
according to the electricity system, which can be divided into
the following four separate items, as shown in Figure 16:

(1) lighting socket electricity, which mainly includes the
lighting and power sockets (indoor lighting elec-
tricity, air terminal socket electricity, and regular
socket electricity), the corridor and emergency light
electricity, and the outdoor landscape lighting;

(2) HVAC (heating, ventilation, and air conditioning)
electricity, whichmainly includes the electricity of the
heating and cooling source equipment (refrigerating
electricity, fan electricity of the cooling tower, and
electricity of the electric boiler), air terminal socket
electricity, and electricity of the transportation equip-
ment (chilled water pump, cooling water pump, and
hot water circulation pump electricity);

(3) power electricity, which mainly includes the elec-
tricity for the elevator, water pump, fan, and special
electricity (where special electricity refers to the
special power consumption that does not belong to
the normal function of the electrical equipment).
The special characteristic of special electricity is a
high energy density; it uses more power than the
major electricity facilities and equipment. According
to the campus building characteristics, special electric
facilities generally include laboratories, clean rooms,
information centers, dining rooms, laundry rooms,
swimming pools, and other special facilities;

(4) special electricity for large special equipment for
scientific research or other auxiliary equipment.

Another typical application of ZBEMCS is household
metering of building energy. For example, one household
metering method is implemented according to the campus’s
main function zone, as shown in Figure 17. It considers the
campus as an energy management subcenter and divides
every campus building into four components: the adminis-
trative area, office area, study area, and living area. Then, it
finds the sumof the energy consumption of each building.We
perform the statistics step by step from the room to building,
namely, in the order of the classroom, floors, building, and
energy management center.

The other household metering method is implemented
according to each college or department, as shown in
Figure 18, which is campus-college-function-energy con-
sumption monitoring. The specific metering method is sim-
ilar to the first method. It is applicable to the campus that
needs separate metering for every college. In particular, this
method divides the campus into different small campuses
and builds a subcenter of the building energy consumption
monitoring system so that each small campus can indepen-
dently monitor its energy consumption. Each small campus
can build its own college energy consumption monitoring
system. In addition, each campus can also be divided into an
administrative area, a teaching area, a library, a living area, an
office area, and other different areas. Then, a subset partition
system of the energy consumption monitoring system is
established. To improve the management convenience, the
office area and laboratory can be allocated to the college
management and monitoring system and conducted by each
college.We also perform the statistics step by step from rooms
to buildings using the same statistical method as in the first
method.

6. Conclusions

In this paper, the authors propose a cost-effective ZBEMCS,
which consists of a gateway, a base station, and sensors.
Specifically, a new hardware platform for power sensor
nodes is developed to perform both local/remote power
parameter measurement and power on/off switching for
electric appliances. The experimental results demonstrate
that the ZBEMCS can easilymonitor energy usagewith a high
level of accuracy. Two typical applications of ZBEMCS such
as subentry metering and household metering of building
energy are presented. The former includes lighting socket
electricity, HVAC electricity, power electricity, and special
electricity. The latter includes household metering according
to the campus’s main function zone and each college or
department. Therefore, this system can be used for energy
consumption monitoring, long-term energy conservation
planning, and the development of automated energy conser-
vation for building applications.
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