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A new existence result of 𝜀-vector equilibrium problem is first obtained. Then, by using the existence theorem of 𝜀-vector
equilibrium problem, a weakly 𝜀-cone saddle point theorem is also obtained for vector-valued mappings.

1. Introduction

Saddle point problems are important in the areas of opti-
mization theory and game theory. As for optimization theory,
the main motivation of studying saddle point has been their
connection with characterized solutions to minimax dual
problems. Also, as for game theory, the main motivation has
been the determination of two-person zero-sum games based
on the minimax principle.

In recent years, based on the development of vector
optimization, a great deal of papers have been devoted
to the study of cone saddle points problems for vector-
valued mappings and set-valued mappings, such as [1–8].
Nieuwenhuis [5] introduced the notion of cone saddle points
for vector-valued functions in finite-dimensional spaces and
obtained a cone saddle point theorem for general vector-
valued mappings. Gong [2] established a strong cone sad-
dle point theorem of vector-valued functions. Li et al. [4]
obtained an existence theorem of lexicographic saddle point
for vector-valued mappings. Bigi et al. [1] obtained a cone
saddle point theorem by using an existence theorem of a
vector equilibrium problem. Zhang et al. [9] established a
general cone loose saddle point for set-valued mappings.
Zhang et al. [8] obtained aminimax theorem and an existence
theorem of cone saddle points for set-valued mappings by
using Fan-Browder fixed point theorem. Some other types of
existence results can be found in [3, 10–18].

On the other hand, in some situations, it may not
be possible to find an exact solution for an optimization

problem, or such an exact solution simply does not exist,
for example, if the feasible set is not compact. Thus, it is
meaningful to look for an approximate solution instead.
There are also many papers to investigate the approximate
solution problem, such as [19–21]. Kimura et al. [20] obtained
several existence results for 𝜀-vector equilibrium problem
and the lower semicontinuity of the solution mapping of
𝜀-vector equilibrium problem. Anh and Khanh [19] have
considered two kinds of solution sets to parametric gener-
alized 𝜀-vector quasiequilibrium problems and established
the sufficient conditions for the Hausdorff semicontinuity (or
Berge semicontinuity) of these solution mappings. X. B. Li
and S. J. Li [21] established some semicontinuity results on
𝜀-vector equilibrium problem.

The aim of this paper is to characterize the 𝜀-cone sad-
dle point of vector-valued mappings. For this purpose, we
first establish an existence theorem for 𝜀-vector equilibrium
problem.Then, by this existence result, we obtain an existence
theorem for 𝜀-cone saddle point of vector-valued mappings.

2. Preliminaries

Let 𝑋 be a real Hausdorff topological vector space and let
𝑉 be a real local convex Hausdorff topological vector space.
Assume that 𝑆 is a pointed closed convex cone in 𝑉 with
nonempty interior int 𝑆 ̸= 0. Let 𝑉∗ be the topological dual
space of 𝑉. Denote the dual cone of 𝑆 by 𝑆∗:

𝑆
∗

= {𝑠
∗

∈ 𝑉
∗

: 𝑠
∗

(𝑠) ≥ 0, ∀𝑠 ∈ 𝑆} . (1)
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Note that from Lemma 3.21 in [22] we have

𝑧 ∈ 𝑆 ⇐⇒ {⟨𝑧
∗

, 𝑧⟩ ≥ 0, ∀𝑧
∗

∈ 𝑆
∗

} ,

𝑧 ∈ int 𝑆 ⇐⇒ {⟨𝑧
∗

, 𝑧⟩ > 0, ∀𝑧
∗

∈ 𝑆
∗

\ {0}} .

(2)

Definition 1 (see [7, 23]). Let 𝑓 : 𝑋 → 𝑉 be a vector-valued
mapping. 𝑓 is said to be 𝑆-upper semicontinuous on𝑋 if and
only if, for each 𝑥 ∈ 𝑋 and any 𝑠 ∈ int 𝑆, there exists an open
neighborhood 𝑈

𝑥
of 𝑥 such that

𝑓 (𝑢) ∈ 𝑓 (𝑥) + 𝑠 − int 𝑆, ∀𝑢 ∈ 𝑈
𝑥
. (3)

𝑓 is said to be 𝑆-lower semicontinuous on𝑋 if and only if −𝑓
is 𝑆-upper semicontinuous on𝑋.

Lemma 2 (see [17]). Let 𝑓 : 𝑋 × 𝑋 → 𝑉 be a vector-valued
mapping and 𝑠∗ ∈ 𝑆∗ \{0}. If𝑓 is 𝑆-lower semicontinuous, then
𝑠
∗

∘ 𝑓 is lower semicontinuous.

Definition 3 (see [24]). Let 𝐴 and 𝐵 be nonempty subsets of
𝑋 and 𝑓 : 𝐴 × 𝐵 → 𝑉 be a vector-valued mapping.

(i) 𝑓 is said to be 𝑆-concavelike in its first variable on 𝐴
if and only if, for all 𝑥

1
, 𝑥
2
∈ 𝐴 and 𝑙 ∈ [0, 1], there

exists 𝑥 ∈ 𝐴 such that

𝑓 (𝑥, 𝑦) ∈ 𝑙𝑓 (𝑥
1
, 𝑦) + (1 − 𝑙) 𝑓 (𝑥

2
, 𝑦) + 𝑆, ∀𝑦 ∈ 𝐵. (4)

(ii) 𝑓 is said to be 𝑆-convexlike in its second variable on
𝐵 if and only if, for all 𝑦

1
, 𝑦
2
∈ 𝐵 and 𝑙 ∈ [0, 1], there

exists 𝑦 ∈ 𝐵 such that

𝑓 (𝑥, 𝑦) ∈ 𝑙𝑓 (𝑥, 𝑦
1
) + (1 − 𝑙) 𝑓 (𝑥, 𝑦

2
) − 𝑆, ∀𝑥 ∈ 𝐴. (5)

(iii) 𝑓 is said to be 𝑆-concavelike-convexlike on 𝐴 × 𝐵 if
and only if 𝑓 is 𝑆-concavelike in its first variable and
𝑆-convexlike in its second variable.

Definition 4. Let 𝐴 ⊂ 𝑉 be a nonempty subset and 𝜀 ∈ int 𝑆.

(i) A point 𝑧 ∈ 𝐴 is said to be a weak 𝜀-minimal point
of 𝐴 if and only if 𝐴 ∩ (𝑧 − 𝜀 − int 𝑆) = 0 and Min

𝜀
𝐴

denotes the set of all weak 𝜀-minimal points of 𝐴.
(ii) A point 𝑧 ∈ 𝐴 is said to be a weak 𝜀-maximal point

of 𝐴 if and only if 𝐴 ∩ (𝑧 + 𝜀 + int 𝑆) = 0 and Max
𝜀
𝐴

denotes the set of all weak 𝜀-maximal points of 𝐴.

Definition 5. Let 𝑓 : 𝐴×𝐵 → 𝑉 be a vector-valued mapping
and 𝜀 ∈ int 𝑆. A point (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is said to be a weak 𝜀-𝑆-
saddle point of 𝑓 on 𝐴 × 𝐵 if

𝑓 (𝑎, 𝑏) ∈ Max
𝜀
𝑓 (𝐴, 𝑏)⋂Min

𝜀
𝑓 (𝑎, 𝐵) . (6)

3. Existence of 𝜀-Vector Equilibrium Problem

In this section, we deal with the following 𝜀-vector equilib-
rium problem (for short VAEP). Find 𝑥 ∈ 𝐸 such that

𝑓 (𝑥, 𝑦) + 𝜀 ∉ − int 𝑆, ∀𝑦 ∈ 𝐸, (7)

where 𝑓 : 𝑋 × 𝑋 → 𝑉 is a vector-valued mapping, 𝐸 is a
nonempty subset of𝑋, and 𝜀 ∈ int 𝑆.

If 𝑓(𝑥, 𝑦) = 𝑔(𝑦) − 𝑔(𝑥), 𝑥, 𝑦 ∈ 𝐸, and if 𝑥 ∈ 𝐸 is
a solution of VAEP, then 𝑥 ∈ 𝐸 is a solution of 𝜀-vector
optimization of 𝑔, where 𝑔 is a vector-valued mapping.

Denote the 𝜀-solution set of (VAEP) by

𝑆 (𝜀) := {𝑥 ∈ 𝐸 : 𝑓 (𝑥, 𝑦) + 𝜀 ∉ − int 𝑆, ∀𝑦 ∈ 𝐸} . (8)

Lemma6 (see [20]). Let𝐸 be a nonempty subset of𝑋. Suppose
that 𝑓 : 𝑋 × 𝑋 → 𝑉 is a vector-valued mapping and the
following conditions are satisfied:

(i) cl𝐸 is a compact set;
(ii) {𝑥 ∈ cl𝐸 : 𝑓(𝑥, 𝑦) ∉ − int 𝑆, ∀𝑦 ∈ cl𝐸} ̸= 0;
(iii) 𝑓 is 𝑆-lower semicontinuous on cl𝐸 × cl𝐸.

Then, for each 𝜀 ∈ int 𝑆, 𝑆(𝜀) ̸= 0.

Next, we give a sufficient condition for the condition (ii)
in Lemma 6.

Lemma 7. Let 𝐸 be a nonempty subset of 𝑋. Suppose that 𝑓 :
𝑋 × 𝑋 → 𝑉 is a vector-valued mapping with 𝑓(𝑥, 𝑥) = 0 for
all 𝑥 ∈ 𝑋 and the following conditions are satisfied:

(i) cl𝐸 is a compact set;
(ii) 𝑓 is 𝑆-concavelike-convexlike on cl𝐸 × cl𝐸;
(iii) for each 𝑥 ∈ cl𝐸, 𝑓(𝑥, ⋅) is 𝑆-lower semicontinuous on

cl𝐸.

Then, there exists 𝑥 ∈ cl𝐸 such that

𝑓 (𝑥, 𝑦) ∉ − int 𝑆, ∀𝑦 ∈ cl𝐸. (9)

Proof. For any 𝑡 < 0 and 𝑠∗ ∈ 𝑆∗ \ {0}, we define a multifunc-
tion 𝐺 : cl𝐸 → 2

cl𝐸 by

𝐺 (𝑥) = {𝑦 ∈ cl𝐸 : 𝑠
∗

(𝑓 (𝑥, 𝑦)) ≤ 𝑡} , ∀𝑥 ∈ cl𝐸. (10)

First, by assumptions, we must have

⋂

𝑥∈cl𝐸
𝐺 (𝑥) = 0. (11)

In fact, if there exists 𝑦 ∈ cl𝐸 such that 𝑦 ∈ 𝐺(𝑥), for all
𝑥 ∈ cl𝐸, then

𝑠
∗

(𝑓 (𝑥, 𝑦)) ≤ 𝑡, ∀𝑥 ∈ cl𝐸. (12)

Particularly, taking 𝑥 = 𝑦, we have 0 = 𝑠∗(𝑓(𝑦, 𝑦)) ≤ 𝑡, which
contradicts the assumption about 𝑡.

Then, by Lemma 2, 𝐺(𝑥) is a closed set, for each 𝑥 ∈ cl𝐸.
By (11), for any 𝑦 ∈ cl𝐸, we have

𝑦 ∈ 𝑉 \ ⋂

𝑥∈cl𝐸
𝐺 (𝑥) = ⋃

𝑥∈cl𝐸
𝑉 \ 𝐺 (𝑥) . (13)

Since cl𝐸 is compact, there exists a finite point set {𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑛
} in cl𝐸 such that

cl𝐸 ⊂ ⋃

1≤𝑖≤𝑛

𝑉 \ 𝐺 (𝑥
𝑖
) . (14)
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Namely, for each 𝑦 ∈ cl𝐸, there exists 𝑖 ∈ {1, 2, . . . , 𝑛} such
that

𝑠
∗

(𝑓 (𝑥
𝑖
, 𝑦)) > 𝑡. (15)

Now, we consider the set

𝑀 := {(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
, 𝑟) ∈ 𝑅

𝑛+1

| ∃𝑦 ∈ cl𝐸,

𝑠
∗

(𝑓 (𝑥
𝑖
, 𝑦)) ≤ 𝑟 + 𝑧

𝑖
, ∀𝑖 = 1, 2, . . . , 𝑛} .

(16)

Obviously, by the condition (ii),𝑀 is a convex set. By (15), we
have the fact that (0

𝑅
𝑛 , 𝑡) ∉ 𝑀.

By the separation theorem of convex sets, there exists
(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
, 𝑟) ̸= 0

𝑅
𝑛 such that

𝑛

∑

𝑖=1

𝜆
𝑖
𝑧
𝑖
+ 𝑟𝑟 ≥ 𝑟𝑡, ∀ (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
, 𝑟) ∈ 𝑀. (17)

Since 𝑀 + 𝑅
𝑛+1

⊂ 𝑀, we can get 𝜆
𝑖
≥ 0 and 𝑟 ≥ 0, for all

𝑖 = 1, 2, . . . , 𝑛. By the definition of𝑀, for each 𝑦 ∈ cl𝐸,

(0
𝑅
𝑛 , 1 +max

1≤𝑖≤𝑛

𝑠
∗

(𝑓 (𝑥
𝑖
, 𝑦))) ∈ int𝑀, (18)

(𝑠
∗

(𝑓 (𝑥
1
, 𝑦)) − 𝑟,

𝑠
∗

(𝑓 (𝑥
2
, 𝑦)) − 𝑟, . . . , 𝑠

∗

(𝑓 (𝑥
𝑛
, 𝑦)) − 𝑟, 𝑟) ∈ 𝑀.

(19)

By (18), 𝑟 > 0. Then, by (17) and (19),

𝑛

∑

𝑖=1

𝜆
𝑖

𝑟

𝑠
∗

(𝑓 (𝑥
𝑖
, 𝑦)) + 𝑟(1 −

𝑛

∑

𝑖=1

𝜆
𝑖

𝑟

) ≥ 𝑡. (20)

By (20), ∑𝑛
𝑖=1
(𝜆
𝑖
/𝑟) = 1. Thus, by the condition (ii), for each

𝑦 ∈ cl𝐸, there exists 𝑥 ∈ cl𝐸 such that

𝑠
∗

(𝑓 (𝑥, 𝑦)) ≥

𝑛

∑

𝑖=1

𝜆
𝑖

𝑟

𝑠
∗

(𝑓 (𝑥
𝑖
, 𝑦)) ≥ 𝑡. (21)

By the assumption about 𝑡 and 𝑠∗, there exists 𝑥 ∈ cl𝐸 such
that

𝑓 (𝑥, 𝑦) ∉ − int 𝑆, ∀𝑦 ∈ cl𝐸. (22)

This completes the proof.

By Lemmas 6 and 7, we can get the following result.

Theorem 8. Let 𝐸 be a nonempty subset of 𝑋. Suppose that
𝑓 : 𝑋 × 𝑋 → 𝑉 is a vector-valued mapping with 𝑓(𝑥, 𝑥) = 0

for all 𝑥 ∈ 𝑋 and the following conditions are satisfied:

(i) cl𝐸 is a compact set;
(ii) 𝑓 is 𝑆-concavelike-convexlike on cl𝐸 × cl𝐸;
(iii) 𝑓 is 𝑆-lower semicontinuous on cl𝐸 × cl𝐸.

Then, for each 𝜀 ∈ int 𝑆, 𝑆(𝜀) ̸= 0.

Remark 9. Note that the condition (i) does not require the
fact that cl𝐸 is a convex set. So Theorem 8 is different from
Theorem3.2 in [20].The following example explains this case.

Example 10. Let𝑋 = 𝑅, 𝑉 = 𝑅
2, and 𝐸 = [0, 1/3] ∪ [2/3, 1],

𝑓 (𝑥, 𝑦) = {(𝑥𝑦, 𝑥𝑧) ∈ 𝑅
2

| 𝑧 = 1 − 𝑦
2

} , 𝑥, 𝑦 ∈ 𝑋,

𝑆 = {(𝑥, 𝑦) ∈ 𝑅
2

| 𝑥 ≥ 0, 𝑦 ≥ 0} .

(23)

Obviously, cl𝐸 is a compact set. However, cl𝐸 is not a convex
set. So,Theorem 3.2 in [20] is not applicable. By the definition
of 𝑓, 𝑓 is 𝑆-concavelike-convexlike on cl𝐸 × cl𝐸 and 𝑆-
lower semicontinuous on cl𝐸 × cl𝐸. Thus, all conditions of
Theorem 8 hold. Indeed, for each 𝜀 = (𝜀

1
, 𝜀
2
) ∈ int 𝑆,

𝑓 (0, 𝑦) + 𝜀 = (𝜀
1
, 𝜀
2
) ∉ − int 𝑆, ∀𝑦 ∈ 𝐸. (24)

Namely, 0 ∈ 𝑆(𝜀).

4. Existence of 𝜀-Cone Saddle Points

Lemma 11. Let𝐸 be a nonempty subset of𝑋 and𝐸 = 𝐴×𝐵. Let
𝜀 ∈ int 𝑆 and let 𝑓 : 𝑋 × 𝑋 → 𝑉 be a vector-valued mapping
with 𝑓(𝑥, 𝑦) = 𝑔(𝑎, V) − 𝑔(𝑢, 𝑏), where 𝑥 = (𝑎, 𝑏), 𝑦 = (𝑢, V),
𝑎, 𝑢 ∈ 𝐴, and V, 𝑏 ∈ 𝐵. If there exists 𝑥 = (𝑎, 𝑏) ∈ 𝐸 such that

𝑓 (𝑥, 𝑦) + 𝜀 ∉ − int 𝑆, ∀𝑦 ∈ 𝐸, (25)

then (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is a weak 𝜀-𝑆-saddle point of 𝑔 on 𝐴 × 𝐵.

Proof. By assumptions, we have

𝑓 (𝑥, 𝑦) + 𝜀 ∉ − int 𝑆, ∀𝑦 ∈ 𝐸. (26)

Then,

𝑔 (𝑎, V) − 𝑔 (𝑢, 𝑏) + 𝜀 ∉ − int 𝑆, ∀ (𝑢, V) ∈ 𝐴 × 𝐵. (27)

By (27), taking 𝑢 = 𝑎,

𝑔 (𝑎, V) − 𝑔 (𝑎, 𝑏) + 𝜀 ∉ − int 𝑆, ∀V ∈ 𝐵, (28)

which implies 𝑔(𝑎, 𝑏) ∈ Min
𝜀
𝑔(𝑎, 𝐵). Then, by (27), taking

V = 𝑏,

𝑔 (𝑎, 𝑏) − 𝑔 (𝑢, 𝑏) + 𝜀 ∉ − int 𝑆, ∀𝑢 ∈ 𝐴, (29)

which implies 𝑔(𝑎, 𝑏) ∈ Max
𝜀
𝑔(𝐴, 𝑏). Thus, (𝑎, 𝑏) ∈ 𝐴 × 𝐵

is a weak 𝜀-𝑆-saddle point of 𝑔 on 𝐴 × 𝐵. This completes the
proof.

Theorem 12. Let 𝐴 and 𝐵 be nonempty sets and 𝜀 ∈ int 𝑆.
Suppose that 𝑔 is a vector-valued mapping and the following
conditions are satisfied:

(i) cl𝐴 and cl𝐵 are compact sets;
(ii) 𝑔 is 𝑆-concavelike-convexlike on cl𝐴 × cl𝐵;
(iii) 𝑔 is 𝑆-upper semicontinuous on cl𝐴 × cl𝐵;
(iv) 𝑔 is 𝑆-lower semicontinuous on cl𝐴 × cl𝐵.

Then, 𝑔 has a weak 𝜀-𝑆-saddle point on 𝐴 × 𝐵.
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Proof. Let 𝐴 × 𝐵 = 𝐸 and 𝑓 : cl𝐸 × cl𝐸 → 𝑉 be a vector-
valued mappings by

𝑓 (𝑥, 𝑦) = 𝑔 (𝑎, V) − 𝑔 (𝑢, 𝑏) , ∀ 𝑥 = (𝑎, 𝑏) ∈ cl𝐸,

𝑦 = (𝑢, V) ∈ cl𝐸.
(30)

Next, we show that all assumptions ofTheorem 8 are satisfied
by 𝑔.

Clearly, by the condition (i), cl𝐸 is compact. Then, by the
condition (ii), we have the fact that, for each 𝑎

1
, 𝑎
2
∈ cl𝐴 and

𝑙 ∈ [0, 1], there exists 𝑎
3
∈ cl𝐴 such that

𝑔 (𝑎
3
, 𝑏) ∈ 𝑙𝑔 (𝑎

1
, 𝑏) + (1 − 𝑙) 𝑔 (𝑎

2
, 𝑏) + 𝑆, ∀𝑏 ∈ cl𝐵 (31)

and, for each 𝑏
1
, 𝑏
2
∈ cl𝐵 and 𝑙 ∈ [0, 1], there exists 𝑏

3
∈ cl𝐵

𝑔 (𝑎, 𝑏
3
) ∈ 𝑙𝑔 (𝑎, 𝑏

1
) + (1 − 𝑙) 𝑔 (𝑎, 𝑏

2
) − 𝑆, ∀𝑎 ∈ cl𝐴.

(32)

By (31) and (32), for each (𝑎
1
, 𝑏
1
), (𝑎
2
, 𝑏
2
) ∈ cl𝐸 and 𝑙 ∈ [0, 1],

there exists (𝑎
3
, 𝑏
3
) ∈ cl𝐸 such that

𝑔 (𝑎
3
, 𝑏) − 𝑔 (𝑎, 𝑏

3
) ∈ 𝑙 (𝑔 (𝑎

1
, 𝑏) − 𝑔 (𝑎, 𝑏

1
))

+ (1 − 𝑙) (𝑔 (𝑎
2
, 𝑏) − 𝑔 (𝑎, 𝑏

2
)) + 𝑆,

∀ (𝑎, 𝑏) ∈ cl𝐸,

𝑔 (𝑎, 𝑏
3
) − 𝑔 (𝑎

3
, 𝑏) ∈ 𝑙 (𝑔 (𝑎, 𝑏

1
) − 𝑔 (𝑎

1
, 𝑏))

+ (1 − 𝑙) (𝑔 (𝑎, 𝑏
2
) − 𝑔 (𝑎

2
, 𝑏)) − 𝑆,

∀ (𝑎, 𝑏) ∈ cl𝐸.
(33)

Namely, 𝑓 is 𝑆-concavelike-convexlike on cl𝐸 × cl𝐸.
Now, we show that 𝑓 is 𝑆-lower semicontinuous on cl𝐸×

cl𝐸. By the condition (iii), for each (𝑎, V) ∈ cl𝐴 × cl𝐵 and
𝑠 ∈ int 𝑆, there exists an open neighborhood 𝑈

𝑎
of 𝑎 and 𝑈V

of V such that

𝑔 (𝑢
𝑎
, 𝑢V) ∈ 𝑔 (𝑎, V) −

𝑠

2

+ int 𝑆, ∀𝑢
𝑎
∈ 𝑈
𝑎
, 𝑢V ∈ 𝑈V, (34)

and, for each (𝑢, 𝑏) ∈ cl𝐴 × cl𝐵 and 𝑠 ∈ int 𝑆, there exists an
open neighborhood 𝑈

𝑢
of 𝑢 and 𝑈

𝑏
of 𝑏 such that

𝑔 (𝑢
𝑢
, 𝑢
𝑏
) ∈ 𝑔 (𝑢, 𝑏) +

𝑠

2

− int 𝑆, ∀𝑢
𝑢
∈ 𝑈
𝑢
, 𝑢
𝑏
∈ 𝑈
𝑏
.

(35)

By (34) and (35), we have the fact that, for any ((𝑎, 𝑏), (𝑢, V)) ∈
cl𝐸 × cl𝐸,

𝑔 (𝑢
𝑎
, 𝑢V) − 𝑔 (𝑢𝑢, 𝑢𝑏) ∈ 𝑔 (𝑎, V) − 𝑔 (𝑢, 𝑏) − 𝑠 + int 𝑆,

∀ ((𝑢
𝑎
, 𝑢
𝑏
) , (𝑢
𝑢
, 𝑢V)) ∈ 𝑈𝑎 × 𝑈𝑏 × 𝑈𝑢 × 𝑈V.

(36)

Namely,𝑓 is 𝑆-lower semicontinuous on cl𝐸×cl𝐸.Therefore,
by Lemma 11, 𝑔 has a weak 𝜀-𝑆-saddle point on 𝐴 × 𝐵. This
completes the proof.

Remark 13. The conditions (iii) and (iv) ofTheorem 12 do not
imply that 𝑔 is continuous (see [23]).
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