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Low-rank matrix recovery (LRMR) has been becoming an increasingly popular technique for analyzing data with missing entries,
gross corruptions, and outliers. As a significant component of LRMR, themodel of low-rank representation (LRR) seeks the lowest-
rank representation among all samples and it is robust for recovering subspace structures.This paper attempts to solve the problem
of LRR with partially observed entries. Firstly, we construct a nonconvex minimization by taking the low rankness, robustness, and
incompletion into consideration.Thenwe employ the technique of augmented Lagrangemultipliers to solve the proposed program.
Finally, experimental results on synthetic and real-world datasets validate the feasibility and effectiveness of the proposed method.

1. Introduction

In the community of pattern recognition, machine learning,
and computer vision, the investigated datasets usually have
intrinsically low-rank structure although they are probably
high-dimensional. Low-rank matrix recovery (LRMR) [1–
3] is just a type of model which utilizes the crucial low-
complexity information to complete missing entries, recover
sparse noise, identify outliers, and build an affinity matrix.
It also can be regarded as the generalization of compressed
sensing from one order to two orders due to the fact that
the low rankness of a matrix is equivalent to the sparsity
of its singular values. Recently, LRMR has received more
and more attentions in the fields of information science and
engineering and achieved great success in video background
modeling [4, 5], collaborative filtering [6, 7], and subspace
clustering [3, 8, 9], to name just a few.

Generally, LRMR is mainly composed of three appealing
types, that is, matrix completion (MC) [1], robust principal
component analysis (RPCA) [2, 4], and low-rank represen-
tation (LRR) [3, 8]. Among them, MC aims to complete the
missing entries with the aid of the low-rank property and is
initially described as an affine rankminimization problem. In
the past few years, the affine rank minimization is convexly
relaxed into a nuclear norm minimization [10] and it is
proven that if the number of sampled entries and singular

vectors satisfy some conditions, thenmost low-rankmatrices
can be perfectly recovered by solving the aforementioned
convex program [1].

Classical principal component analysis (PCA) [11] is very
effective to small Gaussian noise, but it does not work well in
practice when data samples are corrupted by outliers or large
sparse noise. For this purpose, several robust variants of PCA
have been proposed successively during the past two decades
[12, 13]. Since the seminal research work [4], the principal
component pursuit (PCP) approach has become a standard
for RPCA.This approach minimizes a weighted combination
of the nuclear norm and the 𝑙

1
norm with linear equality

constraints. It is proven that both the low-rank and the
sparse components can be recovered exactly with dominant
probability under some conditions by solving PCP [4].

In subspace clustering, a commonly used assumption is
that the data lie in the union of multiple low-rank subspaces
and each subspace has sufficient samples compared with its
rank. Liu et al. [3] proposed a robust subspace recovery
technique via LRR. Any sample in each subspace can be
represented as the linear combination of the bases. The low
complexity of the linear representation coefficients is very
useful in exploiting the low-rank structure. LRR attempts to
seek the lowest-rank representation of all data jointly and
it is demonstrated that the data contaminated by outliers
can be exactly recovered under certain conditions by solving
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a convex program [8]. If the bases are chosen as the columns
of an identity matrix and the 𝑙

1
norm is employed to measure

the sparsity, then LRR is changed into the PCP of RPCA.
For the datasets with missing entries and large sparse

corruption, the robust recovery of subspace structures may
be a challenging task. The available algorithms to MC are
not robust to gross corruption. Moreover, a large quantity of
missing values will bring out the degeneration of recovering
performance for LRR or RPCA. In this paper, we attempt
to address the problem of low-rank subspace recovery in
the presence of missing values and sparse noise. Specifi-
cally speaking, we present a model of incomplete low-rank
representation (ILRR) which is a direct generalization of
LRR. The ILRR model can be boiled down to a nonconvex
optimizationmodel which minimizes the combination of the
nuclear norm and the 𝑙

2,1
-norm. To solve this program, we

design an iterative scheme by applying the method of inexact
augmented Lagrange multipliers (ALM).

The rest of this paper is organized as follows. Section 2
briefly reviews preliminaries and related works on LRMR.
Themodel and algorithm for ILRR are presented in Section 3.
In Section 4, we discuss the extension of ILRR and its
relationship with the existing works. We compare the per-
formance of ILRR with the state-of-the-art algorithms on
synthetic data and real-world datasets in Section 5. Finally,
Section 6 draws some conclusions.

2. Preliminaries and Related Works

This section introduces the relevant preliminary material
concerning matrices and representative models of low-rank
matrix recovery (LRMR).

The choice of matrix norms plays a significant role in
LRMR. In the following, we present four important types
of matrix norms. For arbitrary X ∈ R𝑚×𝑛, the Frobenius
norm of X is expressed by ‖X‖

𝐹
= √∑

𝑚

𝑖=1
∑
𝑛

𝑗=1
𝑋2
𝑖𝑗
, the 𝑙

2,1
-

norm is ‖X‖
2,1

= ∑
𝑛

𝑗=1
√∑
𝑚

𝑖=1
𝑋2
𝑖𝑗
, the 𝑙

1
-norm is ‖X‖

1
=

∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
|𝑋
𝑖𝑗
|, and the nuclear norm is ‖X‖

∗
= ∑

min(𝑚,𝑛)
𝑖=1

𝜎
𝑖
,

where 𝑋
𝑖𝑗
is the (𝑖, 𝑗)th entry of X and 𝜎

𝑖
is the 𝑖th largest

singular value. Among them, the matrix nuclear norm is the
tightest convex relaxation of the rank function, and the 𝑙

2,1
-

norm and the 𝑙
1
-norm are frequently used to measure the

sparsity of a noise matrix.
Consider a data matrix D ∈ R𝑚×𝑛 stacked by 𝑛 training

samples, where each column ofD indicates a sample with the
dimensionality of𝑚. Within the field of LRMR, the following
three proximal minimization problems [3, 4] are extensively
employed:

min
X

𝜆 ‖X‖1 +
1

2
‖X−D‖

2

𝐹
,

min
X

𝜆 ‖X‖∗ +
1

2
‖X−D‖

2

𝐹
,

min
X

𝜆 ‖X‖2,1 +
1

2
‖X−D‖

2

𝐹
,

(1)

where 𝜆 is a positive constant used to balance the regulariza-
tion term and the approximation error. For given 𝜆 and D,
we define three thresholding operators S

𝜆
(D), D

𝜆
(D), and

W
𝜆
(D) as follows:

(S
𝜆
(D))
𝑖𝑗
= max (󵄨󵄨󵄨󵄨󵄨𝐷𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
− 𝜆, 0) ,

D
𝜆
(D) = US

𝜆
(Σ)V𝑇,

(W
𝜆
(D))
𝑖𝑗
=

max (√∑
𝑚

𝑘=1
𝐷2
𝑘𝑗

− 𝜆, 0)𝐷
𝑖𝑗

√∑
𝑚

𝑘=1
𝐷2
𝑘𝑗

,

(2)

where UΣV𝑇 is the singular value decomposition (SVD) of
D. It is proven that the aforementioned three optimization
problems have closed-form solutions denoted by S

𝜆
(D) [4],

D
𝜆
(D) [14], andW

𝜆
(D) [8], respectively.

We assume that D is low-rank. Because the degree of
freedom of a low-rank matrix is far less than its number of
entries, it is possible to recover exactly all missing entries
from partially observed entries as long as the number of
sampled entries satisfies certain conditions. Formally, the
problem of matrix completion (MC) [1] can be formulated
as follows:

min
X

‖X‖∗

s.t. 𝑋
𝑖𝑗
= 𝐷
𝑖𝑗
, (𝑖, 𝑗) ∈ Ω,

(3)

where Ω ⊂ [𝑚] × [𝑛], [𝑚] = {1, 2, . . . , 𝑚}, [𝑛] = {1, 2, . . . , 𝑛}.
We define a linear projection operator P

Ω
(∙) : R𝑚×𝑛 →

R𝑚×𝑛 as follows:

(P
Ω
(X))
𝑖𝑗
= {

𝑋
𝑖𝑗
, if (𝑖, 𝑗) ∈ Ω

0, otherwise.
(4)

Hence, the constraints in problem (3) can be rewritten as
P
Ω
(X) = P

Ω
(D).

PCA obtains the optimal estimate for small additive
Gaussian noise but breaks down for large sparse contamina-
tion. Here, the data matrix D is assumed to be the super-
position of a low-rank matrix A and a sparse noise matrix
E. In this situation, robust principal component analysis
(RPCA) is very effective to recover both the low-rank and the
sparse components by solving a convex program. Mathemat-
ically, RPCA can be described as the following nuclear norm
minimization [2]:

min
A,E

‖A‖∗ + 𝜆 ‖E‖1

s.t. D = A + E,
(5)

where 𝜆 is a positive weighting parameter. Sequentially,
RPCA is generalized into a stable version which is simultane-
ously stable to small perturbations and robust to gross sparse
corruption [15].

We further assume that the dataset is self-expressive
and the representation coefficients matrix is also low-rank.
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Based on the above two assumptions, the model of low-rank
representation (LRR) [3] is expressed as

min
Z,E

‖Z‖∗ + 𝜆 ‖E‖2,1

s.t. D = DZ + E,
(6)

whereZ ∈ R𝑛×𝑛 is the coefficientmatrix,E is the noisematrix,
and 𝜆 is a positive trade-off parameter. This model is very
effective to detect outliers and the optimal Z is in favor of the
robust subspace recovery. In subspace clustering, the affinity
matrices can be constructed by the optimal Z to problem (6).

Problems (3), (5), and (6) belong to the nuclear norm
minimizations. The existing algorithms to the preceding
optimizations mainly include the iterative thresholding, the
accelerated proximal gradient, the dual approach, and the
augmented Lagrange multipliers (ALM) [16]. These algo-
rithms are scalable owing to the adoption of first-order
information. Among them, ALM, also called alternating
direction method of multipliers (ADMM) [17], is a very
popular and effective method to solve the nuclear norm
minimizations.

3. Model and Algorithm of Incomplete
Low-Rank Representation

This section proposes a model of low-rank representation
for incomplete data and develops a corresponding iterative
scheme for this model.

3.1. Model. We consider an incomplete data matrix M ∈

R𝑚×𝑛 and denote the sampling index set by Ω. The (𝑖, 𝑗)th
entry 𝑀

𝑖𝑗
of M is missing if and only if (𝑖, 𝑗) ∉ Ω. For the

sake of convenience, we set all missing entries ofM to zeros.
To recover simultaneously the missing entries and the low-
rank subspace structure, we construct an incomplete low-
rank representation (ILRR) model:

min
Z,E,D

‖Z‖∗ + 𝜆 ‖E‖2,1

s.t. D = DZ + E

P
Ω
(D) = M,

(7)

where 𝜆 is a positive constant and D corresponds to the
completion argument ofM. If there is not any missing entry,
that is, Ω = [𝑚] × [𝑛], then the above model is equivalent to
LRR. In other words, LRR is a special case of ILRR.

In order to solve conveniently the nonconvex nuclear
norm minimization (7), we introduce two auxiliary matrix
variables X ∈ R𝑚×𝑛 and J ∈ R𝑛×𝑛. Under this circumstance,
the above optimization problem is reformulated as

min
Z,E,D,J,X

‖J‖∗ + 𝜆 ‖E‖2,1

s.t. D = XZ + E

Z = J, X = D, P
Ω
(D) = M.

(8)

This minimization problem is equivalent to

min
Z,E,D,J,X

‖J‖∗ + 𝜆 ‖E‖2,1

+
𝜇

2
(‖D − XZ − E‖2

𝐹
+ ‖Z − J‖2

𝐹
+ ‖X −D‖

2

𝐹
)

s.t. D = XZ + E

Z = J, X = D, P
Ω
(D) = M,

(9)

where the factor 𝜇 > 0. Without considering the constraint
P
Ω
(D) = M, we construct the augmented Lagrange function

of problem (9) as follows:

L = ‖J‖∗ + 𝜆 ‖E‖2,1

+
𝜇

2
(‖D − XZ − E‖2

𝐹
+ ‖Z − J‖2

𝐹
+ ‖X −D‖

2

𝐹
)

+ (⟨Y
1
,D − XZ − E⟩ + ⟨Y

2
,Z − J⟩ + ⟨Y

3
,X −D⟩) ,

(10)

where ⟨∙, ∙⟩ is the inner product operator between matrices
and Y

𝑖
is a Lagrange multiplier matrix, 𝑖 = 1, 2, 3. In the

next part, we will propose an inexact augmented Lagrange
multipliers (IALM) method to solve problem (8) or problem
(9).

3.2. Algorithm. Inexact ALM (IALM) method employs an
alternating update strategy and it minimizes or maximizes
the function L with respect to each block variable at each
iteration. Let Y = {Y

1
,Y
2
,Y
3
}.

Computing J. When J is unknown and other variables are
fixed, the calculation procedure of J is as follows:

J := argmin
J

L

= argmin
J

‖J‖∗ + ⟨Y
2
,Z − J⟩ +

𝜇

2
‖Z − J‖2

𝐹

= argmin
J

1

𝜇
‖J‖∗ +

1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(Z +

Y
2

𝜇
) − J

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

= D
1/𝜇

(Z +
Y
2

𝜇
) .

(11)
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Computing Z. If matrix Z is unknown and other variables are
given, Z is updated by minimizingL:

Z := argmin
Z

L

= argmin
Z

⟨Y
1
,D − XZ − E⟩ + ⟨Y

2
,Z − J⟩

+
𝜇

2
(‖D − XZ − E‖2

𝐹
+ ‖Z − J‖2

𝐹
)

= argmin
Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(D − E +

Y
1

𝜇
) − XZ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Z − (J − Y

2

𝜇
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

.

(12)

Let 𝑔(Z) = ‖(D − E + Y
1
/𝜇) − XZ‖2

𝐹
+ ‖Z − (J − Y

2
/𝜇)‖
2

𝐹
. By

setting the derivative of 𝑔(Z) to zero, we have

∇𝑔 (Z) = 2X𝑇XZ − 2X𝑇 (D − E +
Y
1

𝜇
)

+ 2Z − 2(J − Y
2

𝜇
) = 0

(13)

or, equivalently,

Z := (X𝑇X + I)
−1

(X𝑇 (D − E +
Y
1

𝜇
) + (J − Y

2

𝜇
)) , (14)

where I is an 𝑛-order identity matrix.

Computing D. The update formulation of matrix D is calcu-
lated as follows:

D := argmin
D

L

= argmin
D

⟨Y
1
,D − XZ − E⟩ + ⟨Y

3
,X −D⟩

+
𝜇

2
(‖D − XZ − E‖2

𝐹
+ ‖X −D‖

2

𝐹
)

= argmin
D

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
D − (XZ + E −

Y
1

𝜇
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(X +

Y
3

𝜇
) −D

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
1

2
(XZ + E −

Y
1

𝜇
+ X +

Y
3

𝜇
) .

(15)

Considering the constraint P
Ω
(D) = M, we further obtain

the iteration formulation ofD

D := M +
1

2
P
Ω
(XZ + E −

Y
1

𝜇
+ X +

Y
3

𝜇
) , (16)

whereΩ is the complementary set ofΩ.

Computing E. Fix Z,D, J,X, and Y and minimize L with
respect to E:

E := argmin
E

L

= argmin
E

𝜆

𝜇
‖E‖
2,1

+
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
D − XZ − E +

1

𝜇
Y
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

= W
𝜆/𝜇

(D − XZ +
Y
1

𝜇
) .

(17)

Computing X. Fix Z,D, J,E, and Y to calculate X as follows:

X := argmin
X

L

= argmin
X

ℎ (X) ,

(18)

where ℎ(X) = ‖D −XZ − E +Y
1
/𝜇‖
2

𝐹
+ ‖X −D +Y

3
/𝜇‖
2

𝐹
. The

derivative of ℎ(X) is ∇ℎ(X) = 2XZZ𝑇 − 2(D − E +Y
1
/𝜇)Z𝑇 +

2X−2(D−Y
3
/𝜇). Hence, we obtain the update ofX by setting

∇ℎ(X) = 0:

X := ((D − E +
Y
1

𝜇
)Z𝑇 + (D −

Y
3

𝜇
)) (ZZ𝑇 + I)

−1

. (19)

Computing Y.GivenZ,E,D, J, andX, we calculateY as follows

Y := argmax
Y

L. (20)

In the detailed implementation,Y is updated according to the
following formulations:

Y
1
:= Y
1
+ 𝜇 (D − XZ − E) ,

Y
2
:= Y
2
+ 𝜇 (Z − J) ,

Y
3
:= Y
3
+ 𝜇 (X −D) .

(21)

We denote by O
𝑚×𝑛

the 𝑚 × 𝑛 zeros matrix. The whole
iterative procedure is outlined in Algorithm 1. The stopping
condition of Algorithm 1 can be set as

max {‖D − XZ − E‖𝐹 , ‖Z − J‖𝐹 , ‖X −D‖𝐹} < 𝜀, (22)

where 𝜀 is a sufficiently small positive number.

3.3. Convergence. When solving ILRR via the IALMmethod,
the block variables J,Z,D,E,X are updated alternatively.
Now, we update simultaneously these five block variables;
namely,

(J,Z,D,E,X) := arg min
J,Z,D,E,X

L. (23)

The modified method is called the exact ALMmethod. Since
the objective function in problem (8) is continuous, the exact
ALMmethod is convergent [18]. However, it is still difficult to
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Input: Data matrixM, sampling index setΩ, compromising parameter 𝜆.
Initialize:D = M, X = M, Z = O

𝑛 × 𝑛
, J = O

𝑛 × 𝑛
, E = O

𝑚×𝑛
, Y
1
= O
𝑚×𝑛

,
Y
2
= O
𝑛 × 𝑛

, Y
3
= O
𝑚×𝑛

, 𝜇 = 10
−6, 𝜇 = 10

8, 𝜌 = 1.1.
Output: Z andD.
While not converged do

(1) Update J according to (11).
(2) Update Z according to (14).
(3) Update D according to (16).
(4) Update E according to (17).
(5) Update X according to (19).
(6) Update Y according to (21).
(7) Update 𝜇 as 𝜇 := min(𝜌𝜇, 𝜇).

End while

Algorithm 1: Solving ILRR by IALM.

prove the convergence of the IALM.There are two reasons for
the difficulty: one is the existence of nonconvex constraints in
(8) and the other is that the number of block variables is more
than two. Nevertheless, the experimental results of Section 5
demonstrate the validity and effectiveness of Algorithm 1
in practice.

4. Model Extensions

In ILRRmodel, the main aim of the term ‖E‖
2,1

is to enhance
the robustness to noise and outliers. If we do not consider
outliers, then ‖E‖

2,1
should be replacedwith ‖E‖

1
. For the new

ILRRmodel, we can design an algorithmby only revising Step
4 of Algorithm 1 as follows:

E := argmin
E

𝜆

𝜇
‖E‖
1
+

1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
D − XZ − E +

1

𝜇
Y
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

= S
𝜆/𝜇

(D − XZ +
Y
1

𝜇
) .

(24)

If we substitute ‖E‖2
𝐹
for ‖E‖

2,1
and set Z = Z𝑇, then

problem (7) is the incomplete version of low-rank subspace
clustering (LRSC) with uncorrupted data [9]. If we replace
‖Z‖
∗
and ‖E‖

2,1
by ‖Z‖

1
and ‖E‖

1
, respectively, and incorpo-

rate diag(Z) = 0 into the constraints, then problem (7) is
the incomplete version of sparse subspace clustering (SSC)
without dense errors [19].

ILRR uses the data D itself as the dictionary. Now, we
extend the dictionary and noise sparsity to the more general
cases. As a result, we obtain a comprehensive form of ILRR:

min
Z,E,A,D

‖Z‖∗ + 𝜆 ‖E‖𝑙

s.t. D = AZ + E, P
Ω
(D) = M,

(25)

where A ∈ R𝑚×𝑟 represents the dictionary, Z ∈ R𝑟×𝑛 is the
coefficients matrix, and ‖E‖

𝑙
indicates a certain norm of E. If

A is an 𝑚-order identity matrix and ‖E‖
𝑙
is chosen as ‖E‖

1
,

then problem (25) corresponds to the incomplete version of
RPCA [20]. If we further reinforce 𝜆 = 0, then problem (25)

becomes the equivalent formulation of MC [16]. Moreover,
if A is an unknown orthogonal matrix and 𝜆 = 0, then
problem (25) is equivalent to matrix decomposition method
forMC [21]. Finally, if we letD andA be stacked by the testing
samples and the training samples, respectively, let ‖Z‖

∗
be

replaced by ‖Z‖
1
, and let 𝜆 = 0, then problem (25) is changed

into the incomplete version of robust pattern recognition via
sparse representation [22].

5. Experiments

In this section, we validate the effectiveness and efficiency of
the proposed method by carrying out experiments on syn-
thetic data and real-world datasets. The experimental results
of incomplete low-rank representation (ILRR) are compared
with that of other state-of-the-art methods: sparse subspace
clustering (SSC), low-rank subspace clustering (LRSC), and
low-rank representation (LRR). For the latter three methods,
the missing values are replaced by zeros. For SSC and LRSC,
their parameters are tuned to achieve the best performance.
The tolerant error 𝜀 is set to 10

−8 in all experiments.

5.1. Synthetic Data. We generate randomly an orthogonal
matrix U

1
∈ R200×4 and a rotation matrix T ∈ R200×200.

Four other orthogonal matrices are constructed as U
𝑖+1

=

TU
𝑖
, 𝑖 = 1, 2, 3, 4. Thus, five independent low-rank subspaces

{𝑆
𝑖
}
5

𝑖=1
⊂ R200 are spanned by the columns ofU

𝑖
, respectively.

We draw 40 data vectors from each subspace by M
𝑖
= U
𝑖
Q
𝑖
,

𝑖 = 1, . . . , 5, where the entries of Q
𝑖
∈ R4×40 are independent

of each other and they obey standard normal distributions.
We set M󸀠 = (M

1
, . . . ,M

5
) and choose randomly its 20

column vectors to be corrupted. In this part, the chosen
columnvectorm is contaminated byGaussian noisewith zero
mean and standard deviation 0.1‖m‖

2
.The resultingmatrix is

expressed asM󸀠󸀠.
We draw samples on M󸀠󸀠 according to a uniform distri-

bution and denote byΩ the sampling index set.The sampling
ratio (SR) is defined as SR = |Ω|/200

2, where |Ω| is the
cardinality of Ω and SR = 1 means that no entry is missing.
Hence, an incomplete matrix is generated by M = P

Ω
(M󸀠󸀠).

The trade-off parameter 𝜆 in both LRR and ILRR is set to 0.1.
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(a) SSC (SR = 0.5) (b) LRSC (SR = 0.5) (c) LRR (SR = 0.5) (d) ILRR (SR = 0.5)

(e) SSC (SR = 0.3) (f) LRSC (SR = 0.3) (g) LRR (SR = 0.3) (h) ILRR (SR = 0.3)

Figure 1: Affinity matrices comparison on synthetic data.
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Figure 2: NMI comparison on synthetic data.

After running Algorithm 1, we obtain the optimal low-rank
representation matrix Z. On the basis of Z, we construct an
affinitymatrix Z̃ = (|Z|+|Z𝑇|)/2, where |∙|means the absolute
value operator.Then we choose spectral clustering [23] as the
clustering algorithm and evaluate the clustering performance
by normalized mutual information (NMI). Let 𝐶 be a set of
true cluster labels and let𝐶󸀠 be a set of clusters obtained from
the spectral clustering algorithm. NMI is calculated as

NMI =
MI (𝐶, 𝐶

󸀠
)

√𝐻 (𝐶)𝐻 (𝐶󸀠)

, (26)

SSC
LRSC

LRR
ILRR
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0
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M
I

Figure 3: NMI comparison on Extended Yale B.

where MI(𝐶, 𝐶
󸀠
) is the mutual information metric and𝐻(𝐶)

is the entropy of 𝐶. NMI takes values in [0, 1] and a larger
NMI value indicates a better clustering performance.

In the experimental implementation, we vary the SR
from 0.2 to 1 with an interval of 0.1. For each fixed SR,
we repeat the experiments 10 times and report the average
NMI. We first compare the affinity matrices Z̃ produced by
SSC, LRSC, LRR, and ILRR, as shown partially in Figure 1.
From Figure 1, we observe that our method exhibits obvious
block structures compared to other three methods, whereas
SSC, LRSC, and LRR show no block-diagonal structure with
SR = 0.3. This observation means that only ILRR can keep
compact representation for the same subspace and divergent
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(a) Original images (b) Sampled images (c) Recovered images (d) Noise images

Figure 4: Face images recovery of ILRR on Extended Yale B with SR = 0.3.

representation for different subspaces when a large number
of values are missing.

Secondly, we compare NMI values of ILRR with that of
other three methods at different SR, as shown in Figure 2. It
can be seen from this figure that NMI values of SSC, LRR,
and ILRR are almost one if SR ≥ 0.7, while ILRR has higher
NMI values than other three methods if SR ≤ 0.6. In other
words, the NMI values of SSC, LRSC, and LRR are reduced
drastically with the decreasing of SR. These observations
verify that ILRR is more robust than other methods in the
presence of missing values.

5.2. Face Clustering. We carry out face clustering experi-
ments on a part of Extended Yale Face Database B [24] with
large corruptions. This whole database consists of 38 objects
and each object has about 64 images. We choose the first
10 objects and each image is resized into 32 × 32. Thus, the
face images dataset is represented by a matrix with size of
1024 × 640. Each column of the data matrix is normalized
to an 𝑙

2
unit length in consideration of variable illumination

conditions and poses.
The generationmanner of sampling setΩ is similar to that

of the previous part. We vary the values of SR from 0.1 to 1

with an interval of 0.1 and set 𝜆 = 1.2 in LRR and ILRR. The
comparison of NMI values is compared among SSC, LRSC,
LRR, and ILRR, as shown in Figure 3, where each NMI value
is the average result of ten repeated experiments. It can be
seen from Figure 3 that ILRR achieves relatively stable NMI
values if SR ≥ 0.2, while other three methods obtain much
worse NMI values than ILRR if SR ≤ 0.9. This observation
shows that SSC, LRSC, and LRR aremore sensitive than ILRR
on SR.

Furthermore, ILRR has an advantage in recovering the
low-rank components over other three methods. In the
following, we give the recovery performance contrast of
ILRR. Here, we only consider two different SR; that is, SR =

0.3 and SR = 0.6. For these two given SR, the original
images, sampled images, recovered images, and noise images
are shown partially in Figures 4 and 5, respectively. Among
these sampled images, the unsampled entries are shown in
white. From these two figures, we can see that ILRR not only
corrects automatically the corruptions (shadow and noise)
but also recovers efficiently the low-rank components.

5.3. Motion Segmentation. In this part, we test the proposed
ILRR method for the task of motion segmentation. We
consider eight sequences of outdoor traffic scenes, a subset of
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(a) Original images (b) Sampled images (c) Recovered images (d) Noise images

Figure 5: Face images recovery of ILRR on Extended Yale B with SR = 0.6.

theHopkins 155 dataset [25].These sequences were taken by a
moving handheld camera and they tracked two cars translat-
ing and rotating on a street, as shown partly in Figure 6.These
sequences are drawn from two or three motions, where one
motion corresponds to one subspace. There are 8 clustering
tasks in total since motion segmentation of each sequence
is a sole clustering task. The tasks of motion segmentation
are carried out according to the given features extracted and
tracked in multiple frames of the above video sequences.

The extracted feature points of each sequence can be
reshaped into an approximately low-rank matrix with 𝑛

columns, where 𝑛 equals the number of feature points.
In the detailed experimental implementation, we consider
different SR varying from 0.2 to 1 with an interval 0.2. The
regularization parameter set 𝜆 in LRR and ILRR is set to 2.
For fixed sequence and fixed SR, each method is repeated 10
times and the mean NMI values are recorded. We report the
mean and the standard derivation of NMI values among 8
sequences, as shown in Table 1.

From Table 1, we can see that ILRR obtains very high
NMI values especially for SR ≥ 0.2, while NMI values of
other three methods are unacceptable for SR ≤ 0.8. Although
SSC segments exactly each subspace when SR = 1.0, small
SR has a fatal influence on SSC’s segmentation performance.

Table 1: NMI (%) comparison of different methods on traffic
sequences.

SR SSC LRSC LRR ILRR
0.2 5.15 ± 4.97 8.76 ± 4.66 9.97 ± 5.26 66.18 ± 15.40
0.4 13.74 ± 7.00 15.61 ± 10.50 15.07 ± 11.45 89.98 ± 13.24
0.6 21.45 ± 15.88 18.48 ± 11.84 17.78 ± 13.71 90.60 ± 13.72
0.8 50.97 ± 25.52 18.85 ± 14.06 17.46 ± 15.71 96.71 ± 6.84
1.0 100 ± 0.00 96.38 ± 7.60 96.83 ± 6.41 96.83 ± 6.41

In summary, ILRR is more robust to a large number of miss-
ing values than other three methods.

6. Conclusions

In this paper, we investigate the model of low-rank rep-
resentation for incomplete data, which can be regarded as
the generalization of low-rank representation and matrix
completion. For the model of incomplete low-rank represen-
tation, we propose an iterative scheme based on augmented
Lagrangemultipliersmethod. Experimental results show that
the proposed method is feasible and efficient in recovering
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Figure 6: Images from traffic sequences on the Hopkins 155 dataset.

low-rank structure, completing missing entries, and remov-
ing noise. It still needs further research on how to construct
a general model of low-rank matrix recovery and design the
corresponding algorithm.
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